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RIEMANN SUMS OVER POLYTOPES

by Victor GUILLEMIN & Shlomo STERNBERG

Abstract. — It is well-known that the N -th Riemann sum of a compactly
supported function on the real line converges to the Riemann integral at a much
faster rate than the standard O(1/N) rate of convergence if the sum is over the
lattice, Z/N . In this paper we prove an n-dimensional version of this result for
Riemann sums over polytopes.

Résumé. — Il est bien connu que l’intégrale de Riemann d’une fonction d’une
variable est beaucoup mieux approximée par la N -ième somme de Riemann si la
somme est effectuée sur le réseau Z/N . Dans cet article nous démontrons un résultat
similaire en plusieurs variables pour des sommes de Riemann sur des polytopes.

1. Introduction

Given a C∞ function, f , on the interval [0, 1] let RN (f) be the Riemann
sum

(1.1)
1
N

N∑
i=1

f(ti),
i

N
6 ti <

i + 1
N

.

In freshman calculus one learns that

(1.2) RN (f) =
∫ 1

0

f(x) dx + O

(
1
N

)
.

What is not perhaps as well known is that if one chooses the ti’s judi-
ciously, i.e., lets ti = i

N the O
(

1
N

)
in (1.2) can be replaced by a much

better error term, an asymptotic series:

(1.3)
1

2N
(f(1)− f(0))+

∞∑
k=1

(−1)k−1 Bk

(2k)!

(
f 〈2k−1〉(1)− f 〈2k−1〉(0)

)
N−2k

Keywords: Riemann sums, Euler-Maclaurin formula for polytopes, Ehrhart’s theorem.
Math. classification: 52B20.



2184 Victor GUILLEMIN & Shlomo STERNBERG

in which the Bk’s are the Bernoulli numbers. In particular if f is periodic
of period 1 the O

(
1
N

)
in (1.2) is actually an O(N−∞). (For an expository

account of this “Euler-Maclaurin formula for Riemann sums” see [6].)
In this article we will prove an n-dimensional version of this result in

which the interval [0, 1] gets replaced by a convex polytope. We will give a
precise formulation of our result in §4; however, roughly speaking, it asserts
that if ∆ is a simple convex polytope whose vertices lie on the lattice, Zn,
and if f is in C∞(∆) the difference

(1.4)
∫

∆

f(x) dx− 1
Nn

∑
k∈N∆∩Zn

f

(
k

N

)
can be expanded in an asymptotic series in N−1 in which the coefficients
are explicitly computable by recipes resembling (1.3). Our formula bears a
formal resemblance to the generalized Euler-Maclaurin formulas of [9], [7],
[2], [4], [1] et al., however in these so-called “exact” Euler-Maclaurin formu-
las the functions involved are polynomials, not as in the case here, arbitrary
C∞ functions. Somewhat closer in spirit to our result is the Euler-Maclaurin
formula with remainder of [8] and the Ehrhart theorem for symbols of [5].
(Our result also yields an Ehrhart theorem for symbols, and its relation to
the theorem in [5] will be discussed in §4.)

A word about the organization of this paper. In §2 we will review the
proof of the Riemann sum version of Euler-Maclaurin, for the interval,
(−∞, 0] and in §3 show how to extend this result to regions in Rn which
are defined by systems of k linearly-independent inequalities

(1.5) 〈ui, x〉 6 ci, ui ∈ Zn, ci ∈ Z.

(We will call such regions k-wedges.)
In §4 we will derive from this result a Euler-Maclaurin formula for Rie-

mann sums over polytopes and in §5 show that our result has an equivalent
formulation as an Ehrhart theorem for symbols.

We would like to thank Dan Stroock and Hans Duistermaat for helpful
discussions concerning the material in Section 2.

2. Euler-Maclaurin for the interval (−∞, 0]

Let τ(s) be the Todd function

(2.1)
s

1− e−s
= 1 +

s

2
+
∑

(−1)n−1Bn
s2n

(2n)!
.

ANNALES DE L’INSTITUT FOURIER



RIEMANN SUMS OVER POLYTOPES 2185

In this section we will show that for Schwartz functions, f ∈ S(R) the
difference

(2.2)
1
N

∞∑
k=0

f

(
− k

N

)
−
∫ 0

−∞
f(x) dx

has an asymptotic expansion:

(2.3)
f(0)
2N

+
∞∑

n=1

(−1)n−1 Bn

(2n)!
f (2n−1)(0)N−2n.

In view of (2.1) this formula can be written more succinctly in the form

(2.4)
1
N

∞∑
k=0

f

(
− k

N

)
∼

(
τ

(
1
N

∂

∂h

)∫ h

−∞
f(x) dx

)
(h = 0)

and it is this version of it which we will prove.
We first of all observe that if f(x) = eλx, λ > 0, then∫ h

−∞
f(x) dx =

1
λ

eλh.

So for N > 2πλ we may apply the infinite order constant coefficient oper-
ator τ

(
1
N

∂
∂h

)
to this expression:

τ

(
1
N

∂

∂h

)∫ h

−∞
f(x) dx = τ

(
1
N

∂

∂h

)
eλh

λ
= τ

(
λ

N

)
eλh

λ

=
1
N

λ

1− e−λ/N

eλh

λ
=

1
N

( ∞∑
k=0

e−
k
N λ

)
eλh,

all series being convergent. We conclude that

(2.5)
1
N

∞∑
k=0

e−
k
N λ =

(
τ

(
1
N

∂

∂h

)∫ h

−∞
eλx dx

)
(h = 0).

More generally differentiating this identity n times with respect to λ we
obtain

(2.6)
1
N

∞∑
k=0

(
− k

N

)n

e−
k
N λ =

(
τ

(
1
N

∂

∂h

)∫ h

−∞
xneλx dx

)
(h = 0)

verifying (2.4) for the function xneλx and hence for the functions of the
form p(x)eλx where p is a polynomial. Now let f be a Schwartz function
and p a polynomial having the property that f(x) − p(x)eλx vanishes to
order n + 2 at x = 0. Let

(2.7) g(x) =

{
0 , x > 0

f(x)− p(x)eλk , x < 0.

TOME 57 (2007), FASCICULE 7



2186 Victor GUILLEMIN & Shlomo STERNBERG

Then

(2.8) ‖g(i)(x)‖1 < ∞ for i 6 n + 2

and by the Poisson summation formula

(2.9)
∑

−∞<k<∞

g

(
− k

N

)
= N

∑
−∞<k<∞

ĝ(Nk).

However, by (2.8)

(2.10) |ĝ(Nk)| 6 Const. N−nk−2

for k 6= 0, and

(2.11) ĝ(0) =
∫ 0

−∞
g(x) dx.

Hence
1
N

∞∑
k=0

g

(
− k

N

)
=
∫ 0

−∞
g(x) dx + O(N−n).

This shows that (2.4) is true for g modulo O(N−n) and hence is true for f

modulo O(N−∞). �

In §3 we will also need a version of the theorem above for “twisted”
Riemann sums. Let ω 6= 1 be a qth root of unity and let

(2.12) τω(s) =
s

1− ωe−s
=

s

1− ω
+
∑
i>1

bω
i si.

For f ∈ S(R) we will show that the twisted Riemann sum

(2.13)
1
N

∞∑
k=0

ωkf

(
− k

N

)
is asymptotic to the series

(2.14)
1

1− ω

f(0)
N

+
∑
i>1

bω
i f (i)(0)N−i.

As above we can rewrite this in the more succinct form

(2.15)
1
N

∞∑
k=0

ωkf

(
− k

N

)
∼

(
τω

(
1
N

∂

∂h

)∫ h

−∞
f(x) dx

)
(h = 0)

and we will prove this by essentially the same proof as before: If f = eλx

the expression in parentheses is

(2.16) τω

(
λ

N

)
eλh

λ
=

1
N

(
λ

1− ωe−λ/N

)
eλh

λ
=

1
N

(−∞∑
k=0

ωke−kλ/N

)
eλh,

ANNALES DE L’INSTITUT FOURIER
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and by setting h = 0 we see that (2.15) is valid for f = eλx; and by
differentiating both sides of (2.16) by

(
d

dλ

)n
that it’s valid for xneλx and

hence for p(x)eλx where p(x) is a polynomial. Thus, as above, we’re reduced
to showing that for the function g defined by (2.7):

(2.17)
1
N

∑
−∞<k<∞

ωkg

(
k

N

)
= O(N−n).

For r = 0, 1, . . . , q − 1, let gr(x) = g(qx + r
N ). Then

(2.18)
1
N

∑
−∞<k<∞

ωkg

(
k

N

)
=

1
N

q−1∑
r=0

ωr

( ∑
−∞<k<∞

gr

(
k

N

))
.

Since
ĝr(Nk) =

1
q

ei rk
q ĝ

(
Nk

q

)
the Poisson summation formula yields, as before, the estimate

(2.19)
q−1∑
r=0

ωr

∫ ∞

−∞
gr(x) dx + O(N−n),

for the right hand side of (2.18). However,∫ ∞

−∞
gr(x) dx =

∫ ∞

−∞
g0(x) dx

and
∑q−1

r=0 ωr = 0 so the first summand in (2.19) is zero. �

We will conclude this discussion of one dimensional Euler-Maclaurin for-
mulas by describing analogues of (2.4) and (2.15) in which the sum over
−∞ < k < 0 gets replaced by a sum over −∞ < k < ∞. For simplicity
assume that f ∈ C∞0 (R). We claim:

(2.20)
1
N

∞∑
k=−∞

f

(
k

N

)
=
∫ ∞

−∞
f(x) dx + O(N−∞)

and, for ω a qth root of unity, ω 6= 1,

(2.21)
∞∑

k=−∞

ωkf

(
k

N

)
= O(N−∞).

To prove (2.20) we first observe that for c a large positive integer, the
left and right hand sides of (2.20) are unchanged if one substitutes the
function, f(x+c), for f , so without loss of generality we can assume that f

is supported on the interval, x < 0, in which case (2.3) is of order O(N−∞)
and (2.20) is a consequence of (2.4). Similarly if we replace f(x) by f(x+cq),
with c a large positive integer, the left and right hand sides of (2.21) are

TOME 57 (2007), FASCICULE 7



2188 Victor GUILLEMIN & Shlomo STERNBERG

unchanged; so we can assume that f is supported on the interval x < 0,
and (2.21) is a consequence of (2.15).

3. Euler-Maclaurin for wedges

Let Zn be the integer lattice in Rn, (Zn)∗ its dual lattice in (Rn)∗ and
〈u, x〉 the usual pairing of vectors, x ∈ Rn, and u ∈ (Rn)∗. Given m linearly
independent vectors, ui ∈ (Rn)∗ we will call the subset of Rn defined by
the inequalities

(3.1) 〈ui, x〉 6 ci i = 1, . . . ,m

an integer m-wedge if the ci’s are integers and the ui’s primitive lattice
vectors in (Zn)∗. Let W be the set (3.1) and U the subspace of (Rn)∗

spanned by the ui’s. We will call W a regular integer m-wedge if u1, . . . , um

is a lattice basis of the lattice U ∩ (Zn)∗ i.e., if

(3.2) U ∩ (Zn)∗ = spanZ{u1, . . . , um}.

We will need below the following criterion for regularity.

Lemma 3.1. — If (3.2) holds, ui, . . . , um can be extended to a lattice
basis, u1, . . . , um of (Zn)∗.

Proof. — Let um+1, . . . , un be vectors in (Zn)∗ whose projections onto
the quotient of (Zn)∗by U ∩ (Z)∗ are a lattice basis of this quotient. �

For an integer m-wedge satisfying (3.2) the n-dimensional generalization
of Euler-Maclaurin is relatively straightforward.

Theorem 3.2. — Let h ∈ Rm and let Wh be the subset of Rn defined
by the inequalities

(3.3) 〈ui, x〉 6 ci + hi, i = 1, . . . ,m.

Then, for f ∈ C∞0 (Rn),

(3.4)
1

Nn

∑
k∈Zn∩NW

f

(
k

N

)
∼
(

τ

(
1
N

∂

∂h

)∫
Wh

f(x) dx

)
(h = 0)

where τ(s1, . . . , sm) =
∏m

i=1 τ(si).
Proof. — By Lemma 3.1 we can incorporate u1, . . . , um in a lattice basis

u1, . . . , un of (Zn)∗. Let α1, . . . , αn be the dual basis of Zn and let v =∑m
i=1 ciαi. Then via the map

(3.5) x ∈ Rn →
∑

xiαi + v

ANNALES DE L’INSTITUT FOURIER
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one is reduced to proving the theorem for the standard m-wedge: x1 6
0, . . . , xm 6 0, i.e., showing that the sum

(3.6)
1

Nn

∑
f

(
k1

N
, · · · ,

kn

N

)
summed over all (k1, . . . , kn) ∈ Zn, with ki 6 0 for i 6 m, is equal to the
expression

(3.7) τ

(
1
N

∂

∂h

)∫ h1

−∞
· · ·
∫ hm

−∞
dx1 . . . dxm

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x) dxm+1 · · · dxn,

evaluated at h = 0, modulo O(N−∞). Moreover, since the subalgebra of
C∞0 (Rn) generated by the products

f(x) = f1(x1) . . . fn(xn), fi ∈ C∞0 (R),

is dense in C∞0 (Rn) it suffices to prove the theorem for functions of this
form, and hence it suffices to prove the theorem for n = 1 and m = 0 or 1.
However, these two cases were dealt with in §2. (See (2.4) and (2.20).) �

We will next describe how (3.4) has to be modified if the condition (3.2)
isn’t satisfied. As above let um+1, . . . , un be vectors in (Zn)∗ whose pro-
jections onto the quotient of (Zn)∗ by U ∩ (Zn)∗ are a lattice basis of this
quotient lattice. The vectors, u1, . . . , un are now no longer a lattice basis
of (Zn)∗ but they span a sublattice

(3.8) A∗ = spanZ{u1, . . . , un}

of (Zn)∗ of rank n, so the quotient

(3.9) Γ = (Zn)∗/A∗

is a finite group. Let α1, . . . , αn be the basis vectors of Rn dual to u1, . . . , un.
Since A∗ is a sublattice of (Zn)∗ the dual lattice,

(3.10) A = spanZ{α1, . . . , αn},

contains Zn as a sublattice. Moreover, each element, x ∈ A, defines a
character of the group, Γ, via the pairing

(3.11) γ ∈ Γ → e2πi〈γ,x〉

and this character is trivial if and only if x is in Zn. Recall now that if Γ
is a finite group and γ a character of this group then∑

h

γ(gh) = γ(g)
∑

h

γ(h),

TOME 57 (2007), FASCICULE 7



2190 Victor GUILLEMIN & Shlomo STERNBERG

hence if γ(g) 6= 1 the sum above is zero. Thus we have

(3.12)
1
|Γ|
∑

e2πi〈γ,x〉 =

{
1 if x ∈ Zn

0 if x /∈ Zn.

For each γ ∈ Γ let

(3.13) τγ(s1, . . . , sm) = τω1(s1) · · · τωm
(sm)

where τγ(s) is defined by (2.12) and where ωk = e2πi〈γ,αk〉. We will general-
ize Theorem 3.2 by showing that for integer m-wedges which don’t satisfy
condition (3.2) one has

Theorem 3.3. — For f ∈ C∞0 (Rn)

(3.14)
1

Nn

∑
k∈NW∩Zn

f

(
k

N

)

=

(∑
γ∈Γ

τγ

(
1
N

∂

∂h

)∫
Wh

f(x) dx

)
(h = 0) mod O(N−∞).

Proof. — By (3.11) the sum on the left coincides with the sum

(3.15)
1
|Γ|
∑
γ∈Γ

1
Nn

∑
x∈A∩NW

e2πi〈γ,x〉f
( x

N

)
so it suffices to show that the γ-th summand in (3.14) is equal to the γ-th

summand in (3.15). Via the map (3.5) the γ-th summand in (3.15) becomes

(3.16)
1

Nn|Γ|
∑

k160,...,km60

ωk1
1 . . . ωkm

m

( ∑
km+1,...,kn

g

(
k

N

))
where g(x1, . . . , xn) = f(v + x1α1 + · · ·+ xnαn), and the γ-th summand in
(3.14) becomes

(3.17)
1
|Γ|

τγ

(
1
N

∂

∂h

)∫ h1

−∞
· · ·
∫ hm

−∞
dx1 . . . dxm

∫ ∞

−∞

· · ·
∫ ∞

−∞
g(x)dxm+1 · · · dxk

evaluated at h = 0. (The reason for the factor, 1/|Γ|, is that this is the
Jacobian determinant of the mapping (3.5).) To prove that (3.16) and (3.17)
are equal mod O(N−∞) it suffices as above to prove this for functions of the
form g = g1(x) . . . gn(xn) with gi ∈ C∞0 (R) and hence to show, for i 6 m

(3.18)
1
N

−∞∑
ki=0

ωkigi

(
ki

N

)
∼

(
τωi

(
1
N

∂

∂hi

)∫ hi

−∞
gi(xi) dxi

)
(hi = 0)

ANNALES DE L’INSTITUT FOURIER
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and, for i > m

(3.19)
1
N

∞∑
−∞

gi

(
ki

N

)
=
∫ ∞

−∞
gi(xi) dxi + O(N−∞),

and these follow from the identities (2.15) and (2.20). �

4. Riemann sums over polytopes

Let ∆ ⊆ Rn be an n-dimensional polytope whose vertices lie on the
lattice Zn. ∆ is said to be a simple polytope if each codimension k face is
the intersection of exactly k facets. (It suffices to assume that the vertices
of ∆, i.e., the codimension n faces, have this property or, alternatively, that
there are exactly n edges of ∆ meeting at each vertex.) If the number of
facets is d then ∆ can be defined by a set of d inequalities

(4.1) 〈ui, x〉 6 ci

where ci is an integer and ui ∈ (Zn)∗ is a primitive lattice vector which
is perpendicular to the ith facet and points “ outward” from ∆. By the
simplicity assumption each codimension k face of ∆ is the intersection of
k facets lying in the hyperplanes

(4.2) 〈ui, x〉 = ci, i ∈ F

where F is a k element subset of {1, . . . , d}. Let WF be the k-wedge

(4.3) 〈ui, x〉 6 ci i ∈ F.

We will say that ∆ is regular if each of these k-wedges is regular. (As
above it suffices to assume this for the zero faces, i.e., the vertices of ∆,
or alternatively to assume that for every vertex, v, the edges of ∆ which
intersect at v lie on rays

v + tαi, 0 6 t < ∞

where α1, . . . , αn is a lattice basis of Zn.)
For regular simple lattice polytopes one has the following Euler-

Maclaurin formula.

Theorem 4.1. — Let ∆h be the polytope

(4.4) 〈ui, x〉 6 ci + hi i = 1, . . . , d.

Then, for f ∈ C∞0 (Rn)

(4.5)
1

Nn

∑
k∈Zn∩N∆

f

(
k

N

)
∼
(

τ

(
1
N

∂

∂h

)∫
∆h

f(x) dx

)
(h = 0)

TOME 57 (2007), FASCICULE 7



2192 Victor GUILLEMIN & Shlomo STERNBERG

where τ(s1, . . . , sd) = τ(s1) . . . τ(sd).

Proof. — For each face, F , of ∆ let OF be the open subset of ∆ consisting
of all faces of ∆ which contain F in their closure. The OF ’s are an open
cover of ∆ and by choosing a partition of unity subordinate to this cover,
we can assume that supp f is contained in a small neighborhood of the set
(4.2) and doesn’t intersect the hyperplanes, 〈ui, x〉 = ci, i /∈ F . Then for
i /∈ F

τ

(
1
N

∂

∂hi

)∫
∆h

f dx =
∫

∆h

f dx +
1

2N

∂

∂hi

∫
∆h

f(x) dx + · · · .

However, by (2.4) all the terms on the right except the first are integrals
of derivatives of f over the hyperplane 〈ui, x〉 = ci + hi, and hence for hi

small are zero. Thus the left hand side of (4.5) becomes(∏
i∈F

τ

(
1
N

∂

∂hi

)∫
(WF )h

f(x) dx

)
(h = 0)

and the theorem above reduces to Theorem 3.2. �

If ∆ is simple but not regular, one gets a slightly more complicated result.
To the codimension k-face of ∆ defined by (4.2) attach the subspace

UF = spanR{ui, i ∈ F}

of (Rn)∗, the sublattice

ZF = spanZ{ui, i ∈ F}

and the finite group
ΓF = UF ∩ (Zn)∗/ZF .

This group coincides with the “torsion group” (3.9) of the wedge WF .
Moreover, if E is a subset of F , UE is contained in UF and ZE in ZF , so
ΓE is contained in ΓF . Let Γ]

F be the set of points in ΓF which are not
contained in ΓE for some proper subset, E of F .

Theorem 4.2. — For f ∈ C∞0 (Rn) the sum

(4.6)
1

Nn

∑
k∈Zn∩N∆

f

(
k

N

)
is equal mod O(N−∞) to

(4.7)

(∑
F

∑
γ∈Γ]

F

τγ

(
1
N

∂

∂h

)∫
∆h

f(x) dx

)
(h = 0).

ANNALES DE L’INSTITUT FOURIER
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Proof. — As above it suffices to prove this for supp f contained in a
small neighborhood of the set (4.2), and not intersecting the hyperplanes,
〈ui, x〉 = ci, i /∈ F . Then as above, the only contribution to the sum (4.7) is(∑

γ∈ΓF

τγ

(
1
N

∂

∂h

)∫
(WF )h

f(x) dx

)
(h = 0)

and Theorem 4.2 reduces to Theorem 3.3. �

5. An Ehrhart theorem for symbols

A function, f ∈ C∞(Rn) is a polyhomogeneous symbol of degree d if, for
large values of x, it admits an asymptotic expansion

(5.1) f(x) ∼
−∞∑
j=d

fj(x)

whose summands are homogeneous functions fj ∈ C∞(Rn−{0}) of degree j.
Let f be such a function and let ∆ be a simple lattice polytope in Rn

containing the origin in its interior. The Ehrhart function of the pair, f ,
∆, is defined to be the function

E(f,∆, N) =
∑

k∈N∆∩Zn

f(k) , N ∈ Z+ .

In [5] it was shown that

E(f,∆, N)−
∫

N∆

fdx

had an asymptotic expansion

(5.2)
−∞∑

j=n+d

cjN
j + c

for N large.
The main result of this section is a variant of this result. As above let

∆ be a simple lattice polytope in Rn and let C∆ be the polyhedral cone
consisting of all points, (x1, . . . , xn, xn+1), in Rn+1 with xn+1 > 0 and
(x1, . . . , xn)/xn+1 ∈ ∆. Then, for N ∈ Z+, N∆ is just the slice of C∆

by the hyperplane, xn+1 = N . We will prove that if f ∈ C∞(Rn+1) is a
polyhomogeneous symbol of degree d the sum

(5.3)
∑

k∈N∆∩Zn

f(k)
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admits an asymptotic expression of the form (5.2).

Remarks.

(1) This result, albeit very close in spirit to the theorem in [5] cited
above, doesn’t, as far as we can see, seem to be a trivial consequence
of it.

(2) This result has a number of applications to spectral theory on toric
varieties which we’ll explore in future publications.

(3) As a corollary of this result one gets another variant of the Ehrhart
function theorem: Let

∆] := {(x1, . . . , xn+1) ∈ C∆, xn+1 6 1}

be the pyramid over ∆ with vertex 0. This (n + 1)-dimensional
polytope is not in general simple. However a version of theorem
described at the beginning of this section is still true, namely

E(f,∆], N) ∼
−∞∑

i=d+n+1

c]
i + c] log N.

as one can see by summing the differences

E(f,∆], N)− E(f,∆], N − 1)

and noting that each difference is exactly (5.3). By combining this
result with the Danilov “desingularization trick” [3] one can ex-
tend the Ehrhart theorem to a much larger class of convex lattice
polytopes. We will discuss the details elsewhere.

Proof. — As above let

f ∼
−∞∑
i=d

fi

where fi(x1, . . . , xn+1) is a homogeneous function of degree i. Then on the
cone, C∆:

fi(x1, . . . , xn+1) = xi
n+1 fi

(
x1

xn+1
, . . . ,

xn

xn+1
, 1
)

so if we set f̃i(x1, . . . , xn) = fi(x1, . . . , xn, 1) the sum (5.3) is equal to the
sum

(5.4) N i
∑

k∈N∆∩Zn

f̃i

(
k

N

)
.
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which is N i+n times the Riemann sum

(5.5)
1

Nn

∑
k∈N∆∩Zn

f̃i

(
k

N

)
.

Thus, by Theorem 4.2, each of these summands admits an asymptotic ex-
pansion:

−∞∑
k=n+i

ci,kNk

and hence so does the sum (5.3). �
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