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A FACTORIZATION THEOREM
IN BANACH LATTICES
AND ITS APPLICATION TO LORENTZ SPACES

by Shlomo REISNER

A Kothe function space is a Banach lattice of locally integrable,
real-valued functions (more precisely, equivalent classes of functions,
modulo equality a.e.) on a o-finite, complete measure space
(2, Z, u), which satisfy the two conditions

@ If |fl<lgl with f€L,(n),g€L, then fE€L and
I < llghh (Ly(m) is the space of all u-measurable func-
tions).

(ii) For every A€ X with u(A) <o, the characteristic func-
tionof A, x,, isin L.

For background on Kothe function spaces and Banach lattices
in general we refer to [7], part II. We use standard notation of Banach
space theory.

In particular when L is a Kothe function space, L* is its dual
space. L' is the subspace of L* consisting of functionals ¢ for

which there is g€ L (u) so that ¢(f)=£zf(t)g(t)dt for all

fEL (in the sequel we use the same letter for ¢ and g). The adjoint
of a linear operator T is denoted by T*.

We say that a linear operator T: E — L (resp. T: L — E)
where E is a Banach space and L is a Banach lattice, is p-convex
(resp. g-concave) for 1 <p,q <o, if there is K> 0 such that
forall x,,...,x,€E,
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l (Z T, )" | < K(Z Ix e )

(resp. for ali fl,...,f,,eL,(z: 11700)" <k H (\; 50) ).

We denote infK = K®(T) (resp. K(g)(T)). If the identity I of
L is p-convex (resp. g-concave) we say that L is a p-convex
(resp. g-concave) lattice, and denote

KP(L) = KP 1) (resp. K4y (L) = Ky (D).

The following theorem was proved by Lozanovskii in [9] (for
another proof in the discrete case see [5]).

THEOREM. — Let L be a Kothe function space on (2,2, u).
Every g€ L,(u) has, for every €> 0, a factorization g =g,g,
with g,,8, € Ly(#) and |lg, I lg,ll, < (1 + €) lIgll () -

We interpret this theorem as follows: The multiplication
operator T, : L. (p) — L,(w) (T, f=gf) has a factorization

T, = T, o T, with

IT,,: L= L, (Il IT, :Lo— LI < (1 + ) IT,ll

Gf X,Y are Kothe function spaces on (,Z,u) and T is a
linear operator in L,(#) we denote by ||T:X — Y|| the norm
of T asan operator from X into Y).

We show in Section 2 that with this interpretation the facto-
rization theorem has a generalization concerning p-convex g-concave
Ko6the function spaces. Moreover, this generalization has an inverse
which makes it a characterization of p-convex, ¢g-concave Kothe
function spaces.

In Section 3 we make use of this characterization to find a
necessary and sufficient condition on a non-increasing sequence w
or function W in order that the Lorentz sequence space d(w, p)
or function space Lw,p be g-concave. For Kothe function spaces
L and M and 0<6 <1 we construct, following [2], the Kodthe
function space

LM!=% = {fE€L,(w); |fI <N°h'% forsome
g€EL, heM, ligll, =llhlly =1 and A =0}

with the norm || f|| = inf {\ ; X\ as above}.

LOM1-6
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A result that we use in the sequel is the recent result of Pisier [10]
which says that if a Kothe function space L has K(")(L) = K(q)(L) =1
then there is a Kothe function space X with L = [L,(y)]" X% with
6 and ¢ such that

t 1 p’t o0 q
1 1
(ie t=—,,0=1—l=—,)
N § N
2.

In this section L is a K6the function space on a o-finite measure
space (2,%, u). We assume that L' is a norming subspace of L*,

"ie.,thatforall fEL |Ifll= sup f fedu.
gl =1 Jo

Let g€ L,(n), the multiplication operator T, in Ly(w is
defined by Tgf = gf.

THEOREM 1. — Let 1 <p<q <o qand let s be defined by

L is p-convex and g-concave if and only if there is K > 0
so that for all g€ L,(u) the multiplication operator T, has a
factorization as a composition of multiplication operators T,,2
and T, in the form

T
L, ()) — > L, (W)

T, T,

1 2

L

with [T, | IT, | < K. Moreover, if K”(L) and K, (L) are
given, we may choose K = (1 +¢) K (L)K(4y(L) with arbi-
trarily small e > 0. If, on the other hand, K is given then
K® (L) K, (L) < K.
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Proof. — Necessity. Suppose L 1is p-convex and ¢g-concave.
By the result of Pisier which is quoted in Section 1, L is K (L)
K (L)-isomorphic  to [L,(p)]" X% for an appropriate Ko6the
function space X on (2,2, u) and for 6,¢ which satisfy (1).
(1) implies that L, = LJL}™°, L, = LYL°, L = LIL!~° (from
here on we write L, instead of L,(m).
1

1
Let g€L,. g =g!° (where g, =g'~?
1
— -6
and leyl, = lglf? .

Let g, =g,,8,, be the factorization of g, through X by
Lozanovskii’s theorem of Section 1. If h, =g}, h, = gi’g then
clearly h,h, = g!/* =g and also ’

ITy, : L — L Il T, : L, — LIl < KP(L) K¢, (L) llglly (1 + &)
(see Diagram (2)).

()

Sufficiency. — Suppose that every g€ L, has a factorization
g =hyh, with |IT, :L — LIl IT, :L, — LI <Kzl .
2 14 1 q L)

We define a positive homogeneous functional !-! on L by

1fl'= su inf  |lA,fll, IT, : L, — LII.
4 gy £ Y= S
T g=hyhy
We denote the lattice semi-norm which is induced by this func-
tional by (|| - llI.

WA =inf) ¥ 1615 £ =05 1f1=Y fk)

k=1 k=1 s



A FACTORIZATION THEOREM IN BANACH LATTICES 243

We show that this is in fact a norm and that the formal inclusion
map I:(L,II-l) — @,lIl-lll) is a lattice isomorphism with
K® (@) K,,I ') <K. Clearly by showing this we complete the
proof.

a) KP()<K. Let {f;}L, CL, then

G )™ ]| < +(E i)™

& 1/p
. Y
= sup inf |hy (Y 1) IT, : L, — LI.
ligliy =1 hy,hyELy i=1 Lp !
g=hy by

Now, forall nE€L,

”h(z |f,~|p>llp .
o, i
=(Z a7

Hence, the assumption on L yields

IGgoe)”

<(3 )"

p 1/ ~ 1/
L) <aim L= (S )”
1

1/
< (2 ||f,-|l£) i sup inf IIThZ: L— L,
i gl =1 hyha€Lg
&=hy hy

IT,, : L, — LI <K(X 150¢)"

b) K(q)(l_‘) < 1. -To show this we show
, 1 1
KOWANY* ) <1, (= + = =1).
@<t (o + 5 =1)

(One can verify that I™! is well defined and bounded, and in par-
ticular that ||| -|l| is a norm, by noting in the course of the follow-
ing argument that forall g€ L’

sup fgfdu< sup gfdu,
Hrin<1 i1 Jgq

and using the fact that L' is a norming subspace of L*). (3) implies
K(q)(l"l) <1 by [6] (th. 5) and by the fact that L is isometric
to a subspace of (L')* since L' is a norming subspace of L*. Let

{g,}2,CL" and 0 <fEL. Wedenote ¢ = (ZI | )llq
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Let g, € L; with [Ig,ll, =1 be defined by g, = ——Ms——l—,
s /s
we also define A9, hg €L, by j;zﬁp d”)
1 ‘4 o
B2 w0 (@
Ko = ¥ hQ = f
z 0 =20 i 0 ; f=0.

Then g, = h‘z’ h‘l’ and using Holder’s inequality we get for r with

1 1 1 1
r 14 q s

o(f) = fﬂ fodu = lig, foll, = ISl RSl ,

= inf |lh, fliL Aol , su inf A, flly Ayl .
hyhy=gg o P 19, \u Lp_x g=hyhy 20 Lp 1¥0e,

Now, like in part a) of the proof we have

N\ 1/q'
"hx*P"Lq, = Ilhl(z lg; 1 )
i

qu

<IT, L — Lol (2 ng09) "
t

It is clear from the assumptions on L that

IIThl L — Lq,ll = ﬂThl : L, — LIl
’ l/q' . .
hence ¢(f) < ( > lig e, ) ' f! and sub-linearity shows
i

() < (X gl )" s,

Therefore |ll¢llly = m(z Ig,-lq'>l/q, \ (? g%, ) ' (where
i
IIl- 1l isthe norm dual to |||-|l]). q.ed.

If u is a probability measure and g =1 on £, then T, is
the inclusion map i: Lq(u) — Lp(u). From Theorem 1 it follows
that if L is p-convex and g-concave then there is a factorization
of i in the form
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L, (1) : L, (1)

T, Tl/h

That is, forall fE€L, (n)

Iafll, < KAl =K L afll

and forall g€L

nP

In other words:

COROLLARY 1. — If u is a finite measure and L is p-convex
and q-concave, then there exists 0 < h € Ly(n) such that

Lq(%)CLCLP(%

(set-inclusions with bounded inclusion operators).

In this section we demonstrate an application of the factoriza-
tion Theorem 1 for the calculation of the convexity exponent of
Lorentz sequence and function spaces.

Let w = (w; ):.";l be a positive, non increasing sequence which
tends to O and satisfies 2, w; = . For 1 <p <o the Lorentz

i=1

sequence space d(w, p) is defined by
— —_ o . — \ *p 1p
d(w:p)— V"’(V[)‘-zleco s "V”'— 2‘ V,- w,- < oo
i=1
(v* = (vf),., is the non increasing rearrangement of |v|). The
space d(w, p), equipped with the norm ||-|| is a Kdthe sequence

space which is p-convex with constant 1. It is not r-convex for

17
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any r >p since it contains subspaces isomorphic to 2, with the
unit basis elements supported on disjoint blocks. d(w, p) is reflexive
if and only if p > 1. Let W be a positive, continuous, non-increasing
function on (0, o) which satisfy
. o 1
lim W(£) = 0, lim W(¢) = oo, f W(t)dt = oo, f W(t)dt=1.
to oo t—0 0 0
For 1 < p <o the Lorentz function space LW p(0,°°) intro-
duced in [8] is the space of all functions f € L,(0,%) which satisfy

rl = } fomf*(t)P W) dr ! P < oo

(f* is the non-increasing rearrangement of |f|). If we assume only
those conditions on W which involve the interval (0, 1], and define
the norm by integration on (0,1], we get the space Lw,p(O,I].
In the sequel I denotes (0,<°) or (0,1]. We write Lw,p instead
of Ly,,(D if we do not specify I exactly or if it is clear from the
context which I we deal with. Ly, , are Kothe function spaces
in which the norm is order continuous, hence L(N,p = L\",:, s Lw,p
is p-convex with constant 1; it is not r-convex for any r > p by
the same reason as that of d(w, p) (cf. [3]).

An automorphism of 1 on itself is a 1-1 (a.e.) map 7 of I
on itself such that 7 and 7! are measurable and 7 preserves
measure.

DEFINITION 1. — Let w = (w; )}: N be a positive, non increasing
sequence and let W be a positive, non increasing function defined
in 1 and integrable on finite intervals. For p > 0

a) We say that w is p-regular if
1 n
wh ~ - Y w?; n€N
i=1

b) We say that W is p-regular if

1 x
P~ — p .
W(x)P ~ — /0 W(1)Pdt; x€I.

THEOREM 2. — For 1 <p <o Jet X be one of the spaces
d(w, p), Ly, 0,1) or Ly ,(0,).
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a) For p<q <o a necessary and sufficient condition for
X to be gq-concave is that the sequence w or the function W is

1
;-regular where s is defined by - = ; — .
b) If q(x)=inf{q;X is q-concave} <o then X is not
q(X) concave .

c) A necessary and sufficient condition for the existence of
q <oo so that X is q-concave (ie. for X not to contain L% uni-
formly) is that w or W is I-regular.

We prove Theorem 2 for function spaces; the proof for sequence
spaces is analogous.

LEMMA 1. — For a positive, non increasing function W defined
in I and p > 0, the following are equivalent:

a) W is p-regular.

W(t)
v s [ (W(xi o) <=

If, in addition, p > 1 then a) and b) are equivalent to
1 x t/p
— P
(x Lrwear)

c) sup ] < oo,
x €l x
x fo W(t) dt

The equivalence of a) and b) is very simple and we omit its proof.
The equivalence of b) and ¢) will follow from lemmas 2) and 3) in
the sequel.

LimMMa 2. — For 0<p < oo there is K(p) >0 so that if f
and g are positive, non increasing functions on (0,) then for
all x>0

1 x
= fo F(t)P dt

F LG e

) R oy

1

Proof — We put g(x) = ~ fxg(t) dt.
0
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1 1 — x
— _ = . = < —
M %t e < 20 u{t;g(t) = 2g(x)} 2

(u-Lebesgue measure).

1 ]
Therefore, in the interval (0, i]’ 20 < p— and we get

1 X f( x f(o)
;fo(g(x—t) flz((X—f)p

1 rx2 o f(D) Riv}
>x S Gea) 4> 2w)

1 x
R L rwe ar

= 2p+1 <£ \/O-x g(t)dt>p

LEMMA 3. — Let f be a positive, non increasing function defined
in I and 1 <p <o, Suppose for some K >0

q.e.d.

i f P dr
sup <K; “4)

x€1 (_ f f(t)dt)

then there is N > 0 so that

1 () ? 4
ey f f(x—t)) <N. )

J— X
Proof — We put f(x) = i f f(#)dt. It is enough to show
0
that for some ¢ > 0, forall x

of (x) = f(x) (6)

since then
f(1) 1 px/f(2)
—f (f(x—t))p vy 7(7>>pd'
f()\p
f(f(x)) K.

We prove therefore that (4) implies (6).
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Let A be such that M< 1 and suppose f(x °) .
2 flxg) T A
Let x, = /A x, (later we show that in the case I = (0,1]
Wwe may assume X, < —\/I—K—) Let x, <t <x,, then
_ — 1
= f (s ds =22 Fxg) > > L A0 > VAW,
Hence
xy 1 *1,1 t
fxo f(t)dt<7T_A— fx (Tf f(s)ds)dt
1 *1 1
< NS f f f(s)ds dt
DL (g B [
v (log 70) j; f(s)ds
_log/A px <1
- fo f(s)ds < - f f(s)ds.

We get jo'x‘ f(Hdt < fox"f(t)dt + % fox' f(H)dt or

Xy X0
[rwar<2 [Crwar.
(1] (V]
From (4) it follows now

(L [rora” ()7 [ rora)”
> 0
o

Kl/p > 1

(the last inequality by Holder).

1 1 Ly _2
—(—=) or A< (2KYP)-Yr which
2 ()

proves the assertion. If I=(0,1], the preceding argument shows

1 1
that if ¢ > (QKYP)i-1p ‘/p and og\/_\ — then for 0<x < —
Ve 2 Ve

Whence K7 >
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1

holds _f_(x) < ¢ f(x). On the other hand, for —— <
\/C

f(x)> fQ1)
T — 1
f(x) f(\/_c—>

which completes the proof in this case as well. q.ed.

x <1

LEMMA 4. — Let W be a positive, non increasing continuous
fonction defined on 1. Then A= {p>0;W is p-regular} is an
open interval (if it is not empty). ‘

Proof. — By Holder’s inequality A is an interval. Suppose that
W is p-regular for some p > 0. Then there is 0<c¢ <1 such
that forall x €1

PR 6%
X X
fo W(r)P dt

For 0 <x, <x, integration yields

- ‘.id; (log j;xW(t)P dt). (7

X
f Y W(e)Pat
Xy 0
¢ log — < log %
Xo R
fo W(t)Pdt
whence
0

—c *o Pdr< x-°¢ 1 P
x fo W(1)P dt < x; fo W(1)” dt . (8)

From (7) and (8) we get

1 o 1 *1
1-—- p 1—¢ ___ P 1-c¢ 14
X W) S x 7 - JWrdr<x : [ wear
1 ,
< - x:“ W(x,)?. )
We choose € > 0 such that 8§ = (1 —¢) (1 + €) < 1. Let

p, =p(l +€). We claim that W is p, -regular. Raising the ends
of (9) to the power 1 + € we get

x2 W(x)™ < Kx? W(x,)™ (10)

for some constant K. Let x €1, in the interval (0, %), t<x-—t
hence (10) yields
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%fx(———w(t) Par< 2 [ wm)

W(x — 1) \x 0 W(x—t)

= =[C
where M does not depend on x, since 8§ <1. We have shown

W(?) 1
h I . . .
that ’scglz . f (W(x— t))p dt < oo which, by Lemma 1, is equi

valent to p,-regularity of W. q.e.d.

We omit the proof of the following simple lemma.

LEMMA 5. — Let g€ Ly(I). The multiplication operator T,
is a bounded operator from Ly, p into L, if and only if

" gt ()P dt
1T, : pr——>L 1P =sup —— < oo,

x€l
fo *W(t)dr

Proof of Theorem 2. — Sufficiency. Suppose W is s/p-regular.
By Theorem 1 and p-convexity of Ly ps it is enough to show that
for some K > 0, forevery gE€L,, thereis # €L, such that

support g C support A )

an
and  lIT,: Ly, — Lyl ITgn: Ly = Ly ol <Kligll, , s

(we put i:—(r)=0 if A(t)=0).

Since Ly p is rearrangement invariant we may assume g
is positive and non-increasing. We take 4 = WYP_ Of course
IT,: Ly, LI=1.

We show that for positive non increasing g€ L,
ITgn: Lg— Ly ,Il <K IIgIILs,
i.e. that for all ¢y €L, and every automorphism ¢ of I on itself

3 f (cp(o(t))g(O(t))

Wotoy® ) wear|" <Kligi,.
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w(a(1)) g(a (1)) i/p
Since : [ Wl )pW(t)dtg
g(o(2) s Vs
< llelly, % f(W( (t))llp) W(t)/pdtg
it is enough to show that for all o
s W(o(t)) sip | | Us .
| far (Syenn) e | < e,

which is equivalent to the fact that for all non-increasing 0 <g€L,
and all ¢

W(o(#))ys/p
J2o (Sy) " <xigh, - (12)

. 1
In fact, if g = " Xc0,x] for some x €1 then, by Lemma 1 and
s/p-regularity of W

W (1)) \s 1 W(o(1))ys
f &(n) \:(t))lp =;f(“(’1(t) i

W(t)
W(x — t)

Pdt<X.

Now, for other positive, non-increasing functions g€L,, (12)
. 1
follows from the fact that the convex hull of the functions % Xo.x]

is dense in L,-norm in {f; ||f||Ll <1, 0<f — non increasing}.

Necessity. — Assume Ly , is g-concave (q <o0). Since it
is also p-convex, it is necessary that for every g€ L, there is
h €L, such that (11) holds. In particular, from Lemma 5 we conclude
(applying (11) to g = o= X, ) that for every x €1 there is

x ,
h€L, sothat
X

L rear

-—x——————<K" and Ing/,,:L,,—"’Lw,,,II< 1. (13)

[T wyar

()

We may, of course, assume that % is non increasing and that
support A C(0,x]. Forall p €L, we have
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s(xp/s f( )(t)” W(t)dtg < llell, - (14)

Let 0<e<x. We define W_ to be equal to the constant

W(e) in (0,€] and to W(#) for t=>e. Let the bounded function
¢ be defined by

1 W () \pq
=7 (=——575)7%; 0<1t<
x1 h(x—t)p) » 0<r=x

o) =0 s x<t.

Then ( )(z) h—(———; and by (14)

p(x—1) =

1 x 1 W (£)P9)PW (¢ 1/p
ol >§xmfo We(yPowen |

xbla L4

(h(x — H)PI)P h(x — t)P
=1, We(®) 2;5“’ yYa g 1 px, We(t) \s/p ) s
>3 fo x h(x—t)") N (x f h(x—t)") dt |
W (1) ey | s
= el |~ [ Greme) el

It follows now from Lemma 2 and from (13) that

[T W (oytear
1 axy W) \s
1>~ j; (————h(x_tt)p) /pdt>K(§) °

[T ncryedr)™
0
Ky x
— W s/p
>K(p) fo (Pdt |
K* 1 x s/p
& [woa)
Since e is arbitrarily close to O it follows that forall x €1

R

1 x S \p/s ’
= fo W(r)dt K(;)
By Lemma 1 this is equivalent to —;—-regularity of W. This proves

part a) of the theorem. Part b) follows from part a) and Lemma 4.

(

%= BR[|
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Part ¢). If Lw,, is g-concave with g <o then W is %-regular
with % > 1. Therefore it is also l-regular (it is also easy to cons-

truct directly subspaces of Ly, p Which are uniformly isomorphic
to 2%, if W is not 1-regular).

On the other hand, if W is I-regular, then from Lemma 4 it
follows that it is r-regular for some r > 1. Part a) implies now
that L, , is g-concave for some g <oo. (We remark that this
last argument provides an alternative proof for the isomorphic parts
of Theorem 3.1 in [4] and Theorem 1 in [1]; ie. for 1-regularity
being a necessary and sufficient condition for Lw’p or d(w, p)
to be isomorphic to a uniformly convex space when p > 1). q.e.d.

This is a part of a Ph. D. thesis prepared under the guidance
of Professor P. Saphar. The author wishes to thank Professor Saphar
for his quidance and Dr. Y. Benyamini for many valuable discussions.
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