Le but de ce travail est d’étudier les -tissus globaux ayant courbure nulle. En particular, nous nous intéressons aux feuilletages de degré dont le tissu dual est plat. L’ingrédient principal est la transformée de Legendre, qui est un avatar de la dualité projective classique dans le domaine des équations différentielles. Nous obtenons une characterization des feuilletages de degré sur le plan projectif dont les tissus duaux ont courbure nulle.
The aim of this work is to study global -webs with vanishing curvature. We wish to investigate degree foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree foliations whose Legendre transform are webs with zero curvature.
@article{AFST_2014_6_23_4_779_0, author = {Beltr\'an, A. and Falla Luza, M. and Mar{\'\i}n, D.}, title = {Flat 3-webs of degree one on the projective plane}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {779--796}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {4}, year = {2014}, doi = {10.5802/afst.1424}, mrnumber = {3270423}, zbl = {1303.37016}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1424/} }
TY - JOUR AU - Beltrán, A. AU - Falla Luza, M. AU - Marín, D. TI - Flat 3-webs of degree one on the projective plane JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 779 EP - 796 VL - 23 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1424/ DO - 10.5802/afst.1424 LA - en ID - AFST_2014_6_23_4_779_0 ER -
%0 Journal Article %A Beltrán, A. %A Falla Luza, M. %A Marín, D. %T Flat 3-webs of degree one on the projective plane %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 779-796 %V 23 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1424/ %R 10.5802/afst.1424 %G en %F AFST_2014_6_23_4_779_0
Beltrán, A.; Falla Luza, M.; Marín, D. Flat 3-webs of degree one on the projective plane. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 23 (2014) no. 4, pp. 779-796. doi : 10.5802/afst.1424. http://www.numdam.org/articles/10.5802/afst.1424/
[1] Brunella (M.).— Birational geometry of foliations. IMPA (2000). | MR | Zbl
[2] Fischer (G.).— Plane Algebraic Curves, volume 15 of Student Mathematical Library. American Mathematical Society (2001). | MR | Zbl
[3] Hénaut (A.).— Planar web geometry through abelian relations and singularities. Nankai Tracts Math., 11, p. 269-295 (2006). | MR | Zbl
[4] Ince (E.).— Ordinary Differential Equations. Dover Publications (1944). | MR | Zbl
[5] Marín (D.), Pereira (J.V.).— Rigid at webs on the projective plane. Asian Journal of Mathematics, 17p. 163-192 (2013).
[6] Pereira (J. V.).— Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier (Grenoble), 51(5)p. 1385-1405 (2001). | Numdam | MR | Zbl
[7] Pereira (J. V.), Pirio (L.).— Classification of exceptional CDQL webs on compact complex surfaces. IMRN, 12p. 2169-2282 (2010). | MR | Zbl
[8] Pereira (J. V.), Pirio (L.).— An invitation to web geometry. IMPA (2009). | MR | Zbl
[9] Ripoll (O.).— Géométrie des tissus du plan et équations differentielles. Thèse de Doctorat de l’Université Bordeaux 1 (2005).
[10] Ripoll (O.).— Properties of the connection associated with planar webs and applications. Preprint arXiv:math/0702321v2, (2007).
Cité par Sources :