Si désigne la capacité de Bessel des sous-ensembles de l’espace euclicien de dimension , , , associé naturellement avec l’espace des potentiels de Bessel des fonctions -functions, alors notre résultat principal est l’estimation suivante : pour , il existe une constante de telle sorte que pour n’importe quel ensemble ,
pour tous les cubes ouverts dans l’espace de dimension . Ici, est le bord de l’ensemble dans la topologie —fine — c’est-à-dire la topologie minimale sur l’espace de dimension qui rend continu les potentiels -non-linéaires associés. Par conséquent, nous déduisons que pour , les ensembles ouverts et connexes sont connexes dans la -quasi-topologie (c’est-à-dire la topologie engendrée par la fonction de l’ensemble au sens de Fuglede) et que les ensembles -finement ouverts -finement connexes sont connexes par arcs. Nos méthodes sont basées sur les propriétés de Kellog-Choquet des capacités et certains aspects de la théorie de la mesure géométrique. Le cas newtonien classique correspond au cas , et .
If denotes the Bessel capacity of subsets of Euclidean -space, , , naturally associated with the space of Bessel potentials of -functions, then our principal result is the estimate: for , there is a constant such that for any set
for all open cubes in -space. Here is the boundary of the in the -fine topology i.e. the smallest topology on -space that makes the associated -linear potentials continuous there. As a consequence, we deduce that for , open connected sets are connected in the -quasi topology (i.e. the topology generated by the set function in the sense of Fuglede), and the -finely open -finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities and aspects of geometric measure theory. The classical Newtonian case corresponds to the case , and .
@article{AIF_1985__35_1_57_0, author = {Adams, David R. and Lewis, John L.}, title = {Fine and quasi connectedness in nonlinear potential theory}, journal = {Annales de l'Institut Fourier}, pages = {57--73}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {1}, year = {1985}, doi = {10.5802/aif.998}, mrnumber = {86h:31009}, zbl = {0545.31012}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.998/} }
TY - JOUR AU - Adams, David R. AU - Lewis, John L. TI - Fine and quasi connectedness in nonlinear potential theory JO - Annales de l'Institut Fourier PY - 1985 SP - 57 EP - 73 VL - 35 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.998/ DO - 10.5802/aif.998 LA - en ID - AIF_1985__35_1_57_0 ER -
%0 Journal Article %A Adams, David R. %A Lewis, John L. %T Fine and quasi connectedness in nonlinear potential theory %J Annales de l'Institut Fourier %D 1985 %P 57-73 %V 35 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.998/ %R 10.5802/aif.998 %G en %F AIF_1985__35_1_57_0
Adams, David R.; Lewis, John L. Fine and quasi connectedness in nonlinear potential theory. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 57-73. doi : 10.5802/aif.998. http://www.numdam.org/articles/10.5802/aif.998/
[1] Traces of potentials. II., Ind. U. Math. J., 22 (1973), 907-918. | MR | Zbl
,[2] Lectures on Lp-potential theory, Umeå Univ. Reports, no. 2 (1981).
,[3] Inclusion relations among fine topologies in non-linear potential theory, Ind. U. Math. J., 33 (1984), 117-126. | MR | Zbl
and ,[4] Thinness and Wiener criteria for non-linear potentials, Ind. U. Math. J., 22 (1972), 169-197. | MR | Zbl
, and ,[5] On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer-Verlag. | MR | Zbl
,[6] Paths for subharmonic functions, Proc. London Math. Soc., 48 (1984), 401-427. | MR | Zbl
and ,[7] Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, 21-3 (1971), 227-244. | EuDML | Numdam | MR | Zbl
,[8] The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier, 21-1 (1971), 123-169. | EuDML | Numdam | MR | Zbl
,[9] On the instability of capacity, Ark. Mat., 15 (1971), 241-252. | MR | Zbl
,[10] Geometric Measure Theory, Springer-Verlag, 1969. | MR | Zbl
,[11] Approximately continuous transformations, Proc. Amer. Math. Soc., 12 (1961), 116-121. | MR | Zbl
and ,[12] Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. | MR | Zbl
,[13] Thin sets in non-linear potential theory, Ann. Inst. Fourier, 33-4 (1983), 161-187. | Numdam | MR | Zbl
and ,[14] Finely holomorphic functions, J. Func. Anal., 37 (1980), 1-18. | MR | Zbl
,[15] Non-linear potential theory, Russian Math. Surveys, 27 (1972), 71-148. | Zbl
and ,[16] A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl
,[17] Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR | Zbl
,[18] Continuity of Bessel potentials, Israel J. Math., 11 (1972), 271-283. | MR | Zbl
,[19] Uber approximativ statige Funktionen von zwei (und mehreren) Veranderlichen, Fund. Math., 13 (1927), 201-209. | JFM
,Cité par Sources :