Géométrie analytique
Stability and holomorphic connections on vector bundles over LVMB manifolds
[Fibrés vectoriels holomorphes sur les variétés LVMB]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 151-157.

Nous caractérisons les variétés LVMB qui ont la propriété de positivité 𝒫 suivante : le fibré tangent holomorphe est engendré au point générique par une famille de champs de vecteurs holomorphes (globalement définis) {v i }, tel que chaque v i s’annule en au moins un point de X. Nous en déduisons que, sur les variétés LVMB avec la propriété 𝒫, les connexions holomorphes sur les fibrés vectoriels holomorphes semi-stables sont nécessairement plates.

We characterize all LVMB manifolds X such that the holomorphic tangent bundle TX is spanned at the generic point by a family of global holomorphic vector fields, each of them having non-empty zero locus. We deduce that holomorphic connections on semi-stable holomorphic vector bundles over LVMB manifolds with this previous property are always flat.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.24
Classification : 32Q26, 32M12, 53B05
Biswas, Indranil 1 ; Dumitrescu, Sorin 2 ; Meersseman, Laurent 3

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2 Université Côte d’Azur, CNRS, LJAD
3 Laboratoire Angevin de Recherche en Mathématiques, Université d’Angers, Université de Bretagne-Loire F-49045 Angers Cedex, France
@article{CRMATH_2020__358_2_151_0,
     author = {Biswas, Indranil and Dumitrescu, Sorin and Meersseman, Laurent},
     title = {Stability and holomorphic connections on vector bundles over {LVMB} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {151--157},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.24},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.24/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Dumitrescu, Sorin
AU  - Meersseman, Laurent
TI  - Stability and holomorphic connections on vector bundles over LVMB manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 151
EP  - 157
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.24/
DO  - 10.5802/crmath.24
LA  - en
ID  - CRMATH_2020__358_2_151_0
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Dumitrescu, Sorin
%A Meersseman, Laurent
%T Stability and holomorphic connections on vector bundles over LVMB manifolds
%J Comptes Rendus. Mathématique
%D 2020
%P 151-157
%V 358
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.24/
%R 10.5802/crmath.24
%G en
%F CRMATH_2020__358_2_151_0
Biswas, Indranil; Dumitrescu, Sorin; Meersseman, Laurent. Stability and holomorphic connections on vector bundles over LVMB manifolds. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 151-157. doi : 10.5802/crmath.24. http://www.numdam.org/articles/10.5802/crmath.24/

[1] Atiyah, Michael F. Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl

[2] Biswas, Indranil; Dumitrescu, Sorin Generalized holomorphic Cartan geometries, Eur. J. Math. (2019), p. 40879-019 | DOI

[3] Bosio, Frédéric Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano–Verjovsky, Ann. Inst. Fourier, Volume 51 (2001) no. 5, pp. 1259-1297 | DOI | Numdam | MR | Zbl

[4] Bosio, Frédéric; Meersseman, Laurent Real quadrics in n , complex manifolds and convex polytopes, Acta Math., Volume 197 (2006) no. 1, pp. 53-127 | DOI | MR | Zbl

[5] Brînzănescu, Vasile Holomorphic vector bundles over compact complex surfaces, Lecture Notes in Mathematics, 1624, Springer, 1996 | MR | Zbl

[6] Buchdahl, Nicholas P. Hermitian–Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., Volume 280 (1988) no. 4, pp. 625-648 | DOI | MR | Zbl

[7] Gauduchon, Paul Sur la 1-forme de torsion d’une variété hermitienne compacte, Math. Ann., Volume 267 (1984), pp. 495-518 | DOI | Zbl

[8] Kobayashi, Shoshichi Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987 | MR | Zbl

[9] Lübke, Martin; Teleman, Andrei The Kobayashi–Hitchin correspondence, World Scientific, 1995 | Zbl

[10] Meersseman, Laurent Un procédé de construction géométrique de variétés compactes, complexes, non algébriques, en dimension quelconque, Ph. D. Thesis, Université Lille 1 (France) (1998)

[11] Meersseman, Laurent A new geometric construction of compact complex manifolds in any dimension, Math. Ann., Volume 317 (2000) no. 1, pp. 79-115 | DOI | MR | Zbl

[12] Meersseman, Laurent; Verjovsky, Alberto Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math., Volume 572 (2004), pp. 57-96 | MR | Zbl

[13] Nie, Yanci; Zhang, Xi Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 627-642 | MR | Zbl

[14] Panov, Taras; Ustinovskiy, Yury; Verbitsky, Misha Complex geometry of moment angles manifolds, Math. Z., Volume 284 (2016) no. 1-2, pp. 309-333 | DOI | MR | Zbl

Cité par Sources :