Théorie des nombres
A complete monotonicity property of the multiple gamma function
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 917-922.

We consider the following functions

f n (x)=1-lnx+lnG n (x+1) xandg n (x)=G n (x+1) x x,x(0,),n,

where G n (z)=Γ n (z) (-1) n-1 and Γ n is the multiple gamma function of order n. In this work, our aim is to establish that f 2n (2n) (x) and (lng 2n (x)) (2n) are strictly completely monotonic on the positive half line for any positive integer n. In particular, we show that f 2 (x) and g 2 (x) are strictly completely monotonic and strictly logarithmically completely monotonic respectively on (0,3]. As application, we obtain new bounds for the Barnes G-function.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.115
Classification : 33B15, 26D07
Das, Sourav 1

1 Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand-831014, India
@article{CRMATH_2020__358_8_917_0,
     author = {Das, Sourav},
     title = {A complete monotonicity property of the multiple gamma function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {917--922},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.115},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.115/}
}
TY  - JOUR
AU  - Das, Sourav
TI  - A complete monotonicity property of the multiple gamma function
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 917
EP  - 922
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.115/
DO  - 10.5802/crmath.115
LA  - en
ID  - CRMATH_2020__358_8_917_0
ER  - 
%0 Journal Article
%A Das, Sourav
%T A complete monotonicity property of the multiple gamma function
%J Comptes Rendus. Mathématique
%D 2020
%P 917-922
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.115/
%R 10.5802/crmath.115
%G en
%F CRMATH_2020__358_8_917_0
Das, Sourav. A complete monotonicity property of the multiple gamma function. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 917-922. doi : 10.5802/crmath.115. http://www.numdam.org/articles/10.5802/crmath.115/

[1] Adamchik, Victor S. The multiple gamma function and its application to computation of series, Ramanujan J., Volume 9 (2005) no. 3, pp. 271-288 | DOI | MR | Zbl

[2] Barnes, Ernest W. The theory of the G-function, Quart. J., Volume 31 (1900), pp. 264-314 | Zbl

[3] Barnes, Ernest W. On the theory of the multiple Gamma function, Trans. Camb. Philos. Soc., Volume 19 (1904), pp. 374-439 | Zbl

[4] Batir, Necdet Inequalities for the double gamma function, J. Math. Anal. Appl., Volume 351 (2009) no. 1, pp. 182-185 | DOI | MR | Zbl

[5] Choi, Junesang Determinant of Laplacian on S 3 , Math. Japon., Volume 40 (1994) no. 1, pp. 155-166 | MR | Zbl

[6] Choi, Junesang Determinants of the Laplacians on the n-dimensional unit sphere S n , Adv. Differ. Equ., Volume 2013 (2013), 236, 12 pages | MR | Zbl

[7] Choi, Junesang Multiple gamma functions and their applications, Analytic number theory, approximation theory, and special functions, Springer, 2014, pp. 93-129 | DOI | Zbl

[8] Das, Sourav Inequalities involving the multiple psi function, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 288-292 | MR | Zbl

[9] Das, Sourav; Pedersen, Henrik L.; Swaminathan, Anbhu Pick functions related to the triple Gamma function, J. Math. Anal. Appl., Volume 455 (2017) no. 2, pp. 1124-1138 | MR | Zbl

[10] Das, Sourav; Swaminathan, Anbhu Bounds for triple gamma functions and their ratios, J. Inequal. Appl., Volume 2016 (2016), 210, 11 pages | MR | Zbl

[11] Qi, Feng; Chen, Chao-Ping A complete monotonicity property of the gamma function, J. Math. Anal. Appl., Volume 296 (2004) no. 2, pp. 603-607 | MR | Zbl

[12] Ueno, Kimio; Nishizawa, Michitomo The multiple gamma function and its q-analogue, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publications), Institute of Mathematics of the Polish Academy of Sciences, 1995, pp. 429-441

[13] Vardi, Ilan Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal., Volume 19 (1988) no. 2, pp. 493-507 | DOI | MR | Zbl

[14] Vignéras, Marie-France L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL (2,Z), Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) (Astérisque), Volume 61, Société Mathématique de France (1979), pp. 235-249 | Numdam | Zbl

Cité par Sources :