Nous caractérisons une classe importante de géométries projectives généralisées par les propriétés équivalentes suivantes : (1) admet une polarité nulle centrale; (2) admet une polarité intérieure; (3) est associée à une algèbre de Jordan avec élément neutre. Dans ce cadre, nous démontrons un analogue du théorème de von Staudt qui généralise des résultats similaires de L.K. Hua.
We characterize an important class of generalized projective geometries by the following essentially equivalent properties: (1) admits a central null-system; (2) admits inner polarities: (3) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.
Keywords: null-system, projective geometry, polar geometry, symmetric space, Jordan algebra
Mot clés : polarité nulle, géométrie projective, géométrie polaire, espace symétriques, algèbre de Jordan
@article{AIF_2003__53_1_193_0, author = {Bertram, Wolfgang}, title = {The geometry of null systems, {Jordan} algebras and von {Staudt's} theorem}, journal = {Annales de l'Institut Fourier}, pages = {193--225}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {1}, year = {2003}, doi = {10.5802/aif.1942}, mrnumber = {1973071}, zbl = {1038.17023}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1942/} }
TY - JOUR AU - Bertram, Wolfgang TI - The geometry of null systems, Jordan algebras and von Staudt's theorem JO - Annales de l'Institut Fourier PY - 2003 SP - 193 EP - 225 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1942/ DO - 10.5802/aif.1942 LA - en ID - AIF_2003__53_1_193_0 ER -
%0 Journal Article %A Bertram, Wolfgang %T The geometry of null systems, Jordan algebras and von Staudt's theorem %J Annales de l'Institut Fourier %D 2003 %P 193-225 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1942/ %R 10.5802/aif.1942 %G en %F AIF_2003__53_1_193_0
Bertram, Wolfgang. The geometry of null systems, Jordan algebras and von Staudt's theorem. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 193-225. doi : 10.5802/aif.1942. http://www.numdam.org/articles/10.5802/aif.1942/
[Ar66] Geometric Algebra, Interscience, New York, 1966 | MR | Zbl
[B94] Geometry, 2 volumes, Springer-Verlag, Berlin, 1994 | MR | Zbl
[Be00] The geometry of Jordan and Lie structures, Lecture Notes in Mathematics, 1754, Springer, Berlin, 2000 | MR | Zbl
[Be01a] From linear algebra via affine algebra to projective algebra (2001) (preprint, Nancy) | MR | Zbl
[Be01b] Generalized projective geometries: general theory and equivalence with Jordan structures (2001) preprint, Nancy (to appear in Advances in Geometry) | MR | Zbl
[BK65] Jordan-Algebren, Springer-Verlag, Berlin, 1965 | MR | Zbl
[Br68] Doppelverhältnisse in Jordan-Algebren, Abh. Math. Sem. Hamburg, Volume 32 (1968), pp. 25-51 | DOI | MR | Zbl
[Ch49] On the geometry of algebraic homogeneous spaces, Ann. Math, Volume 50 (1949) no. 1, pp. 32-67 | DOI | MR | Zbl
[FK94] Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | MR | Zbl
[Hua45] Geometries of Matrices. I. Generalizations of von Staudt's theorem, Trans. A.M.S, Volume 57 (1945), pp. 441-481 | MR | Zbl
[JNW34] On an algebraic generalization of the quantum mechanical formalism, Ann. Math, Volume 35 (1934), pp. 29-64 | DOI | JFM | MR | Zbl
[Koe69] Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z, Volume 109 (1969), pp. 349-392 | DOI | MR | Zbl
[Lo69] Symmetric Spaces I, Benjamin, New York, 1969 | Zbl
[Lo75] Jordan Pairs, LN, 460, Springer, New York, 1975 | MR | Zbl
[Lo95] Elementary Groups and Stability for Jordan Pairs, K-Theory, Volume 9 (1995), pp. 77-116 | DOI | MR | Zbl
[Sp73] Jordan Algebras and Algebraic Groups, Springer Verlag, New York, 1973 | MR | Zbl
Cité par Sources :