En généralisant la notion de couple assorti de groupes, nous définissons et étudions les paires assorties de groupoides localement compacts munis de systèmes de Haar, afin d’obtenir de nouveaux exemples de groupoïdes quantiques mesurés.
Generalizing the notion of matched pair of groups, we define and study matched pairs of locally compact groupoids endowed with Haar systems, in order to give new examples of measured quantum groupoids.
Keywords: Von Neumann algebras, measured quantum groupoids, matched pairs of groupoids
Mot clés : Algèbres de von Neumann, groupoïdes quantiques mesurés, paires assorties de groupoïdes
@article{AMBP_2014__21_2_81_0, author = {Vallin, Jean-Michel}, title = {Measured quantum groupoids associated with matched pairs of locally compact groupoids}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {81--133}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.344}, mrnumber = {3327862}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.344/} }
TY - JOUR AU - Vallin, Jean-Michel TI - Measured quantum groupoids associated with matched pairs of locally compact groupoids JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 81 EP - 133 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.344/ DO - 10.5802/ambp.344 LA - en ID - AMBP_2014__21_2_81_0 ER -
%0 Journal Article %A Vallin, Jean-Michel %T Measured quantum groupoids associated with matched pairs of locally compact groupoids %J Annales mathématiques Blaise Pascal %D 2014 %P 81-133 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.344/ %R 10.5802/ambp.344 %G en %F AMBP_2014__21_2_81_0
Vallin, Jean-Michel. Measured quantum groupoids associated with matched pairs of locally compact groupoids. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 81-133. doi : 10.5802/ambp.344. http://www.numdam.org/articles/10.5802/ambp.344/
[1] Tensor categories attached to double groupoids, Adv. Math., Volume 200 (2006) no. 2, pp. 539-583 | DOI | MR | Zbl
[2] Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR | Zbl
[3] Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | DOI | MR | Zbl
[4] Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, p. 1497-1524 (electronic) | DOI | MR | Zbl
[5] On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | DOI | MR | Zbl
[6] Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, pp. ii+150 pp. (2009) | Numdam | MR | Zbl
[7] The unitary implementation of a measured quantum groupoid action, Ann. Math. Blaise Pascal, Volume 17 (2010) no. 2, pp. 233-302 | DOI | Numdam | MR | Zbl
[8] Measured quantum groupoids with a central basis, J. Operator Theory, Volume 66 (2011) no. 1, pp. 3-58 | MR | Zbl
[9] Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992, pp. x+257 | MR | Zbl
[10] Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | DOI | MR | Zbl
[11] Éléments de topologie algébrique, Hermann, Paris, 1971, pp. 249 | MR | Zbl
[12] Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], 36, L’Enseignement Mathématique, Geneva, 2000, pp. 196 | MR | Zbl
[13] Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | DOI | MR | Zbl
[14] tel.ccsd.cnrs.fr/documents/archives0/00/00/55/05 (thèse, Université d’Orléans)
[15] Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, pp. iv+158 pp. (2008) | Numdam | MR | Zbl
[16] Topologies on measured groupoids, Journal of Functional Analysis (1982) no. 47, pp. 314-343 | DOI | MR | Zbl
[17] A groupoid approach to -algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980, pp. ii+160 | MR | Zbl
[18] Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR | Zbl
[19] Modular theory in operator algebras, Editura Academiei-Abacus Press Wells England, 1981 | MR | Zbl
[20] The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | DOI | MR | Zbl
[21] Groupes quantiques localement compacts, actions et extensions (2004) (Habilitation à Diriger des Recherches, Université Paris 7 Denis Diderot)
[22] Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | DOI | MR | Zbl
[23] Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR | Zbl
[24] Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR | Zbl
[25] Actions and coactions of finite quantum groupoids on von Neumann algebras, extensions of the matched pair procedure, J. Algebra, Volume 314 (2007) no. 2, pp. 789-816 | DOI | MR | Zbl
[26] Relative matched pairs of finite groups from depth two inclusions of von Neumann algebras to quantum groupoids, J. Funct. Anal., Volume 254 (2008) no. 8, pp. 2040-2068 | DOI | MR | Zbl
[27] From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | DOI | MR | Zbl
Cité par Sources :