Frank Lesieur a introduit une notion de groupoïde quantique mesuré, dans le cadre des algèbres de von Neumann, en s’inspirant des groupes quantiques localement compacts de Kustermans et Vaes (dans la version de cette construction faite dans le cadre des algèbres de von Neumann). Dans un article précédent, l’auteur a introduit les notions d’action, de produit croisé, d’action duale d’un groupoïde quantique mesuré ; un théorème de bidulaité des actions a éte démontré. Cet article continue ce programme : nous démontrons l’existence d’une implémentation standard d’une action, et un théorème de bidulaité pour les poids. Sont ainsi généralisés des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques localement compacts, et par T. Yamanouchi pour les groupoïdes mesurés.
Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.
Keywords: Measured quantum groupoids, actions, biduality theorems
Mot clés : Groupoïdes quantiques mesurés, actions, théorèmes de bidualité
@article{AMBP_2010__17_2_233_0, author = {Enock, Michel}, title = {The unitary implementation of a measured quantum groupoid action}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {233--302}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {2}, year = {2010}, doi = {10.5802/ambp.284}, mrnumber = {2778919}, zbl = {1235.46066}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.284/} }
TY - JOUR AU - Enock, Michel TI - The unitary implementation of a measured quantum groupoid action JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 233 EP - 302 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.284/ DO - 10.5802/ambp.284 LA - en ID - AMBP_2010__17_2_233_0 ER -
%0 Journal Article %A Enock, Michel %T The unitary implementation of a measured quantum groupoid action %J Annales mathématiques Blaise Pascal %D 2010 %P 233-302 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.284/ %R 10.5802/ambp.284 %G en %F AMBP_2010__17_2_233_0
Enock, Michel. The unitary implementation of a measured quantum groupoid action. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 233-302. doi : 10.5802/ambp.284. http://www.numdam.org/articles/10.5802/ambp.284/
[1] Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR | Zbl
[2] Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | DOI | MR | Zbl
[3] Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 135-173 | DOI | MR | Zbl
[4] Tensor products of -algebras over , Astérisque (1995) no. 232, pp. 81-92 Recent advances in operator algebras (Orléans, 1992) | Numdam | MR | Zbl
[5] Déformations de -algèbres de Hopf, Bull. Soc. Math. France, Volume 124 (1996) no. 1, pp. 141-215 | Numdam | MR | Zbl
[6] Weak -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publ.), Volume 40, Polish Acad. Sci., Warsaw, 1997, pp. 9-19 | MR | Zbl
[7] A coassociative -quantum group with nonintegral dimensions, Lett. Math. Phys., Volume 38 (1996) no. 4, pp. 437-456 | DOI | MR | Zbl
[8] On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | DOI | MR | Zbl
[9] Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl
[10] -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type , J. Operator Theory, Volume 54 (2005) no. 1, pp. 27-68 | MR | Zbl
[11] Monoidal equivalence for locally compact quantum groups, 2008 (mathOA/0804.2405, to appear in J. Operator Theory)
[12] Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis, Volume 26 (1977) no. 1, pp. 16-47 | DOI | MR | Zbl
[13] Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal., Volume 154 (1998) no. 1, pp. 67-109 | DOI | MR | Zbl
[14] Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal., Volume 223 (2005) no. 2, pp. 311-364 | DOI | MR | Zbl
[15] Quantum groupoids of compact type, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 29-133 | DOI | MR | Zbl
[16] Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, pp. ii+150 pp. (2009) | Numdam | MR | Zbl
[17] Measured Quantum Groupoids with a central basis, 2008 (mathOA/0808.4052, to be published in J. Operator Theory)
[18] Outer actions of measured quantum groupoids, 2009 (mathOA/0909.1206)
[19] Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal., Volume 137 (1996) no. 2, pp. 466-543 | DOI | MR | Zbl
[20] Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci., Volume 16 (1980) no. 1, pp. 189-232 | DOI | MR | Zbl
[21] Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992 (With a preface by Alain Connes, With a postface by Adrian Ocneanu) | MR | Zbl
[22] Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | DOI | MR | Zbl
[23] Index for subfactors, Invent. Math., Volume 72 (1983) no. 1, pp. 1-25 | DOI | MR | Zbl
[24] Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | DOI | Numdam | MR | Zbl
[25] Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., Volume 92 (2003) no. 1, pp. 68-92 | Numdam | MR | Zbl
[26] Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, pp. iv+158 pp. (2008) | Numdam | MR
[27] A -algebraic framework for quantum groups, Internat. J. Math., Volume 14 (2003) no. 9, pp. 903-1001 | DOI | MR | Zbl
[28] A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci., Volume 30 (1994) no. 5, pp. 799-850 | DOI | MR | Zbl
[29] Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998) (Lecture Notes in Pure and Appl. Math.), Volume 209, Dekker, New York, 2000, pp. 189-220 | MR | Zbl
[30] A characterization of depth 2 subfactors of factors, J. Funct. Anal., Volume 171 (2000) no. 2, pp. 278-307 | DOI | MR | Zbl
[31] Finite quantum groupoids and their applications, New directions in Hopf algebras (Math. Sci. Res. Inst. Publ.), Volume 43, Cambridge Univ. Press, Cambridge, 2002, pp. 211-262 | MR | Zbl
[32] Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR | Zbl
[33] Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest, 1981 (Translated from the Romanian by the author) | MR | Zbl
[34] Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 621-632 | MR | Zbl
[35] Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, 125, Springer-Verlag, Berlin, 2003 (Operator Algebras and Non-commutative Geometry, 6) | MR | Zbl
[36] The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | DOI | MR | Zbl
[37] Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., Volume 578 (2005), pp. 147-184 | DOI | MR | Zbl
[38] Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | DOI | MR | Zbl
[39] Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR | Zbl
[40] Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR | Zbl
[41] Groupoïdes quantiques finis, J. Algebra, Volume 239 (2001) no. 1, pp. 215-261 | DOI | MR | Zbl
[42] Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002) (IRMA Lect. Math. Theor. Phys.), Volume 2, de Gruyter, Berlin, 2003, pp. 189-227 | MR | Zbl
[43] Measured quantum groupoids associated with matched pairs of locally compact groupoids, 2009 (mathOA/0906.5247)
[44] Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | MR | Zbl
[45] From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | DOI | MR | Zbl
[46] Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884 | MR | Zbl
[47] Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 535-578 | DOI | MR | Zbl
[48] Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 653-678 | DOI | MR | Zbl
[49] Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc., Volume 101 (1993) no. 484, pp. vi+109 | MR | Zbl
[50] Canonical extension of actions of locally compact quantum groups, J. Funct. Anal., Volume 201 (2003) no. 2, pp. 522-560 | DOI | MR | Zbl
[51] Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory, Volume 50 (2003) no. 1, pp. 53-66 | MR | Zbl
Cité par Sources :