A.S. Galbraith nous a communiqué la question suivante : est-ce que la complétion d’une variété implique, ou est impliquée par, la propriété que la classe
A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class
@article{AIF_1974__24_1_311_0, author = {Sario, Leo}, title = {Completeness and existence of bounded biharmonic functions on a riemannian manifold}, journal = {Annales de l'Institut Fourier}, pages = {311--317}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {1}, year = {1974}, doi = {10.5802/aif.502}, zbl = {0273.31010}, mrnumber = {353203}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.502/} }
TY - JOUR AU - Sario, Leo TI - Completeness and existence of bounded biharmonic functions on a riemannian manifold JO - Annales de l'Institut Fourier PY - 1974 SP - 311 EP - 317 VL - 24 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.502/ DO - 10.5802/aif.502 LA - en ID - AIF_1974__24_1_311_0 ER -
%0 Journal Article %A Sario, Leo %T Completeness and existence of bounded biharmonic functions on a riemannian manifold %J Annales de l'Institut Fourier %D 1974 %P 311-317 %V 24 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.502/ %R 10.5802/aif.502 %G en %F AIF_1974__24_1_311_0
Sario, Leo. Completeness and existence of bounded biharmonic functions on a riemannian manifold. Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 311-317. doi : 10.5802/aif.502. https://www.numdam.org/articles/10.5802/aif.502/
[1] Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear). | Zbl
, , ,[2] N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. (to appear). | Zbl
, , ,[3] Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226. | Numdam | MR | Zbl
, , ,[4] Bounded polyharmonic functions and the dimension of the manifold, J. Math. Kyoto Univ., 13 (1973), 529-535. | MR | Zbl
, , ,[5] Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear). | Zbl
,[6] Completeness and function-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci., 57 (1967), 29-31. | MR | Zbl
, ,[7] Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436. | MR | Zbl
, ,[8] Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169. | MR | Zbl
, ,[9] Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216. | MR | Zbl
, ,[10] A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316. | MR | Zbl
, ,[11] Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I, 532 (1973), 1-34. | MR | Zbl
, ,[12] Existence of bounded biharmonic functions, J. Reine Angew. Math. 259 (1973), 147-156. | MR | Zbl
, ,[13] Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I., 505 (1972), 1-12. | MR | Zbl
, ,[14] Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335. | MR | Zbl
, ,[15] Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-1970, University of California, Los Angeles.
,[16] Classification Theory of Riemann Surfaces, Springer-Verlag, 1970, 446 pp. | MR | Zbl
, ,[17] The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808. | MR | Zbl
, ,[18] Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. (to appear). | Zbl
, ,[19] Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280. | MR | Zbl
, ,[20] Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear). | Zbl
, ,[21] Riemannian manifolds of dimension N ≥ 4 without bounded biharmonic functions, J. London Math. Soc. (to appear). | Zbl
, ,[22] Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., 48 (1973), 267-274. | MR | Zbl
, ,[23] Negative quasiharmonic functions, Tôhoku Math. J., 26 (1974), 85-93. | MR | Zbl
, ,[24] Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522. | MR | Zbl
, ,[25] Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv. 47, (1972), 341-347. | MR | Zbl
, ,[26] Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187. | MR | Zbl
, ,[27] Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear). | Zbl
, ,[28] Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep., 25 (1973), 392-396. | MR | Zbl
, ,[29] Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I., 494 (1971), 1-14. | MR | Zbl
, , ,[30] Polyharmonic classification of Riemannian manifolds, Kyoto Math. J., 12 (1972), 129-140. | MR | Zbl
, ,Cité par Sources :