Soit un corps global de caractéristique différente de 2. Soit une variété symétrique définie sur et un ensemble fini de places de . Nous obtenons des résultats de comptage et d’équidistribution pour les points S-entiers de . Nos résultats sont effectifs quand est un corps de nombre.
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
Keywords: Counting, equidistribution, rational points, mixing, , symmetric spaces, polar decomposition, resolution of singularities.
Mot clés : Comptage, équidistribution, points rationnels, mélange, espaces symétriques, décomposition polaire, résolution des singularités.
@article{AIF_2012__62_5_1889_0, author = {Benoist, Yves and Oh, Hee}, title = {Effective equidistribution of {S-integral} points on symmetric varieties}, journal = {Annales de l'Institut Fourier}, pages = {1889--1942}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {5}, year = {2012}, doi = {10.5802/aif.2738}, mrnumber = {3025156}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2738/} }
TY - JOUR AU - Benoist, Yves AU - Oh, Hee TI - Effective equidistribution of S-integral points on symmetric varieties JO - Annales de l'Institut Fourier PY - 2012 SP - 1889 EP - 1942 VL - 62 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2738/ DO - 10.5802/aif.2738 LA - en ID - AIF_2012__62_5_1889_0 ER -
%0 Journal Article %A Benoist, Yves %A Oh, Hee %T Effective equidistribution of S-integral points on symmetric varieties %J Annales de l'Institut Fourier %D 2012 %P 1889-1942 %V 62 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2738/ %R 10.5802/aif.2738 %G en %F AIF_2012__62_5_1889_0
Benoist, Yves; Oh, Hee. Effective equidistribution of S-integral points on symmetric varieties. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1889-1942. doi : 10.5802/aif.2738. http://www.numdam.org/articles/10.5802/aif.2738/
[1] Resolution of singularities and division of distributions, Comm. Pure Appl. Math., Volume 23 (1970), pp. 145-150 | DOI | MR | Zbl
[2] Nonlinear analysis on manifolds. Monge-Ampère equations, GM, 252, Springer, 1982 | MR | Zbl
[3] Five lectures on lattices, Séminaires et Congrès, 18, 2010
[4] Polar decomposition for -adic symmetric spaces, Int. Math. Res. Not., Volume 24 (2007) (article IC 121) | MR | Zbl
[5] Groupes réductifs sur un corps local I, Publ. IHES, Volume 41 (1972), pp. 5-252 | EuDML | Numdam | MR | Zbl
[6] Groupes réductifs sur un corps local II, Publ. IHES, Volume 60 (1984), pp. 5-184 | EuDML | Numdam | MR | Zbl
[7] On the distribution of points of bounded height on equivariant compactification of vector groups, Invent. Math., Volume 48 (2002), pp. 421-452 | DOI | MR | Zbl
[8] Démonstration de la conjecture , Invent. Math., Volume 151 (2003), pp. 297-328 | DOI | MR | Zbl
[9] Hecke operators and equidistribution of Hecke points, Inv. Math., Volume 144 (2003), pp. 327-351 | DOI | MR | Zbl
[10] Classification of semialgebraic -adic sets up to semi-algebraic bijection, Jour. Reine Angw. Math., Volume 540 (2001), pp. 105-114 | MR | Zbl
[11] Asymptotic behavior of trajectories of unipotent flows on homogeneous spaces, Proc. Indian. Acad. Sci., Volume 101 (1991), pp. 1-17 | DOI | MR | Zbl
[12] Limit distribution of orbits of unipotent flows and values of quadratic forms, Advances in Soviet Math., Volume 16 (1993), pp. 91-137 | MR | Zbl
[13] An analogue of the Cartan decomposition for p-adic reductive symmetric spaces, Pacific J. Math., Volume 251 (2011), pp. 1-21 | DOI | MR | Zbl
[14] On the evaluation of certain -adic integral, Progress in Math., Volume 59 (1985), pp. 25-47 | MR | Zbl
[15] -adic semialgebraic sets and cell decomposition, Jour. Reine Angw. Math., Volume 369 (1986), pp. 154-166 | EuDML | MR | Zbl
[16] Hyperbolic distribution problems and half integral weight Maass forms, Inven. Math., Volume 92 (1988), pp. 73-90 | DOI | EuDML | MR | Zbl
[17] Density of integer points on affine homogeneous varieties, Duke Math. Journ., Volume 71 (1993), pp. 143-179 | DOI | MR | Zbl
[18] Diagonalizable flows on locally homogeneous spaces and number theory, Int. Cong. Math. (2006), pp. 1731-1759 | MR | Zbl
[19] Effective equidistribution of closed orbits of semisimple groups on homogeneous spaces, Invent. Math., Volume 177 (2009), pp. 137-212 | DOI | MR | Zbl
[20] Local-Global principles for representations of quadratic forms, Inv. Math., Volume 171 (2008), pp. 257-279 | DOI | MR | Zbl
[21] Mixing, counting and equidistribution in Lie groups, Duke Math. Journ., Volume 71 (1993), pp. 181-209 | DOI | MR | Zbl
[22] Unipotent flows and counting lattice points on homogeneous varieties, Annals of Math., Volume 143 (1996), pp. 149-159 | DOI | MR | Zbl
[23] Representations of integers by an invariant polynomial and unipotent flows, Duke Math. Journ., Volume 135 (2006), pp. 481-506 | DOI | MR | Zbl
[24] Domaines fondamentaux des groupes arithmétiques, Seminaire Bourbaki, 257, 1963 | EuDML | Numdam | MR | Zbl
[25] Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. Ecole Norm. Sup., Volume 41 (2008), pp. 47-97 | EuDML | Numdam | MR | Zbl
[26] The ergodic theory of lattice subgroups, Annals Math. Studies, 172, 2009 | MR | Zbl
[27] Rational points on homogeneous varieties and Equidistribution for Adelic periods, GAFA, Volume 21 (2011), pp. 319-392 | DOI | MR | Zbl
[28] Integral points on symmetric varieties and Satake compactifications, Amer. J. Math., Volume 131 (2009), pp. 1-57 | DOI | MR | Zbl
[29] Distribution of lattice orbits on homogeneous varieties, GAFA, Volume 17 (2007), pp. 58-115 | DOI | MR | Zbl
[30] Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux, Ann. Inst. Fourier, Volume 58 (2008), pp. 1185-1212 | DOI | EuDML | Numdam | MR | Zbl
[31] On rationality properties of involutions of reductive groups, Adv. in Math., Volume 99 (1993), pp. 26-97 | DOI | MR | Zbl
[32] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., Volume 79 (1964), pp. 109-326 | DOI | MR | Zbl
[33] Fourier coefficients of modular forms of half integral weight, Inv. Math., Volume 87 (1987), pp. 385-401 | DOI | EuDML | MR | Zbl
[34] Integration sur les fibres d’une fonction analytique (Travaux en Cours), Volume 34, 1999, pp. 1-39
[35] Distribution des orbites des réseaux sur le plan réel, CRAS, Volume 329 (1999), p. 61-54 | MR | Zbl
[36] Additive problems and eigenvalues of the modular operators (Proc. Int. Cong. Math. Stockholm), 1962, pp. 270-284 | Zbl
[37] On definable subsets of -adic fields, J. Symb. Logic, Volume 41 (1976), pp. 605-610 | DOI | MR | Zbl
[38] Discrete subgroups of semisimple Lie groups, Springer Ergebnisse, 1991 | MR | Zbl
[39] On some aspects of the theory of Anosov systems, Springer, 2004 | MR
[40] Homogeneous asymptotic limits of Haar measures of semisimple linear groups, Duke Math. Jour., Volume 136 (2007), pp. 357-399 | DOI | MR | Zbl
[41] Equidistribution, -functions and ergodic theory: on some problems of Yu. Linnik, Proc. Int. Cong. Math., 2006 | MR | Zbl
[42] On the space of ergodic invariant measures of unipotent flows, ETDS, Volume 15 (1995), pp. 149-159 | MR | Zbl
[43] Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., Volume 113 (2002), pp. 133-192 | DOI | MR | Zbl
[44] Hardy-Littlewood system and representations of integers by invariant polynomials, GAFA, Volume 14 (2004), pp. 791-809 | MR | Zbl
[45] Algebraic groups and number theory, Ac. Press, 1994 | MR | Zbl
[46] Strong approximation for semisimple groups over function fields, Annals of Math., Volume 105 (1977), pp. 553-572 | DOI | MR | Zbl
[47] On Raghunathan’s measure conjecture, Annals of Math., Volume 134 (1991), pp. 545-607 | DOI | MR | Zbl
[48] Diophantine problems and linear groups, Proc. Int. Cong. Math. (1990), pp. 459-471 | MR | Zbl
[49] Limit distribution of expanding translates of certain orbits on homogeneous spaces on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996), pp. 105-125 | DOI | MR | Zbl
Cité par Sources :