Dans les articles précédents sur les potentiels besseliens l’article présent était annoncé comme traitant des variétés avec singularités. Cette dernière notion est mieux définie dans le cadre plus général des espaces sous-cartésiens. Dans un tel espace nous définissons les potentiels locaux d’ordre réduit , si pour toute carte de la structure de peut être étendue de à entier comme potentiel dans . Cette définition n’est pas intrinsèque. On obtient une caractérisation intrinsèque de quand est à singularités de type polyhédral, c’est-à-dire quand pour un atlas de l’image de chaque carte est un ensemble polyhédral (l’union d’un nombre fini des polyhèdres géométriques qui peuvent être de dimensions différentes). Cette caractérisation est donnée par des conditions de compatibilité entre les restrictions de la fonction donnée sur à certaines variétés composant . Pour définir ces conditions complètement on introduit et étudie la notion restriction abstraite d’une fonction à , .
In the previous parts of the series on Bessel potentials the present part was announced as dealing with manifolds with singularities. The last notion is best defined in the more general framework of subcartesian spaces. In a subcartesian space we define the local potentials of reduced order , if for any chart of the structure of can be extended from to the whole of as potential in . This definition is not intrinsic. We obtain an intrinsic characterization of when is with singularities of polyhedral type, i.e. form some atlas of the image of each chart is a polyhedral set (finite union of geometric polyhedra, possibly of different dimensions). This characterization is given in terms of compatibility conditions between the restrictions of the given function on to certain manifolds composing . In order to define a complete set of compatibility conditions we introduce and investigate the notion of abstract restriction of a function to , .
@article{AIF_1975__25_3-4_27_0, author = {Aronszajn, Nachman and Szeptycki, Pawel}, title = {Theory of {Bessel} potentials. {IV.} {Potentials} on subcartesian spaces with singularities of polyhedral type}, journal = {Annales de l'Institut Fourier}, pages = {27--69}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {3-4}, year = {1975}, doi = {10.5802/aif.572}, mrnumber = {55 #8780}, zbl = {0304.31010}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.572/} }
TY - JOUR AU - Aronszajn, Nachman AU - Szeptycki, Pawel TI - Theory of Bessel potentials. IV. Potentials on subcartesian spaces with singularities of polyhedral type JO - Annales de l'Institut Fourier PY - 1975 SP - 27 EP - 69 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.572/ DO - 10.5802/aif.572 LA - en ID - AIF_1975__25_3-4_27_0 ER -
%0 Journal Article %A Aronszajn, Nachman %A Szeptycki, Pawel %T Theory of Bessel potentials. IV. Potentials on subcartesian spaces with singularities of polyhedral type %J Annales de l'Institut Fourier %D 1975 %P 27-69 %V 25 %N 3-4 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.572/ %R 10.5802/aif.572 %G en %F AIF_1975__25_3-4_27_0
Aronszajn, Nachman; Szeptycki, Pawel. Theory of Bessel potentials. IV. Potentials on subcartesian spaces with singularities of polyhedral type. Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 27-69. doi : 10.5802/aif.572. http://www.numdam.org/articles/10.5802/aif.572/
[1] Theory of Bessel Potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. | Numdam | MR | Zbl
and ,[2] Theory of Bessel Potentials II, Ann. Inst. Fourier, 17, 2 (1967), 1-135. | Numdam | MR | Zbl
, and ,[3] Theory of Bessel Potentials III, Potentials on regular manifolds, Ann. Inst. Fourier, 19, 2 (1969), 279-338. | Numdam | MR | Zbl
, and ,[4] Some integral inequalities, Proceedings of the Symposium on Inequalities at Colorado Springs, 1967. | Zbl
,[5] Properties of a class of double integrals, Ann. of Math., 46 (1945), 220-241, Errata, ibid. 47 (1946), 166. | MR | Zbl
and ,[6] Subcartesian spaces, in preparation. | Zbl
and ,[7] Construction of the solution of boundary value problems for the biharmonic operator in a rectangle, Ann. Inst. Fourier, 23, 3 (1973), 49-89. | Numdam | MR | Zbl
, and ,[8] Inequalities, Cambridge, 1959.
,[9] On restrictions of functions in the spaces Pα,p and Bα,p, Proceedings AMS, 16, 3 (1965), 341-347. | MR | Zbl
,[10] Extensions by mollifiers in Besov spaces, to appear in Studia Mathematica. | Zbl
,[11] DeRham Cohomology of Subcartesian Structures, Technical Report 24 (new series), University of Kansas, 1971.
,[12] Differenzierbare Räume, Math. Ann., 180 (1969), 269-296. | MR | Zbl
,[13] Glattung differenzierbarer Räume, Math. Ann., 186 (1970), 233-248. | MR | Zbl
,[14] Non-homogenous boundary value problems and applications, Springer-Verlag, 1972.
and ,[15] Equations différentielles abstraites, Ann. Ec. Norm. Sup., Paris (4), 2 (1969). | Numdam | MR | Zbl
,Cité par Sources :