Il est bien connu que l’intégrale de Riemann d’une fonction d’une variable est beaucoup mieux approximée par la -ième somme de Riemann si la somme est effectuée sur le réseau . Dans cet article nous démontrons un résultat similaire en plusieurs variables pour des sommes de Riemann sur des polytopes.
It is well-known that the -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard rate of convergence if the sum is over the lattice, . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.
Keywords: Riemann sums, Euler-Maclaurin formula for polytopes, Ehrhart’s theorem
Mot clés : sommes de Riemann, formule d’Euler-Maclaurin pour les polytopes, théorème de Ehrhart
@article{AIF_2007__57_7_2183_0, author = {Guillemin, Victor and Sternberg, Shlomo}, title = {Riemann sums over polytopes}, journal = {Annales de l'Institut Fourier}, pages = {2183--2195}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2330}, zbl = {1143.52011}, mrnumber = {2394539}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2330/} }
TY - JOUR AU - Guillemin, Victor AU - Sternberg, Shlomo TI - Riemann sums over polytopes JO - Annales de l'Institut Fourier PY - 2007 SP - 2183 EP - 2195 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2330/ DO - 10.5802/aif.2330 LA - en ID - AIF_2007__57_7_2183_0 ER -
%0 Journal Article %A Guillemin, Victor %A Sternberg, Shlomo %T Riemann sums over polytopes %J Annales de l'Institut Fourier %D 2007 %P 2183-2195 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2330/ %R 10.5802/aif.2330 %G en %F AIF_2007__57_7_2183_0
Guillemin, Victor; Sternberg, Shlomo. Riemann sums over polytopes. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2183-2195. doi : 10.5802/aif.2330. http://www.numdam.org/articles/10.5802/aif.2330/
[1] Lattice points in simple polytopes, Jour. Amer. Math. Soc., Volume 10 (1997), pp. 371-392 | DOI | MR | Zbl
[2] Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math., Volume 321 (1995), pp. 885-890 | MR | Zbl
[3] The geometry of toric varieties, Russ. Math. Surv., Volume 33 (1978) no. 2, pp. 97-154 | DOI | MR | Zbl
[4] Riemann-Roch for toric orbifolds, J. Differential Geom., Volume 45 (1997), pp. 53-73 | MR | Zbl
[5] The Ehrhart function for symbols (to appear)
[6] Some Riemann sums are better than others (to appear)
[7] Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de , C. R. Acad. Sci. Paris Ser. I Math, Volume 317 (1993) no. 5, pp. 501-507 | Zbl
[8] Euler-MacLaurin with remainder for a simple integral polytope, Duke Mathematical Journal, Volume 130 (2005), pp. 401-434 | DOI | MR | Zbl
[9] The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra and Analysis, Volume 4 (1992), pp. 188-216 translation in St. Petersburg Math. J. (1993), no. 4, 789–812 | MR | Zbl
Cité par Sources :