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A FACTORIZATION THEOREM
IN BANACH LATTICES

AND ITS APPLICATION TO LORENTZ SPACES

by Shiomo REISNER

1.

A Kothe function space is a Banach lattice of locally integrable,
real-valued functions (more precisely, equivalent classes of functions,
modulo equality a.e.) on a a-finite, complete measure space
(ft , 2 , jn), which satisfy the two conditions

(i) If I / I < \g\ with /E Lo(/x), g E L, then /E L and
11/11 < 11^11 (Lo(^i) is the space of all jn-measurable func-
tions).

(ii) For every A E S with jLi(A)<oo, the characteristic func-
tion of A, XA » ls m L.

For background on Kothe function spaces and Banach lattices
in general we refer to [7], part II. We use standard notation of Banach
space theory.

In particular when L is a Kothe function space, L* is its dual
space. L' is the subspace of L* consisting of functionals ^ for
which there is g^L^fi) so that <0 = [ f(t)g(f)dt for all^n
/EL (in the sequel we use the same letter for \p and g ) . The adjoint
of a linear operator T is denoted by T* .

We say that a linear operator T: E —> L (resp. T: L —> E)
where E is a Banach space and L is a Banach lattice, is p-convex
(resp. ^-concave) for 1 < p , q < oo, if there is K > 0 such that
for all X i , . . . , A - ^ E E ,
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||(IlTx,l'')l/p|]<K(2:llx,r)l/p

(resp. for all /,,... ,/„ GL , (^ w)1'" < K [[ (^ W^l).

We denote infK=K^>(T) (resp. K(,)(T)). If the identity I of
L is p-convex (resp. qr-concave) we say that L is a p-convex
(resp. ^-concave) lattice, and denote

K(P)(L) = K^d) (resp. K^(L) = K(,)(I)).

The following theorem was proved by Lozanovskii in [9] (for
another proof in the discrete case see [5]).

THEOREM. - Let L be a Kothe function space on (Sl, 2 , p.)
Every g^L^ii) has, for every e>0, a factorization g = g g
with g,, ̂  € Lo(/x) and ||̂ , \\g^ < (i + e) ̂  ̂ _ ' 2

We interpret this theorem as follows: The multiplication
operator T,: LJ/i) -* L,^) (T,f=gf) has a factorization
T. = ̂  ° \ with

ll^^—'^^)" I IT^:L»^L| |<( l+e) | |TJI

(if X,Y are Kothe function space's on (^ ,2,^) and T is a
linear operator in L(,(/I) we denote by ||T:X-^Y|| the norm
of T as an operator from X into Y).

We show in Section 2 that with this interpretation the facto-
rization theorem has a generalization concerning ^-convex ^-concave
Kothe function spaces. Moreover, this generalization has an inverse
which makes it a characterization of p-convex, <?-concave Kothe
function spaces.

In Section 3 we make use of this characterization to find a
necessary and sufficient condition on a non-increasing sequence w
or function W in order that the Lorentz sequence space d(w, p)
or function space Lw,p be <?-concave. For Kothe function spaces
L and M and 0 <9 < 1 we construct, following [2], the Kothe
function space
L^M'-9 = {/GLo(^) ; I/I <^1-" for some

gGL, hGM, ||̂  = H/tll^ = l and X > 0}

with the norm \\f\e^i-9 = inf {X ; X as above}.
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A result that we use in the sequel is the recent result ofPisier [10]
which says that if a Kothe function space L has K^L) = K^(L) = 1
then there is a Kothe function space X with L = [L^p)]6 X1"0 with
0 and t such that

6 1-0 1 0 1-0 1
- + ——— = - ; - + ——— = - (1)t \ p t °° q

(,e. , = -1 , 0 = i - 1 = -1-).
V S' S s ' /

2.

In this section L is a Kothe function space on a a-finite measure
space (Sl, £ , ju). We assume that I/ is a norming subspace of L* ,
i.e., that for all /e L ||/|| = sup f fgd^.

11^11^=1- ^n
Let ^GLo( jLi ) , the multiplication operator T^ in Lo(^t) is

defined by T^/=g/.

THEOREM 1. - Let 1 < p < q < oo a^rf /^ 5 6^ defined by
1 = 1 - 1
5 p ^ '

L is p-convex and ^-concave if and only if there is K > 0
so that for all g ^ - L y ( p ) the multiplication operator T^ has a
factorization as a composition of multiplication operators T\
and T\ in the form

with I IT^I I HT^II < K. Moreover, if K^L) and K^)(L) are
given, we may choose K = (1 + e) K^ (L)K(^(L) with arbi-
trarily small e > 0. If, on the other hand, K is given then
K^DK^LXK2.
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Proof — Necessity. Suppose L is p-convex and ^-concave.
By the result of Pisier which is quoted in Section 1, L is K^CL)
K^(L)-isomorphic to [L^p)]6 X1"0 for an appropriate Kothe
function space X on (n ,2 ,^ t ) and for 0 , t which satisfy (1).
(1) implies that 4 = L^-0 , L, = L^-0 , L,
here on we write L instead of L (^)).

L^-0 (from

Let g C L,. g = ^"-<? (where ^ = g1-0

i-e
1 1 ^ 1 1 ,and 1 1 ^ 1"L,-i "w"^

Let ^i = ̂ 1^2 be the factorization of g^ through X by
Lozanovskifs theorem of Section 1. If h^ = ^l"s , h^ == g^5 then
clearly h^h^ = ^1^ = ^ and also

IIT. : L —> 411 IIT. : 4 —^ L|| < K^^L) K(^(L) 11^11^ (1 4- e)^
2 1 ^

(see Diagram (2)).

g = g 1 - 6

(2)

Sufficiency. — Suppose that every g G L, has a factorization
g = = h ^ h , with ||T^ : L —^ Lp|| ||T^ : ̂  —> L|| < K ||^||^.

We define a positive homogeneous functional ! • ! on L by

!/! = sup inf || ̂ /HL I IT . :4 -^L | | .11^11^=1 H^H^LQ P 1

8^h^

We denote the lattice semi-norm which is induced by this func-
tional by 1 1 1 . 1 1 1 .

|||/|||= inf ( ^ !^! ; / , > 0 ; |/|= ̂  f,\ .
( fe=l Ar=l )
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We show that this is in fact a norm and that the formal inclusion
map I : (L, IMI) —> (L, H I • H I ) is a lattice isomorphism with
K^CI) K^)(I~1) < K . Clearly by showing this we complete the
proof.

a) K^OXK. Let {f,}^ C L , then

;j;i/,i')''1<-(si/,i'T'
.Si,?w)wl.n^•.L,-^L,) 1/P

sup int \\^(L \f'i^
\\8\\^1 ^^2eLO || \'=1 L?

g=h^h^

Now, for all h E L^

||'.(£i/,i')"'|^<(2:llV,ii£,)"'

°4 "^ I'EIJ^"'< "T>: L - L'" (£ 11/.1^'" •
Hence, the assumption on L yields

< (S ll^llO^ sup inf ||T. : L -^ L^||
^, L / I I ^ I L - I ^^2^0 '

' g=^^

H T ^ : 4 — > L | | < K ( 2 ; ll/;.^)^.

b) K^)(I~1) < 1 . To show this we show

K^ai-1)*!^!, (1 + 1 = l).

(One can verify that I"1 is well defined and bounded, and in par-
ticular that I l l - I l l is a norm, by noting in the course of the follow-
ing argument that for all g E L/

sup f gfdii < sup f gfd[i,
I I I / I IKI ^n H/lKi ^n

and using the fact that L' is a norming subspace of L*). (3) implies
K^)(I~1) < 1 by [6] (th. 5) and by the fact that L is isometric
to a subspace of (L')* since L' is a norming subspace of L* . Let

{^i C L' and 0 </E L. We denote ^ = (f [ g ^ ' ) ^ 9 .
i-. 1



244 S. REISNER

Let g^ € 4 with ||gj|̂  = 1 be defined by ^ = ——wv

( C f H Vs

we also define ^, ̂  € L() by I «/n '{f> { t)

((^r;^o j(^lr;^o
^ = v ̂  / ^ = v ^ /

( o ; ^ = o ( o s y - o .
Then gy = h^ h\ and using Holder's inequality we get for r with
i.l.1,,+1
'• P q s

^(/) = f f^d^x = \\g^M\^ = H^/HL IIA^HL ,

= mf I I ^ / H L I I ^ I ^ I L , < S U P inf \\h^ \\h^,
/12'11=^0 • ^ I I^HL =1 ^=A2 / I1 p l7

if

Now, like in part a) of the proof we have

"WL,.- 1^(2: i '̂)1 '̂<iiT^:L'^L,.n(i: wy.
i

It is clear from the assumptions on L that

IIT^ : L' -^ L^|| = I IT^:4—^L| |

hence <p(/) < ( ̂  11^11['' ̂ lq !/! and sub-linearity shows
i

^(/x(z ii^ii^y^ 1 1 1 / 1 1 1 .
Therefore |||̂ |||, = l(l: l^l^)^]!^ < (l ll^ll^;)^' (where

I l l - I l l ^ is the norm dual to I l l - I l l ) , q.e.d.

If p. is a probability measure and g = 1 on S2, then T is
the inclusion map i : L^(^) —^ L^(ju). From Theorem 1 it follows
that if L is ^-convex and ^-concave then there is a factorization
of / in the form
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That is, for all /eL.(^)

OTL ^ K 11/H^ = K 11^^
and for all ^EL q ^

^L (̂ i) = "^"L^) <KI|^.

In other words:

COROLLARY 1. - // JLI ^ a /i'm'̂  measure and L ^ p-convex
and q-concave, then there exists 0 < h E Lo(/i) ^cA rto

4(^)CLCL.(^)

(set-inclusions with bounded inclusion operators).

3.

In this section we demonstrate an application of the factoriza-
tion Theorem 1 for the calculation of the convexity exponent of
Lorentz sequence and function spaces.

Let w = (w,)J^ be a positive, non increasing sequence which
00

tends to 0 and satisfies ^ w, = oo. For 1 < p < oo the Lorentz
i=l

sequence space d(w , p ) is defined by

d(w,p)== ^(^jii^o^ im^i ^w.y^oo
(=1

(^* = (^*),=i is the non increasing rearrangement of M). The
space d ( w , p ) , equipped with the norm ||. || is a Kothe sequence
space which is p-convex with constant 1 . It is not r-convex for
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any r >p since it contains subspaces isomorphic to 9.p with the
unit basis elements supported on disjoint blocks. d(w , p) is reflexive
if and only if p > 1 . Let W be a positive, continuous, non-increasing
function on (0, °°) which satisfy

l imWO)= 0, lim W(r) =00 , f ° ° W ( O r f r = o o , f ' W W d ^ l .
t->oo t-*-0 (̂) JQ

For 1 < p < o o the Lorentz function space L^(0,oo) intro-
duced in [8] is the space of all functions /£Lo(0,oo) which satisfy

WWO)^!^ <oo1 1 / 1 1 = r/WWO)^!^^o )

(/* is the non-increasing rearrangement of |/|). If we assume only
those conditions on W which involve the interval ( 0 , 1 ] , and define
the norm by integration on (0,1], we get the space L^ (0,1].
In the sequel I denotes (0,oo) or (0,1]. We write L^ p instead
of L^ p ( I ) if we do not specify I exactly or if it is clear from the
context which I we deal with. L^ p are Kothe function spaces
in which the norm is order continuous, hence I^y — L^ • I^y
is ^-convex with constant 1; it is not r-convex for any r > p by
the same reason as that of d(w , p) (cf. [3]).

An automorphism of I on itself is a 1-1 (a.e.) map r of I
on itself such that r and r~1 are measurable and r preserves
measure.

DEFINITION 1. — Let w = (w^)Jl^ be a positive, non increasing
sequence and let W be a positive, non increasing function defined
in I and integrable on finite intervals. For p > 0

a) We say that w is p-regular if

^-4i <; ^N" (=1w

b) We say that W is p-regular if

1 r x

W^ ~ - j ^(t)Pdt; JCEI .

THEOREM 2. - For 1 < p < oo let X be one of the spaces
c / ( w , p ) , L w . p ( 0 , l ) or L^(0,oo).
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a) For p < q < oo a necessary and sufficient condition for
X to be q-concave is that the sequence w or the function W is
s ' 1 1 1—-regular, where s is defined by — - = = — — — .P ^ s p q

h) If q(x) = inf{q ;X is q-concave} < oo ^^ x ^ not
q (X) concave.

c) A necessary and sufficient condition for the existence of
q < oo so that X is q-concave (i.e. for X not to contain V^ uni-
formly) is that w or W is 1-regular.

We prove Theorem 2 for function spaces; the proof for sequence
spaces is analogous.

LEMMA 1. — For a positive, non increasing function W defined
in I and p > 0, the following are equivalent:

a) W is p-regular.
„ 1 ^ / _ W O ) \ P , .b) sup - ; (————-) dt < oo .

xGl X Jo \W(JC- t)/

If, in addition, p > 1 then a) and b) are equivalent to

( 1 f^x \i/n
- j W(0^rr
X 0 /

C) SUp ————————————————— < oo .

'el -1- fw(/)^
JC ^0

The equivalence of a) and b) is very simple and we omit its proof.
The equivalence of b) and c) will follow from lemmas 2) and 3) in
the sequel.

LEMMA 2. - For 0 < p < oo there is K(p) > 0 so that if f
and g are positive, non increasing functions on (0, oo) then for
all x > 0

IrAp l̂l̂ ." •'»(s(' -0/ (^r^0'")'
— 1 /^Proof. - We put g ( x ) = — / g ( t ) d t .x ^o
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" '•^)<2^)i°'•{'•<<')>?)}<t
(^-Lebesgue measure).

Therefore, in the interval ( O , — ? -=— < ——'•—— and we get
v 2 J 2g(x) g(x - t)

1 /^/ AO y> ^ ^ 1 /»x/2 / /(O xp~. JAj^-t))'^^ X (ioc-o)^
l r ^ / f W ^ . . l ^/ /(O \p^

^Jo (2i^7^>2^Jo(?))^^ «/o V2^(x)/ 2x ^o

i ^r^^
2P+1 /l ^ ./. .,\P

<^ "o

q.e.d.(- rgwdt)'
^X "0 '

LEMMA 3. — Let f be a positive, non increasing function defined
in I and 1 < p < oo . Suppose for some K > 0

1 />^
- / f(t)"dtx "o

sup ————————— < K ; (4)
jcel /1 y x \p

(- j fWdtY^x ^o '
then there is N > 0 so that

1 r.x / f(t) \p
sup - [ ( , J^r^N. (5)
JCGI X ^o V(^- O7

— 1 /'^Proof. - We put /(x) = - / f(t)dt. It is enough to show
X ^0

that for some c > 0, for all x
cf(x)>7(x) (6)

since then

1 r/^L-p^l r/I^Ydt
x Jo \f(x-t)/ x Jo\f(xy

<^ r^.^^K.
-<• ^O V/(^)/

We prove therefore that (4) implies (6).
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Let A be such that log V/A < -^ and suppose Axo) < -1-.
\/A 2 /(^) A

Let x^ = /̂S' XQ plater we show that in the case I = (0,1]

we may assume XQ < ^~/=j-)' Let XQ < r < ̂  , then

7(r) ̂  7 / ""^^ ds = "? ^^o) ̂  —— A /(^) > ̂ /A/(r).• ° l \/K
Hence

f'fWdK—— r'1^ r f(s)ds\dtVXQ VA JXQ \t Jo I

1 /^i 1 /»^i
<-7- J - f /(^A

VAT ^o ^ ^o
1 / x, \ /^i

=-_(log-1-) f f(s)ds
V'A V XQ / Jo
log \/A /»^i 1 /»^i

=——— J f(s)ds<i- [ f(s)ds.
\/A "o 2 ^o

We get f^fWdt^ fx o /(OA+-L f^fWdtor
^o ^o 2 Jo

/•^i /••^o
/ f(t)dt<2 I f(t)dt.^o Jo

From (4) it follows now

( 1 r'AD^/r c r̂ (-1- /^/(Q^/)^
Ki/P > ̂ i >/0______L- > ̂ i7 ^o "o______/

^ ffWt "' 2XO(±/0/(0^)
^1 ^O X t \XQ «/o /

> i (x0^-1
2 V x i /

(the last inequality by Holder).

Whence K1'" > - (——f~1 or A < (2K1/'')1-1/P which
2 '••(/A"

proves the assertion. If I = ( 0 , l ] , the preceding argument shows

that if c > (2K^) :̂^ and logv^ < i then for 0 < x < -1-
V^ 2 /̂F
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holds f(x) < c f(x). On the other hand, for —— < jc < 1
f(x) ^ /(I) vr

^ ) ^ J \
•'S/cV

which completes the proof in this case as well. q.e.d.

LEMMA 4. — Let W be a positive, non increasing continuous
fonction defined on I. Then A = {p > 0 ; W is p'regular} is an
open interval (if it is not empty).

Proof. — By Holder's inequality A is an interval. Suppose that
W is p-regular for some p > 0. Then there is 0 < c < 1 such
that for all x € I

^ w(xy> _ ^ ^ ^ ^ y ^
x frntYdt d x { - Jo /

"O

For O<XQ <x^ integration yields

f^ ̂ (tYdt
c log ^- < log ̂

Y /* 00 / W(0^r
^o

whence
x.0 f'COW(^)prfr<Jc-c f^^dYdt. (8)

^o ^o

From (7) and (8) we get

^"''WOcJ^ ^Jc1-6 ' -1- r ^(O^rfr^x1-'*-^- ^^(tYdt0 0 0 ^ ^o 1 ^i ^o

< ^ ^-c W(x^)^. (9)

We choose e > 0 such that 6 •= (1 - c) (1 + e) < 1 . Let
p^ = p(l + e). We claim that W is p^ -regular. Raising the ends
of (9) to the power 1 + e we get

^W(;Co/1 ^K^WOc^ (10)

for some constant K . Let x E I, in the interval (0, —), t < x — t
hence (10) yields 2
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1 ^/ W(Q ^l 2 / • ^ / W O ) ^ .

^UWO^T)) ^^X (w(7~7)) A

^2K ^ ^ . 2 K ^^_^^
x ^0 v r / x ^ o Y ^ /

where M does not depend on x , since 6 < 1 . We have shown
1 /.x / W(Q v>i

that sup — / (————-) r f r<oo which, by Lemma 1, is equi-
jcGI X JQ \W(JC — t) /

valent to p^-regularity of W. q.e.d.
We omit the proof of the following simple lemma.

LEMMA 5. - Let ^GLo(I). The multiplication operator T^
is a bounded operator from I^y into Lp if and only if

f'gWdt
IIT^^-^L^r =s^p ———————<oo .r^Ddt

^o

Proof of Theorem 2. — Sufficiency. Suppose W is 5/p-regular.
By Theorem 1 and p-convexity of I^y p , it is enough to show that
for some K > 0, for every g G L,, there is h G LQ such that

support g C support h
(11)

and I IT^:^——^411 IIT^:4—>Lw,p II < K 11^11^,

(we put ^ - ( 0 = 0 if h(t) = o).
v h '

Since Lyy p is rearrangement invariant we may assume g
is positive and non-increasing. We take h = W^ . Of course
I I T , : L w , , — — L , | | = l .

We show that for positive non increasing g E Ly

IIT^rL,—^L^, || < K H^ll,^

i.e. that for all ^ G L^ and every automorphism a of I on itself

r /<p(o(r)) g(a(t))\p ) i/p
^(-^S^) W C O ^ j ^ ^ K ||,||̂ .
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smce ^(''î r '̂l-''
'•^u^)'^"""1"

it is enough to show that for all aĵ ,(^).̂ (.-.̂ ^
which is equivalent to the fact that .for all non-increasing 0 < g € L
and all a l

f , . /W(o(OK,/p
V^VWCT)-) dt<K^. 02)

In fact, if ^ = ^ ̂  ̂  for some x e I then, by Lemma 1 and
s/p-regularity of W

/
/W(a(0)y/p 1 ^ ^ ( a ( t ) ) ^ / pfcm^^Y^ 1 r/w(g(0)y/p.i^H w(o^ r f r-^ Jo ("wcrT) ^(~Wn~) ^-'x Jo (~mt)~) l

J_ ^ / _ W ( O X , / P<- n wlfj r^<K
^ "'0 \W(x-t)/ "'^ lv-

Now, for other positive, non-increasing functions ^eL, , (12)

follows from the fact that the convex hull of the functions }- x/o ^i
is dense in Li-norm in {/; ||/||̂  < 1, 0</ - non increasing}.

Necessity. - Assume Lyy p is ^-concave (q < oo). Since it
is also p-convex, it is necessary that for every g ^ L there is
h € Lo such that (11) holds. In particular, from Lemma 5 we conclude

(applying ( 1 1 ) to g= ̂  x^) that for every x e I there is
h £ Lo so that

f^hWdt
———————<K" and HT^: L, —^ 1^,11 < 1 . (13)

Jo ^^

We may, of course, assume that h is non increasing and that
support h C (0, x ] . For all ip £ L, we have
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t^n?)^^'!"'^'^.- 04)
Let 0 < e < x . We define W^ to be equal to the constant

W(e) in (0,e] and to W(0 for t>e. Let the bounded function
<^ be defined by

^-'^-^(^r:^
^p(t) =0 ; x < t .

Then (^0=^^ and by (14)
\h / h(x - t)

( 1 ^ 1 (We(O^)^W(O ^) l /P
IÎ IL > ~p/? 1 Tp/q ————p!———————"/IL. ^ x ^ J o ̂  (,^-OP.)P,(^-OPd I .X'" "O X" ,1 ^ ^nn^n » ^ ^\ n

( ^ 1 . We(Q ^,J^ il ^/ We(Q y/p^}^
>U^\h(x~tY) ^i ( x A ^ ( ^ - 0 ^ ^<

il ftxi W,(0 v/p f

dt\

\ls
= "<„ ̂  X (»(7r77) '"l

It follows now from Lemma 2 and from (13) that

-1- F WMy^dt
1 ..(^0)_y^^ î) -^————
xJo^(x-r )^ ^-' /I r-^y,,)-»^JC

\X ^0^X ^n /

K(^) -1- r^^dt
\n/ X ^0<p / x ^o
K" (IFWO)*)"'

^JC </0 /

^x

^X ^0

Since e is arbitrarily close to 0 it follows that for all x E I

fe r^"" '̂)"' K'^0

- fwdt K(^y1 /•x..,,.. ,. . . / S \ p / s

x ^o x p /

ps> equivalent to —-regularity <
part a) of the theorem. Part b) follows from part a) and Lemma 4.
By Lemma 1 this is equivalent to — -regularity of W . This proves
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j*
Part c). If L^p is ^-concave with q < oo then W is —-regular

swith — > 1. Therefore it is also 1-regular (it is also easy to cons-
truct directly subspaces of L^ ,p which are uniformly isomorphic
to r, if W is not 1-regular).

On the other hand, if W is 1-regular, then from Lemma 4 it
follows that it is r-regular for some r > 1 . Part a) implies now
that L^ p is ^-concave for some q<oo. (We remark that this
last argument provides an alternative proof for the isomorphic parts
of Theorem 3.1 in [4] and Theorem 1 in [1] ; i.e. for 1-regularity
being a necessary and sufficient condition for L^y or d(w, p)
to be isomorphic to a uniformly convex space when p > 1). q.e.d.

This is a part of a Ph. D. thesis prepared under the guidance
of Professor P. Saphar. The author wishes to thank Professor Saphar
for his quidance and Dr. Y. Benyamini for many valuable discussions.
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