L’ensemble des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension sur lequel agit le groupe . Le sous-ensemble de formé des feuilletages de ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de . Nous classifions à automorphisme de près les éléments de ; plus précisément, nous montrons qu’à automorphisme près il y a feuilletages de degré ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré de .
The set of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension on which acts . The subset of consisting of foliations of with a flat Legendre transform (dual web) is a Zariski closed subset of . We classify up to automorphism of the elements of . More precisely, we show that up to an automorphism there are foliations of degree three with a flat Legendre transform. From this classification we deduce that has exactly irreducible components. We also deduce that up to an automorphism there are convex foliations of degree three on
Accepté le :
Première publication :
Publié le :
Keywords: web, flatness, Legendre transformation, homogeneous foliation
Mot clés : tissu, platitude, transformation de Legendre, feuilletage homogène
@article{AIF_2021__71_4_1757_0, author = {Bedrouni, Samir and Mar{\'\i}n, David}, title = {Classification of foliations of degree three on $\protect \mathbb{P}^{2}_{\protect \mathbb{C}}$ with a flat {Legendre} transform}, journal = {Annales de l'Institut Fourier}, pages = {1757--1790}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3431}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3431/} }
TY - JOUR AU - Bedrouni, Samir AU - Marín, David TI - Classification of foliations of degree three on $\protect \mathbb{P}^{2}_{\protect \mathbb{C}}$ with a flat Legendre transform JO - Annales de l'Institut Fourier PY - 2021 SP - 1757 EP - 1790 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3431/ DO - 10.5802/aif.3431 LA - en ID - AIF_2021__71_4_1757_0 ER -
%0 Journal Article %A Bedrouni, Samir %A Marín, David %T Classification of foliations of degree three on $\protect \mathbb{P}^{2}_{\protect \mathbb{C}}$ with a flat Legendre transform %J Annales de l'Institut Fourier %D 2021 %P 1757-1790 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3431/ %R 10.5802/aif.3431 %G en %F AIF_2021__71_4_1757_0
Bedrouni, Samir; Marín, David. Classification of foliations of degree three on $\protect \mathbb{P}^{2}_{\protect \mathbb{C}}$ with a flat Legendre transform. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1757-1790. doi : 10.5802/aif.3431. http://www.numdam.org/articles/10.5802/aif.3431/
[1] Singularities of holomorphic foliations, J. Differ. Geom., Volume 7 (1972), pp. 279-342 | MR | Zbl
[2] Feuilletages de degré trois du plan projectif complexe ayant une transformée de Legendre plate, Ph. D. Thesis, University of Sciences and Technology Houari Boumediene (2017) (https://arxiv.org/abs/1712.03895)
[3] Tissus plats et feuilletages homogènes sur le plan projectif complexe, Bull. Soc. Math. Fr., Volume 146 (2018) no. 3, pp. 479-516 | DOI | MR | Zbl
[4] Flat 3-webs of degree one on the projective plane, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 4, pp. 779-796 | DOI | Numdam | MR | Zbl
[5] Invarianten von Kurvengeweben, Abh. Math. Semin. Univ. Hamb., Volume 6 (1928) no. 1, pp. 198-215 | DOI | MR | Zbl
[6] Birational geometry of foliations, IMPA Monographs, 1, Springer, 2015, xiv+130 pages | DOI | MR
[7] The dynamics of the Jouanolou foliation on the complex projective 2-space, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 3, pp. 757-766 | DOI | MR | Zbl
[8] Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Volume 115 (1982) no. 3, pp. 579-595 | DOI | MR | Zbl
[9] Les sous-groupes des groupes continus de transformations, Ann. Sci. Éc. Norm. Supér., Volume 25 (1908), pp. 57-194 | DOI | Numdam | MR | Zbl
[10] Introduction à l’étude globale des tissus sur une surface holomorphe, Ann. Inst. Fourier, Volume 57 (2007) no. 4, pp. 1095-1133 | DOI | Numdam | MR | Zbl
[11] Géométrie classique de certains feuilletages de degré deux, Bull. Braz. Math. Soc. (N.S.), Volume 41 (2010) no. 2, pp. 161-198 | DOI | MR | Zbl
[12] Formes intégrables holomorphes singulières, Astérisque, 97, Société Mathématique de France, 1982, 193 pages (With an English summary) | Numdam | MR
[13] Webs invariant by rational maps on surfaces, Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 3, pp. 403-431 | DOI | MR | Zbl
[14] Plane algebraic curves, Student Mathematical Library, 15, American Mathematical Society, 2001, xvi+229 pages (Translated from the 1994 German original by Leslie Kay) | DOI | MR
[15] Sur la courbure de Blaschke et le rang des tissus de , Nat. Sci. Rep. Ochanomizu Univ., Volume 51 (2000) no. 1, pp. 11-25 | MR | Zbl
[16] Planar web geometry through abelian relations and singularities, Inspired by S. S. Chern (Nankai Tracts in Mathematics), Volume 11, World Scientific, 2006, pp. 269-295 | DOI | MR | Zbl
[17] Équations de Pfaff algébriques, Lecture Notes in Mathematics, 708, Springer, 1979, v+255 pages | DOI | MR
[18] Rigid flat webs on the projective plane, Asian J. Math., Volume 17 (2013) no. 1, pp. 163-191 | DOI | MR | Zbl
[19] Vector fields, invariant varieties and linear systems, Ann. Inst. Fourier, Volume 51 (2001) no. 5, pp. 1385-1405 | DOI | Numdam | MR | Zbl
[20] The classification of exceptional CDQL webs on compact complex surfaces, Int. Math. Res. Not. (2010) no. 12, pp. 2169-2282 | DOI | MR | Zbl
[21] An invitation to web geometry, IMPA Monographs, 2, Springer, 2015, xviii+213 pages | MR
[22] Properties of the connection associated with planar webs and applications (2007) (https://arxiv.org/abs/math/0702321)
Cité par Sources :