We consider the following functions
where and is the multiple gamma function of order . In this work, our aim is to establish that and are strictly completely monotonic on the positive half line for any positive integer In particular, we show that and are strictly completely monotonic and strictly logarithmically completely monotonic respectively on . As application, we obtain new bounds for the Barnes G-function.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_8_917_0, author = {Das, Sourav}, title = {A complete monotonicity property of the multiple gamma function}, journal = {Comptes Rendus. Math\'ematique}, pages = {917--922}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {8}, year = {2020}, doi = {10.5802/crmath.115}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.115/} }
TY - JOUR AU - Das, Sourav TI - A complete monotonicity property of the multiple gamma function JO - Comptes Rendus. Mathématique PY - 2020 SP - 917 EP - 922 VL - 358 IS - 8 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.115/ DO - 10.5802/crmath.115 LA - en ID - CRMATH_2020__358_8_917_0 ER -
%0 Journal Article %A Das, Sourav %T A complete monotonicity property of the multiple gamma function %J Comptes Rendus. Mathématique %D 2020 %P 917-922 %V 358 %N 8 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.115/ %R 10.5802/crmath.115 %G en %F CRMATH_2020__358_8_917_0
Das, Sourav. A complete monotonicity property of the multiple gamma function. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 917-922. doi : 10.5802/crmath.115. http://www.numdam.org/articles/10.5802/crmath.115/
[1] The multiple gamma function and its application to computation of series, Ramanujan J., Volume 9 (2005) no. 3, pp. 271-288 | DOI | MR | Zbl
[2] The theory of the G-function, Quart. J., Volume 31 (1900), pp. 264-314 | Zbl
[3] On the theory of the multiple Gamma function, Trans. Camb. Philos. Soc., Volume 19 (1904), pp. 374-439 | Zbl
[4] Inequalities for the double gamma function, J. Math. Anal. Appl., Volume 351 (2009) no. 1, pp. 182-185 | DOI | MR | Zbl
[5] Determinant of Laplacian on , Math. Japon., Volume 40 (1994) no. 1, pp. 155-166 | MR | Zbl
[6] Determinants of the Laplacians on the -dimensional unit sphere , Adv. Differ. Equ., Volume 2013 (2013), 236, 12 pages | MR | Zbl
[7] Multiple gamma functions and their applications, Analytic number theory, approximation theory, and special functions, Springer, 2014, pp. 93-129 | DOI | Zbl
[8] Inequalities involving the multiple psi function, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 288-292 | MR | Zbl
[9] Pick functions related to the triple Gamma function, J. Math. Anal. Appl., Volume 455 (2017) no. 2, pp. 1124-1138 | MR | Zbl
[10] Bounds for triple gamma functions and their ratios, J. Inequal. Appl., Volume 2016 (2016), 210, 11 pages | MR | Zbl
[11] A complete monotonicity property of the gamma function, J. Math. Anal. Appl., Volume 296 (2004) no. 2, pp. 603-607 | MR | Zbl
[12] The multiple gamma function and its -analogue, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publications), Institute of Mathematics of the Polish Academy of Sciences, 1995, pp. 429-441
[13] Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal., Volume 19 (1988) no. 2, pp. 493-507 | DOI | MR | Zbl
[14] L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire , Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) (Astérisque), Volume 61, Société Mathématique de France (1979), pp. 235-249 | Numdam | Zbl
Cité par Sources :