A.S. Galbraith nous a communiqué la question suivante : est-ce que la complétion d’une variété implique, ou est impliquée par, la propriété que la classe des fonctions bornées non harmoniques biharmoniques soit vide ? Parmi toutes les variétés considérées jusqu’ici dans la classification biharmonique, celles qui sont complètes ne portent pas de -fonctions et on peut suspecter qu’il en est toujours ainsi. Nous allons montrer cependant qu’il existe bien des variétés complètes de toute dimension qui portent des -fonctions. De plus, il existe des variétés complètes et des variétés incomplètes qui n’en portent pas et, de façon évidente, des variétés incomplètes qui en portent.
A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry -functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry -functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.
@article{AIF_1974__24_1_311_0, author = {Sario, Leo}, title = {Completeness and existence of bounded biharmonic functions on a riemannian manifold}, journal = {Annales de l'Institut Fourier}, pages = {311--317}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {1}, year = {1974}, doi = {10.5802/aif.502}, zbl = {0273.31010}, mrnumber = {353203}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.502/} }
TY - JOUR AU - Sario, Leo TI - Completeness and existence of bounded biharmonic functions on a riemannian manifold JO - Annales de l'Institut Fourier PY - 1974 SP - 311 EP - 317 VL - 24 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.502/ DO - 10.5802/aif.502 LA - en ID - AIF_1974__24_1_311_0 ER -
%0 Journal Article %A Sario, Leo %T Completeness and existence of bounded biharmonic functions on a riemannian manifold %J Annales de l'Institut Fourier %D 1974 %P 311-317 %V 24 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.502/ %R 10.5802/aif.502 %G en %F AIF_1974__24_1_311_0
Sario, Leo. Completeness and existence of bounded biharmonic functions on a riemannian manifold. Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 311-317. doi : 10.5802/aif.502. http://www.numdam.org/articles/10.5802/aif.502/
[1] Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear). | Zbl
, , ,[2] N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. (to appear). | Zbl
, , ,[3] Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226. | Numdam | MR | Zbl
, , ,[4] Bounded polyharmonic functions and the dimension of the manifold, J. Math. Kyoto Univ., 13 (1973), 529-535. | MR | Zbl
, , ,[5] Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear). | Zbl
,[6] Completeness and function-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci., 57 (1967), 29-31. | MR | Zbl
, ,[7] Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436. | MR | Zbl
, ,[8] Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169. | MR | Zbl
, ,[9] Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216. | MR | Zbl
, ,[10] A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316. | MR | Zbl
, ,[11] Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I, 532 (1973), 1-34. | MR | Zbl
, ,[12] Existence of bounded biharmonic functions, J. Reine Angew. Math. 259 (1973), 147-156. | MR | Zbl
, ,[13] Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I., 505 (1972), 1-12. | MR | Zbl
, ,[14] Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335. | MR | Zbl
, ,[15] Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-1970, University of California, Los Angeles.
,[16] Classification Theory of Riemann Surfaces, Springer-Verlag, 1970, 446 pp. | MR | Zbl
, ,[17] The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808. | MR | Zbl
, ,[18] Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. (to appear). | Zbl
, ,[19] Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280. | MR | Zbl
, ,[20] Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear). | Zbl
, ,[21] Riemannian manifolds of dimension N ≥ 4 without bounded biharmonic functions, J. London Math. Soc. (to appear). | Zbl
, ,[22] Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., 48 (1973), 267-274. | MR | Zbl
, ,[23] Negative quasiharmonic functions, Tôhoku Math. J., 26 (1974), 85-93. | MR | Zbl
, ,[24] Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522. | MR | Zbl
, ,[25] Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv. 47, (1972), 341-347. | MR | Zbl
, ,[26] Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187. | MR | Zbl
, ,[27] Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear). | Zbl
, ,[28] Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep., 25 (1973), 392-396. | MR | Zbl
, ,[29] Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I., 494 (1971), 1-14. | MR | Zbl
, , ,[30] Polyharmonic classification of Riemannian manifolds, Kyoto Math. J., 12 (1972), 129-140. | MR | Zbl
, ,Cité par Sources :