Let
Soit
@article{AIF_1971__21_3_217_0, author = {Kwon, Y. K. and Sario, Leo and Walsh, Bertram}, title = {Behavior of biharmonic functions on {Wiener's} and {Royden's} compactifications}, journal = {Annales de l'Institut Fourier}, pages = {217--226}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {3}, year = {1971}, doi = {10.5802/aif.387}, mrnumber = {49 #5385}, zbl = {0208.13703}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.387/} }
TY - JOUR AU - Kwon, Y. K. AU - Sario, Leo AU - Walsh, Bertram TI - Behavior of biharmonic functions on Wiener's and Royden's compactifications JO - Annales de l'Institut Fourier PY - 1971 SP - 217 EP - 226 VL - 21 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.387/ DO - 10.5802/aif.387 LA - en ID - AIF_1971__21_3_217_0 ER -
%0 Journal Article %A Kwon, Y. K. %A Sario, Leo %A Walsh, Bertram %T Behavior of biharmonic functions on Wiener's and Royden's compactifications %J Annales de l'Institut Fourier %D 1971 %P 217-226 %V 21 %N 3 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.387/ %R 10.5802/aif.387 %G en %F AIF_1971__21_3_217_0
Kwon, Y. K.; Sario, Leo; Walsh, Bertram. Behavior of biharmonic functions on Wiener's and Royden's compactifications. Annales de l'Institut Fourier, Tome 21 (1971) no. 3, pp. 217-226. doi : 10.5802/aif.387. https://www.numdam.org/articles/10.5802/aif.387/
[1] Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953), 432 p. | MR | Zbl
and ,[2] Ideale Ränder Riemannscher Flächen, Springer, (1963), 244 p. | Zbl
and ,[3] Partial differential equations, Wiley, New York, (1964), 672 p. | MR | Zbl
,[4] Biharmonic classification of Riemannian manifolds, (to appear). | Zbl
and ,[5] Quasiharmonic classification of Riemannian manifolds, (to appear). | Zbl
and ,[6] Variétés différentiables, Hermann, Paris, (1960), 196 p. | Zbl
,[7] Classification theory of Riemann surfaces, Springer, (1970), 446 p. | MR | Zbl
— ,[8] The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134. | MR | Zbl
— — ,[9] New methods for solving elliptic equations, North-Holland, Amsterdam, (1967), 358 p. | MR | Zbl
,- A criterion for the existence of biharmonic Green's functions, Journal of the Australian Mathematical Society, Volume 21 (1976) no. 2, p. 155 | DOI:10.1017/s1446788700017742
- A relation between biharmonic Green's functions of simply supported and clamped bodies, Nagoya Mathematical Journal, Volume 61 (1976), pp. 59-71 | DOI:10.1017/s0027763000017293 | Zbl:0319.31007
- Quasiharmonic
-functions on Riemannian manifolds, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, Volume 2 (1975), pp. 469-478 | Zbl:0309.31016 - Bounded biharmonic functions on the Poincaré N-ball, Kodai Mathematical Seminar Reports, Volume 26 (1975), pp. 327-342 | DOI:10.2996/kmj/1138847015 | Zbl:0302.31010
- Harmonic and quasiharmonic degeneracy of Riemannian manifolds, Tôhoku Mathematical Journal. Second Series, Volume 27 (1975), pp. 487-496 | DOI:10.2748/tmj/1178240938 | Zbl:0316.31007
- Completeness and existence of bounded biharmonic functions on a Riemannian manifold, Annales de l'Institut Fourier, Volume 24 (1974) no. 1, pp. 311-317 | DOI:10.5802/aif.502 | Zbl:0273.31010
- Negative quasiharmonic functions, Tôhoku Mathematical Journal. Second Series, Volume 26 (1974), pp. 85-93 | DOI:10.2748/tmj/1178241237 | Zbl:0276.31005
- Quasiharmonic functions on the Poincaré N-ball, Bulletin of the American Mathematical Society, Volume 79 (1973), pp. 922-923 | DOI:10.1090/s0002-9904-1973-13260-4 | Zbl:0271.31004
- Parabolicity and existence of bounded biharmonic functions, Commentarii Mathematici Helvetici, Volume 47 (1972) no. 1, p. 341 | DOI:10.1007/bf02566809
- Quasiharmonic classification of Riemannian manifolds, Proceedings of the American Mathematical Society, Volume 31 (1972), pp. 165-169 | DOI:10.2307/2038536 | Zbl:0229.31006
- Biharmonic classification of Riemannian manifolds, Bulletin of the American Mathematical Society, Volume 77 (1971), pp. 432-436 | DOI:10.1090/s0002-9904-1971-12728-3 | Zbl:0253.31011
Cité par 11 documents. Sources : Crossref, zbMATH