On caractérise la -convexité et la -concavité d’un treillis de Banach à l’aide de la factorisation des opérateurs de multiplication de dans à travers l’espace . Cette caractérisation est utilisée pour calculer le type de concavité des espace de Lorentz.
-convexity and -concavity of a Banach lattice are characterized by factorization of multiplication operators from into through . This characterization is applied to calculate the concavity type of Lorentz spaces.
@article{AIF_1981__31_1_239_0, author = {Reisner, Sholomo}, title = {A factorization theorem in {Banach} lattices and its application to {Lorentz} spaces}, journal = {Annales de l'Institut Fourier}, pages = {239--255}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {1}, year = {1981}, doi = {10.5802/aif.825}, mrnumber = {82g:46066}, zbl = {0437.46025}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.825/} }
TY - JOUR AU - Reisner, Sholomo TI - A factorization theorem in Banach lattices and its application to Lorentz spaces JO - Annales de l'Institut Fourier PY - 1981 SP - 239 EP - 255 VL - 31 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.825/ DO - 10.5802/aif.825 LA - en ID - AIF_1981__31_1_239_0 ER -
%0 Journal Article %A Reisner, Sholomo %T A factorization theorem in Banach lattices and its application to Lorentz spaces %J Annales de l'Institut Fourier %D 1981 %P 239-255 %V 31 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.825/ %R 10.5802/aif.825 %G en %F AIF_1981__31_1_239_0
Reisner, Sholomo. A factorization theorem in Banach lattices and its application to Lorentz spaces. Annales de l'Institut Fourier, Tome 31 (1981) no. 1, pp. 239-255. doi : 10.5802/aif.825. http://www.numdam.org/articles/10.5802/aif.825/
[1] Uniform convexity in Lorentz sequence spaces, Israel J. Math., 20 (1975), 260-274. | MR | Zbl
,[2] Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | MR | Zbl
,[3] On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Th., 13 (1975), 395-412. | MR | Zbl
, and ,[4] Uniform convexity in function spaces, Canadian J. Math., 21 (1954), 195-204. | MR | Zbl
,[5] Factoring absolutely convergent series, Math. Ann., 227 (1976), 143-148. | MR | Zbl
and ,[6] Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz, 1973-1974, Exp. 12-13. | Numdam
,[7] Classical Banach spaces, parts I and II, Springer Verlag, 1979. | MR | Zbl
and ,[8] On the theory of spaces Λ, Pacific J. Math., 1 (1951), 411-429. | MR | Zbl
,[9] On some Banach lattices, Siberian Math. J., 10 (1969), 419-430. | Zbl
,[10] Some applications of the complex interpolation method to Banach lattices, J. D'Analyse Math., 35 (1979), 264-280. | MR | Zbl
,Cité par Sources :