Soit un préfaisceau complet de fonctions “harmoniques” définies sur . Un critère de régularité pour les points des frontières idéales de est donné. Pour chaque sous-treillis banachique de , il existe une frontière idéale qui compactifie et qui contient une “frontière harmonique” qui est l’ensemble des points réguliers ; est isométriquement isomorphe à Parmi des applications se trouvent les théories frontières de Wiener et Royden et aussi les classes comparables harmoniques.
@article{AIF_1968__18_2_221_0, author = {Walsh, John B.}, title = {Probability and a {Dirichlet} problem for multiply superharmonic functions}, journal = {Annales de l'Institut Fourier}, pages = {221--279}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, number = {2}, year = {1968}, doi = {10.5802/aif.299}, zbl = {0172.38702}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.299/} }
TY - JOUR AU - Walsh, John B. TI - Probability and a Dirichlet problem for multiply superharmonic functions JO - Annales de l'Institut Fourier PY - 1968 SP - 221 EP - 279 VL - 18 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.299/ DO - 10.5802/aif.299 LA - en ID - AIF_1968__18_2_221_0 ER -
%0 Journal Article %A Walsh, John B. %T Probability and a Dirichlet problem for multiply superharmonic functions %J Annales de l'Institut Fourier %D 1968 %P 221-279 %V 18 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.299/ %R 10.5802/aif.299 %G en %F AIF_1968__18_2_221_0
Walsh, John B. Probability and a Dirichlet problem for multiply superharmonic functions. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 221-279. doi : 10.5802/aif.299. http://www.numdam.org/articles/10.5802/aif.299/
[1] Function values as boundary integrals, Proc. Amer. Math. Soc. 5, (1954), 735-745. | MR | Zbl
and ,[2] Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Scient. Ec. Norm. Sup. 78 (1961), 101-161. | Numdam | MR | Zbl
,[3] Šilovcher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89-136. | Numdam | MR | Zbl
,[4] Functions of extended class in the theory of functions of several complex variables, Trans. Amer. Math. Soc. 63 (1948), 523-547. | MR | Zbl
,[5] On a class of probability spaces, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 1-6. | MR | Zbl
,[6] Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris 1961.
,[7] Le Problème de Dirichlet. Axiomatique et frontière de Martin ; J. de Math. 35 (1963), 297-334. | MR | Zbl
,[8] On the conjecture of equivalence of the plurisubharmonic functions and the Hartog functions, Math. Ann. 131 (1956), 76-86. | MR | Zbl
,[9] Note on plurisubharmonic functions and Hartogs functions, Proc. Amer. Math. Soc. 7 (1956), 771-775. | MR | Zbl
,[10] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Amer. Math. Soc. 91 (1956), 246-276. | MR | Zbl
,[11] Fields, optionality and measurability, Amer. J. Math. 87 (1965), 397-424. | MR | Zbl
and ,[12] Axiomatique du problème de Dirichlet et processus de Markov, Seminaire Brelot, Choquet et Deny 1963/1964. | Numdam | Zbl
and ,[13] Temps d'arrêt d'une fonction aléatoire : Relations d'équivalence associées et propriétés de décomposition, Publ. de l'Inst. de Statistique, Paris 14 (1965), 245-278. | MR | Zbl
and ,[14] Recollements de processus de Markov, Ibid., 275-376. | MR | Zbl
and ,[15] Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. | MR | Zbl
,[16] A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216-280. | MR | Zbl
,[17] Probability methods applied to the first boundary value problem, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 19-54. | MR | Zbl
,[18] Probability theory and the first boundary value problem, Ill. J. Math. 2 (1958), 19-36. | MR | Zbl
,[19] Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR | Zbl
,[20] The method of extremal points and Dirichlet's problem in the space of two complex variables, Arch. Rat. Mech. Anal. 4 (1960), 412-427. | MR | Zbl
,[21] Remark on a certain theorem of H. J. Bremermann, Ann. Pol. Math. 11 (1962), 225-227. | MR | Zbl
,[22] Measure Theory, Van Nostrand, Princeton, 1950. | MR | Zbl
,[23] Markov processes and potentials, I, II, III. Ill. J. Math. 1 (1957), 44-93, 316-369 ; Ibid. 2 (1958), 151-213. | Zbl
,[24] A construction of Markov processes by piecing out, Proc. Japan Acad. 42 (1966) 370-375. | MR | Zbl
, and ,[25] Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714. | MR | Zbl
,[26] Sur les fonctions plurisousharmoniques et les barriers, Proc. Japan Acad. 36 (1960), 639-643. | MR | Zbl
,[27]
and , (to appear).[28] On a generalized Dirichlet problem for plurisubharmonic functions, J. Math. Kyoto Univ. 4 (1964), 123-147. | MR | Zbl
,[29] Une méthode élémentaire de résolution de problème de Dirichlet dans le plan, Ann. Soc. Polon. Math. 23 (1950), 230-245. | MR | Zbl
,[30] Les fonctions plurisousharmoniques, Ann. Soc. Ec. Norm. Sup. 62 (1945), 301-338. | Numdam | MR | Zbl
,[31] Probability Theory, Van Nostrand, Princeton, 1963. | MR | Zbl
,[32] Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. | JFM | MR | Zbl
,[33] Probability and Potentials, Blaisdell, 1966. | MR | Zbl
,[34] On function families with boundary, Pac. J. Math. 12 (1962), 375-384. | MR | Zbl
,[35] On some extremal functions and their applications to the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | MR | Zbl
,Cité par Sources :