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THE GEOMETRY OF NULL SYSTEMS,
JORDAN ALGEBRAS AND VON STAUDT’S THEOREM

by Wolfgang BERTRAM
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0. Introduction.

Duality is one of the basic features of linear algebra and of projective
geometry: as a matter of principle, a projective space X = KP- = P(W)
over a field K should always be considered together with its dual space
X’ = P(W* ), the space of hyperplanes in X. In general, there are many
ways to identify X and X’, via polarities (given by a non-degenerate
quadratic form) or via null-systems (given by a symplectic form), but none
of these really is canonical. However, there is one exception to this rule:
the projective line indeed, hyperplanes and points in KP1 are the
same objects. Thus to a point x E KP1 there is a canonically associated
affine space Yx = X B which one might call the "absolute space of x" .
Of course, the point x itself does not belong to its absolute space Vx ; this

Keywords: Null-system - Projective geometry - Polar geometry - Symmetric space -
Jordan algebra.
Math. classification: 17C37 - 51A05 - 51A50 - 51N25 - 53C35.
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corresponds to the fact that the identity map id : X - X’ is a null-system:
it comes from the identification of K 2 with its dual space via the, up to a
scalar factor canonical, symplectic form on K 2

In the present work we will show that the correct generalization of
the projective line in the category of generalized projective geometries (cf.
Chapter 1 for the basic notions) is given by spaces corresponding to unital
Jordan algebras (Theorem 4.1). More precisely, we will prove:

THEOREM 0.1. - Under the assumptions formulated in Theorem

4.1, the following statements are equivalent for a connected generalized
projective geometry over a commutative ring K with -1 E K:

(1) (X, X’) has a (unique) central null-system,

(2) (X, X’) has inner polarities,

(3) the Jordan pair associated to a base point (o, o’) in (X, X’) has
invertible elements (i.e., it comes from a unital Jordan algebra).

Let us illustrate the properties (1) - (3) by the important example
of the Grassmannian geometry (X, X’) : X = is the Grass-

mannian variety of p-spaces in OCp+q, and X’ - is its dual

space. There exist always correlations, i.e., isomorphisms mapping X onto
X’, given by non-degenerate forms. But the case p = q is very special for
in this case we really have equality X = X’, and this identification has all
formal aspects of a correlation, although it is not given by a form (unless
p = 1, in which case it is given by a symplectic form on JI(2). Geometrically,
the identification n = id: X - X’ behaves like a null-system: every point
x E X is isotropic in the sense that x and n(x) are incident. Moreover, the
identification n : X - X’ is canonical or central in the sense that it com-

mutes with the action of the relevant symmetry group P Gl(p + q, K). Thus,
if p = q, the Grassmannian geometry (X, X’) admits a central null-system,
and it is easily seen that for this is not the case. This illustrates

property (1) -
For the example of Grassmannian geometry, the algebraic aspect (3)

is given by the Jordan pair of rectangular matrices,

with the tnimear product

together with its dual. It is well-known that this Jordan pair has invertible
elements in the Jordan theoretic sense (cf. [Lo75]) if and only if p = q;
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in this case, it comes from the Jordan algebra V = V’ - M (p, p; K) of
square matrices with the usual symmetrized matrix product. Note that this
case arises precisely if the corresponding Grassmannian geometry admits a
central null-system, as we have claimed.

The link between the properties (1) and (3) is property (2) which has
both geometric and algebraic aspects. In the example of Grassmannian
geometry (X, X’), it corresponds to the midpoint map: fix two points
x, y E X and assume that x and y are complementary subspaces of the q-
dimensional subspace a; then, since a defines a structure of affine space on
the space of complements of a, there is a well-defined midpoint Mx,y (a) E X
of x and y with respect to this affine structure. The "midpoint map"

is defined on a Zariski-dense part E of X’. It is quite easy to find an

explicit formula for the map (cf. Formula (2.14) in Section 2.7). If

Mx,y extends to a bijection from X’ onto X, then it has all formal aspects
of a polarity which therefore is called an inner polarity. In general, however,
Mx,y will not extend to a bijection; in fact, the explicit formula shows that
inner polarities exist if and only if p = q. For instance, in case of ordinary
projective geometry (p = 1), the midpoint of x and y for always lies
on the unique projective line spanned by x and y, and thus the image of

Mx,y is one-dimensional and hence Mx,y cannot extend to a bijection of
X’ onto X - unless q = 1; this is the case of the projective line in which

Mx,y is equivalent to the polarity given by the symmetric form of signature
( l,1 ) . In case p - q &#x3E; 1, the inner polarities are not given by forms; in
terms of algebraic geometry, they are non-standard automorphisms of the
Grassmannians.

Among other examples we would like to mention Lagrangian geome-
tries where X is the space of Lagrangian subspaces of some bi- or sesquilin-
ear form: for the Hermitian form of signature (2, 2) on C4, the correspond-
ing Jordan algebra is the Jordan algebra Herm(2, C) of complex Hermi-
tian 2 x 2-matrices which is nothing but the Minkowski space of special
relativity; as explained in [BeOO], our Lagrangian geometry X may in this
case be seen as the "causal compactification" of our physical space-time; it
admits a central null-system. Similarly, in infinite dimension, the geometry
associated to the Jordan algebra Herm(H) of an infinite-dimensional

Hilbert space H shares these features - because of its close relation with

quantum theory this case initiated the investigation of Jordan algebras by
P. Jordan, J. von Neumann and E. Wigner [JNW34].
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Our proof of the main theorem (Theorem 4.1 ) is as geometric as
possible and avoids the use of axiomatic Jordan theory. It reveals several
surprising features which seem very "strange" when one compares with
usual projective geometry since we are mostly used to think in terms
of dimensions bigger than one. In dimension one, however, we have the
"strange" identity of projective classes [g*] - ~g-1~ for all elements [g] of
the projective group P Gl(2, K), where g* is the adjoint of 9 with respect to
some symplectic form w on K2. (This reflects just the fact that 
preserves w up to a factor.) In our general context, this translates to the
important identity

between certain inner operators of the geometry, called operators of

middle-, right- and left multiplication, with respect to the scalar given
by the superscript.

The six scalar values appearing in (0.4) are well-known in projective
geometry as the six values of the cross-ratio under permutations of the four

arguments. As in classical projective geometry, the special case r = 2 is

related to points in harmonic range (Chapter 5): is nothing but the
midpoint map Mx,y defined above, and we say that four points (x, y, a, b)
are in harmonic range if they are pairwise non-incident and if

This generalizes the classical notion of harmonic range on a projective line

(cf. [B94], 6.4.2). The notion of harmonic range on Jordan algebras has also
been defined by H. Braun via a generalized cross-ratio ([Br68] ; cf. Remark
5.6); but the notion of cross-ratio, belonging to the topic of invariant
theory on generalized projective geometries, is much more involved than

harmonicity and will be left for later work. In our set-up, we can easily
prove a generalization of the well-known theorem by von Staudt (cf. [B94],
6.4.10) saying that a bijection of the projective line 1Kp1 preserves harmonic
range if and only if it is induced by a semilinear map (Theorem 5.5). In the
special case of "matrix geometries" (finite-dimensional Grassmannian and
Lagrangian geometries) such a generalization has already been found by
L.K. Hua ([Hua45]). However, as W-L. Chow remarks in his related work
[Ch49], in these cases already much weaker assumptions on the bijections
permit to conclude. Thus it seems that the degree of generality of our
version of von Staudt’s theorem permits to really appreciate its nature as
the most general theorem characterizing the "semi-linear projective group"
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- indeed, it seems rather unlikely that in our framework weaker assumptions
on the bijections could suffice to conclude.

Finally, we discuss the geometric interpretation of unital Jordan
algebras: a unital Jordan algebra is essentially the same as a Jordan pair
together with a distinguished invertible element. Thus the correspondence
from Theorem 0.1 gives us a correspondence between

(a) central null-geometries, together with a distinguished quadruple of
harmonic points,

(b) unital Jordan algebras.

An interesting aspect of (real) unital Jordan algebras, featured by the
work of Koecher and Vinberg (cf. [FK94] or [BeOO]) is that they are related
to symmetric spaces. In Chapter 6 we generalize this relation to the case
of arbitrary dimension and general base fields or rings: as has been shown
in [Be0lb], the set of non-isotropic points of a polarity p carries naturally
the structure of a "symmetric space over K" . Now, under the hypotheses of
Theorem 4.1, there is one distinguished class of polarities, namely the inner
ones. Thus, without any further choices, there is a class of symmetric spaces
canonically associated to our geometry. For instance, in the Grassmannian
case with p = q, this class is represented by the general linear group
Gl(p, K), and in the case of a Euclidean Jordan algebra, it is given by
the associated symmetric cone (cf. [FK94]). We describe some important
geometric features of these spaces: firstly, they have a linear realization,
similar to the linear realization Gl(p,K) C M(p, p; K) and generalizing the
prehomogeneous symmetric spaces from [BeOO], Ch.2. Secondly, the Jordan
inverse j(x) = x-’ = Q(x)-’x of the associated Jordan algebra plays
an important role : according to [Lo75], 1.10, the Jordan inverse should

correctly be interpreted as a map exchanging the dual partners X and X’
since Q(x) exchanges the partners. In fact, this is in perfect agreement
with our theory since it turns out that, seen this way, j is nothing but the
canonical null-system itself. It becomes "visible" only if we use some other
way (namely the inner polarity) to identify X and X’, and then it can

be interpreted as a geometric map from X to X (Section 6.3). Summing
up, our approach featuring the canonical null-system can be regarded as
a geometric and more general version of the approach by T.A. Springer
([Sp73]) who bases the whole theory of (finite dimensional) Jordan algebras
on the Jordan inverse.

Notation. Throughout this paper K denotes a commutative ring with
unit 1 and -1 E K.
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1. Generalized projective geometries.

In this chapter we first give a brief review of definitions and main
results from [BeOlb] ; we refer to this paper for proofs and more details.
Then, in Sections 1.4 and 1.5, we introduce the central objects of this
paper.

1.1. Generalized projective geometries.

A pair geometry is given by two sets X, X’ and a subset M C X x X’
such that X is covered by the sets ~~ E X) (x, a) E M} for a E X’
and X’ is covered by the sets defined dually for x E X. Pairs (x, a) E M
are called remote or in general position. An affine pair geometry over K
is a pair geometry such that all Va, a E X carry a structure of an affine
space over K (which shall contain at least two points), and dually for all
vx, x E X. Then we let, for (x, a), (y, a) E M and r E K, rx, a (Y) : - ry
be the product r ~ ~ in the K-module Va with zero vector x, and we define
multiplication maps by

with D - f(x,a,y) E X x X’ E M,(?/,a) and dually
: D’ - X’. There are two ways to turn affine pair geometries into

a category: for the first, we define homomorphisms to be pairs of maps
(g, g’ ) which are compatible with the multiplication maps in the sense that

J1r(gx, g’a, gy) and dually, and for the second, we define
adjoint pairs to be given by pairs g : X - Y, h : Y’ - X’ of maps such
that

and dually; we then write h = g/. (Here we allow g and h to be defined
not everywhere but at least on some affine part, cf [BeOlb].) The ternary
multiplication maps give rise to operators of left, right and middle multi-
plication, defined by

the superspript (r) will be dropped if the value of r is clear from the context
or not relevant. Note that by an elementary property of affine spaces over
K, the operators of left and right multiplication are related via the identity
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We say that an affine pair geometry satisfies the fundamental identities
of projective geometry if the following holds for all r E K and x, y E X,
a, b E X’ where things are defined:

For invertible r, (PGI) can be rephrased by saying that an

automorphism of (X, X’ ) . The group generated by those automorphisms
is called the inner automorphism group. It contains the translations (with
respect to some vectorialization (o, o’) E M)

for v E V := The following identity (T) together with its dual,

is called the translation property; it implies that

are (abelian) groups, the former acting on V by translations and the latter
by fixing the origin o, and dually on V’. Finally, a generalized projective
geometry is an affine pair geometry such that, in all scalar extensions of K,
the fundamental identities (PG1) and (PG2) and the translation property
(T) hold.

1.2. The associated Jordan pair.

We fix a base point (o, o’) E M and let (V, V’) = ~). This is a
pair of K-modules. In [Be0lb, Th. 8.6] it is shown that then the expression

, , 
- 

, , -, - . 
.

is quadratic polynomial in x and linear in a. By polarizing Q, we define a
trilinear map

which, together with its dual T’, satisfies the axioms of a linear Jordan pair
(cf. [BeOlb], Th. 9.5). (In [BeOlb], Q(x) was defined by taking the opposite
sign in (1.6). In turns out that the sign chosen here is more convenient.)

1.3. Polarities and null-systems.

An antiautomorphism of a generalized projective geometry (X, X’) is
an isomorphism (p, p’) : (X, X’) - (X’, X) onto the dual geometry (i.e.,
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p : X - X’ and p’ : X’ - X are bijections such that the identities
~cT (p(o), p’ (o’), p(x) ), and dually, hold). A correlation of

(X , X’ ) is an antiautomorphism (p, p’) such that p’ - p-1; equivalently,
p = pt. A correlation is called a polarity if there exists x E X such that
x and p(x) are non-isotropic (which means that (x,p(x)) E M) and a
null-system if all x E X are isotropic (i.e., M). A generalized
polar geometry is generalized projective geometry (X, X’) together with a
polarity p. The set of non-isotropic points,

carries the structure of a symmetric space over K with respect to the

"multiplication map" (in the sense of [Lo69]) J-l(x,y) == (see
[BeOlb], Th. 4.2).

1.4. Absolute identifications and central correlations.

An absolute identification is a pair of maps n : X - X’, n’ : X’ - X
such that n and n’ are bijections which are inverse to each other and such
that n commutes with the automorphism group in the sense that

A central correlation (resp. central null-system) is a correlation (resp. a
null-system) which is an absolute identification, i.e., which commutes with
all automorphisms. A central null-geometry is a generalized projective
geometry (X, X’ ) together with a central null system (n, n’ ) . We can rewrite
(A) by letting all maps act on X x X’: given n : X ~ X’, n’ : X’ - X
and an automorphism (g, g’), we let g = g x g’ : X x X’ --4 X x X’ and

then (A) is equivalent to the condition n o g = g o n.

1.5. Inner correlations, inner polar geometries.

We let r = 2 and consider, for any pair (x, y) E X x X the "midpoint
map"

In fact, the geometric interpretation of Mx,y (a) as the midpoint of x and
y in the affinization a holds only for x, y E Va, i.e., for a E V; n If the

condition
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is not satisfied, then is only defined via the continuation of to an

automorphism of X and has no direct geometric interpretation.

We say that a pair (x, y) E X x X is invertible if Mx,y : V~ U V§ - X
extends to a bijection from X’ onto X such that the relation (PG2)

= Mx,y still holds for the extended map. Then (PG2) implies that
My,x) is an isomorphism from (X, X’) onto (X’, X), that is,

it is an antiautomorphism of (X, X’). Moreover, since r = 1/2, we have
= (My,x)-1 - i.e., (Mx,y, (Mx,y)-’) is a correlation; such

a correlation is called inner. If the condition (1.11) holds, then Mx,y is a
polarity: in fact, if a C Vxl n Vy, then x, y E Va and hence 
i.e., Mx,y(a) E Va, and therefore Mx,y is a polarity which we call an inner
polarity. An inner polar geometry is a generalized projective geometry
together with an inner polarity Mx,y (i.e., we assume (1.11) to be satisfied.
Condition ( 1.11 ) is satisfied for all E M if the geometry is stable, see

below.)

1.6. Connectedness.

We say that (x, a) and (y, b) E M are connected and write (x, a) -
(y, b), if there is a sequence (pi, ql ), ... , (pn, qn) E M such that (pl, q1) =

(~~ a) ~ (p., q.) = (y, b) and

This defines an equivalence relation on M whose equivalence classes are
called connected components. A geometry (X, X’) is called connected if M
is connected. If (X, X’) is connected, then the inner automorphism group
acts transitively on M ([BeOlb], Th. 5.7).

1.7. Stability.

The geometry (X, X’) is called stable if (1.11) holds for all x, y E X,
and dually (cf. [BeOlb], Section 5.5). A stable geometry is connected (but
the converse is not true): in fact, if (x, a), (y, b) E M, let z E Va n Vb,

whence (z, c) E M and (z, c) E Next choose

d E Vz n vy; then (z, d) E M and (z, d) E Finally, (y, b) E (Vd, Vz ),
and thus the sequence (x, a), (z, c), (z, d), (y, b) connects (x, a) and (y, b).

1.8. Orders of infinity.

We fix an affinization o’ E X and let V = E, C X. The first order

infinity set of o’ is the set
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(in case of ordinary projective geometry this is the "hyperplane at

infinity" ). The second order infinity set of o’ is the set of affinizations whose
affine parts lie entirely at infinity:

For a stable geometry, all second order infinity sets are empty. Clearly, one
can continue in this way by defining a third order infinty set

(those points which only belong to affine parts that are entirely located at
infinity; in particular III~ C 100)’ and so on. Note that I~ is Tv-invariant,
and therefore also II~ etc. are Tv-invariant sets.

1.9. Big orbits of translation groups.

We will need conditions expressing the fact that first and second order
infinity sets are "not too big". Stability is the most restrictive of such

conditions. In order to formulate more general conditions, fix an affinization
o’ E X and let Tv - Tvo, be the corresponding translation group. We say
that the Tv-orbit of a point x E X is big if the orbit map

(1.15) 7rx : V ---t X, v F--+ Tv(x)
is essentially an isomorphism; by this we mean that it extends to a bijection
from X onto X, again denoted by and such that there exists a bijection
7r’ : X’ - X’ completing it to an isomorphism 7r~). In particular, ~r~
has to be injective, i.e., Tv acts freely on the orbit Tv .x. For instance, if x
belongs to V, then Tv.x = V is a big orbit, and moreover (w.r.t. some fixed
origin o E V), ~r~ (v) = v -~ x = x -~- v = Tx (v), whence 7rx = Tx, and (7rx,7r~)
with - Tx is an isomorphism. The axioms of a generalized projective
geometry do not exclude that, even in the connected case, there exist points
x V V having a big TV-orbit; that is, a translation group may have a big
orbit in the first order infinity set loo. We say that our geometry has no
big orbits at first order infinity if all translation groups have precisely one
big orbit in X, namely the affine part to which they belong.

A translation group may also have big orbits in the dual space X’:
by this we mean that there exists a E X’ such that the orbit map

extends to an isomorphism ( fa, fa) : (X, X’) - (X’, X) in the sense

explained above. As above, we cannot exclude, even in the connected case,
that the translation group rv has a big orbit in the second order infinity
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set 1100’ We say that our geometry has no big orbits in second order infinity
if no translation group has a big orbit in its second order infinity set.

If the geometry is stable, then there are no big orbits in first and
second order infinity: in fact, all second order infinity sets are empty, and if
W is a big orbit of Ty, then W = 7rx(Vo’) = V.~~ x (o~) intersects the
orbit V == and therefore both orbits coincide. In particular, all these
properties hold for connected finite dimensional geometries over fields since
such geometries are stable (cf. [Be0lb], 5.5). In these cases, our intuition
of the "hyperplane at infinity" being a comparably "small" set is correct;
in the general infinite dimensional case or in the case of a base ring, this is
no longer true as can easily be illustrated by examples.

2. Absolute identifications and null-geometries.

2.1. Absolute identifications and the permutation group.

In this chapter we assume that n : X - X’, n’ : X’ - X is

an absolute identification of the generalized projective geometry (X, X’)
(cf. Section 1.4). If r is invertible in K and (x, a) E M, then by (PG1),
(9, g) (rx,a, ra, -1) is an automorphism of (X, X’), and we can apply the
relation (A) from 1.4 and get

which can be rewritten

If, as we shall do later, we identify X and X’ via n, then Equation
(2.2) describes the behavior of the ternary map JLr under the permutation
(1,2) of the three arguments. On the other hand, the behavior under
the permutation (1,3) is known by the identity (Af3) from Section 1.1.

Therefore the behavior of pr under the full permutation group E3 is now
known:

Eliminating the variable z, we get in operator form:
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The six values that arise from r in this way are known from projective
geometry as the six possible values of the cross-ratio under permutations.
In the complex case there are essentially two cases in which several of these
values coincide, namely r = -1 ("harmonic range" ) and r = 1+2~ (where
r-1 = 1 - r) . For later use, let us write down (2.4) in the case r = -1 :

2.2. Existence of inner correlations.

Let us assume that 1 - r and s := 1 - (I - r)-l = r(r - 1 ) -1
are invertible in K; then also r is invertible in K, and thus is, for
all pairs (x, y) E X x X, defined on a non-empty domain. If in addition
(x, a) : := (x, n’ (y) ) belongs to M, then since s is invertible, the operator
n o is a bijection from X’ onto X, and Equation (2.4) shows now that

extends to a bijection from X’ onto X, also denoted by and

given by

If we specialize (2.6) to the value r = 2 , we have s = -1, and we see
(1/2) )that the midpoint map Mx,y = extends to a bijection. As has been

explained in Section 1.5, (Mx,y, is then an inner correlation; it is

an inner polarity if ( 1.11 ) holds. Moreover, from (2.6) we get, using that
s = -1 is its own inverse,

2.3. Absolute identifications are null-systems.

Comparing the six terms of (2.5) among each other, we get the
relations (here and in the sequel we use the simpler notation (-1)x,a -

and omit the supersript 2 in the notation of the midpoint map)
x,a - - 2 , , , - -

Taking inverses, we get from (2.8)

which means that we can write (n, n’ ) as a composition of an inner correla-
tion and an inner automorphism. Therefore (n, n’) is an antiautomorphism
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which is a correlation since n’ - n-1. It is central since it is an absolute

identification.

We claim that n is not a polarity (hence n is a null-system) : in

fact, let o E X and assume that (o, o’) := (o, n(o)) E M, i.e., o is non-

isotropic for n. Since (n, n’) is central, (g, g’) stabilizes (o, n(o)) iff g.o = o
and g’n(o) - n(o), i.e., iff g.o = o ; by definition, this means that (g, g’)
belongs to the stabilizer group of o, denoted by P in [BeOlb]. But since
(?a, Ta) e P for all a E this means that o’ = Ta .O’ = a, and hence V; is
zero-dimensional, which is excluded by definition in Section 1.1. Therefore
all points o E X are isotropic, and thus (n, n’) is a central null-system.
Summing up, we have shown that absolute identifications are the same as
central null-systems.

2.4. Values on the diagonal.

Once we have shown that the identification (n, n’) is a correlation,
there is no danger to identify X and X’ via n since pr and p) give rise
to the same map which we again denote by pr.
The set M is identified with a subset of X x X which does not contain the

diagonal since n is a null-system and which is stable under the exchange
map (x, y) H (g, x). For invertible r, the map is now defined on an

extended domain

(2.10) 
which is invariant under the permutation group E3, and the relations

(2.4), (2.5) can now be written as in the Introduction, Equation (0.4).
In particular, if r is invertible and (x, g) E M, we get the following values
on the diagonal x = z:

(2.11) y) = x~ X) -/-Lr (~~ ~/~ x) = x.
The preceding relations permit to extend the domain of definition of certain
natural operations: for instance, the vector addition +0,0’ with respect to
a base point (o, o’) C M, which will just be denoted by + and defined by
X + y = 20,0~ 2~ o, (y), is originally defined on (V x X ) U (X x V), but can now
be extended to all (x, y) C M by x + y = 20,0’ (- 1)x,y (o’). (It can also be
defined on the whole diagonal 20,0~ x) . In particular, the
translation Tx can be defined for any x E X as a not necessarily everywhere
defined map by

As we will see later, it is reasonable to introduce the notation oo := o’;
then we have the addition rule for all y E X.
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2.5. Inner polarities.

Let us assume that the geometry (X, X’) admits no big orbits of
translation groups in second order infinity (Section 1.9). We claim that
then inner polarities exist: first of all, if (n, n’) is a central null-system,
then, letting for an affinization o’ E X’ as usual V = the set n(V) C X’
is a big orbit of TV since n (Tv . o) - Since by assumption this big
orbit is not included in the second order infinity set, i.e., n(V) c 
for all y E V the condition Vn(y) n V # 0 is satisfied. Therefore all pairs
(~, o’) with y E V satisfy condition (1.11), and thus Mn(y),o, is an inner

polarity. In particular, inner polarities exist.

In general, inner correlations are not unique, but the relation

for all automorphisms g implies that the conjugation class depends only
on the orbits of the group G = Aut(X) acting on the set of invertible
pairs in X x X. By 2.2, M is included in this set, and if the geometry is
connected, then M = G. (o, o’ ) is homogeneous under G (cf. 1.5). Under the
assumptions made above, M is moreover contained in the set of invertible
pairs satisfying (1.11). In the next chapter it will be shown that for

connected geometries we have equality, and thus all inner polarities will
be conjugate under the automorphism group.

2.6. Uniqueness of central correlations.

Let us assume that the geometry (X, X’) is connected and admits no
big orbits at first order infinity. Then central correlations (n, n’ ) are neces-
sarily unique: in fact, via composition with (n, n’), central correlations cor-
respond to elements of the center Z = Z(Aut(X, X’ ) ) of the automorphism
group. Let (z, z’ ) E Z, fix o’ E X’ and let V = Vo,. Then z (V ) - Tv z (o)
is a big orbit of Tv, and therefore by assumption V n z(V) # 0. Fix
o E ( V n z(V)) and let x . := z(o). Then f := o z commutes with

the action of Tv , and thus, for all v E V,

whence f - idx by connectedness. But then Tx - z has to be central,
forcing x = o and thus z = id and similarly z’ = id.

2.7. Example: Grassmannian geometry.

Let E, F be K-modules and W = E o F. Let X = GrasE (W ) and
X’ - be the sets of submodules of W which are isomorphic
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to E, resp. to F, and which admit complements. The pair (X, X’) is a

generalized projective geometry with product maps

where elements of X are identified with injections x : E - W up to
equivalence under Gl(E) and elements of X’ with surjections a : W - F
up to equivalence under G1(F) (cf. [Be0la], Ch. 2). The automorphism
group is essentially P Gl ( W ) , acting by

Ordinary projective geometry over K arises as the special case E ^--’ II~,
X = P(W), X’ = P(W*), and in this case, formula (2.14) can be rewritten

If, in the general case, we have E = F, i.e., W is the direct sum of E with
itself, then the identity map n : X - X’ defines an absolute identification:
in fact, the relation x~ _ [n(x) 0 g] holds for all g E P Gl(W) since
both sides of the equation describe just the push-forward of the subspace
[x] = ~n(x)~ by g.

In the case of the projective line, n is given by an arbitrary symplectic
form w : x K2 ---t K: 7~([~]) = ~w (x, ~ ) ~ , and we can write pr as a ternary
map on X = KP as

(This formula still makes sense for higher dimensional projective spaces,
but then it describes null-systems which are not central.)

In the general case, if x : E - W is an injection, then n([x]) is the

class of some surjection x : W - E having im(x) as kernel, and identifying
X and X’ via n, (2.14) reads

However, if dim E &#x3E; 1, then there is no "linear version" of the map y H y.
One would be tempted to write x = xt o Jx, where the transpose xt is

taken with respect to some auxiliary form and Jx : W - W some linear
bijection; but for dim E &#x3E; 1 it is not possible to choose a "version" of Jx
which is independent of x.

2.8. Example: Lagrangian geometry.

Assume b is a symplectic form or the symmetric form on I[{2m given
by the matrix
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In both cases there exist pairs of complementary Lagrangian subspaces, and
it is easily verified that (X, X’), with X = X’= the space of Lagrangians
of the form b on JI(2m, is a generalized projective geometry (cf. [Be0la],
Ch. 4); it is a subgeometry of (GraSE (E (D E), GrasE (E o E)), E = 
with pr given by Formula (2.14), and by the same arguments as in the
preceding example it is seen that the identification n : X - X’ is a central
null-system.

If b is symplectic, the Lagrangian geometry is also called "symplectic" ;
in this case (X, X’) is always connected. If b is symmetric, given by the
matrix A, then the Lagrangian geometry is called "orthogonal". In this
case the geometry (X, X) has two connected components: first of all, by
Witt’s theorem, the group (

acts transitively on X; we write X - O (b) /P where P is the stabilizer
of the Lagrangian subspace E G) 0 = KI e 0. A simple calculation shows
that elements of P are of the form with a E Gl(rrz, K). They

I 
I

have all determinant one, and thus P C SO(b). On the other hand, 0(b)
does contain elements a with determinant minus one. Therefore we have a

disjoint union X = XI U X2 with Xl = SO(b)/P, X2 = We claim

that the connected components of the geometry (X, X) are as follows: if m
is even, (Xl, XI) and (X2, X2); if m is odd, (Xl, X2) and (X2, Xl). In fact,
we can always write = E1 EB E2 as a direct sum of two Lagrangian
subspaces. Since O(b) acts transitively on the Lagrangian geometry X,
there is g E O(b) such that g(El) = E2. In matrix form, g must then
have the form g = with b = (a~)~~. It follows that the determinant
of g is equal to (20131)~. Therefore, if m is odd

there is no element g E SO(b) with g(El) = E2, and hence X1 does
not contain complementary pairs of Lagrangians. Thus is not a

generalized projective geometry, but (Xl, X2) and (X2, Xl) are. However,
these geometries are not preserved under the central null-system, and
therefore they are not central null geometries. If m is even, X 1 does contain
complementary pairs of Lagrangians, and hence (XI, X1 ) and similarly
(X2, X2) are generalized projective geometries which, moreover, are both
stable under the central null-system and hence are central null-geometries.

2.9. Example: Conformal geometry.

Here X = ~ ~x~ E ]I{pn+11 b(x, x) = Of is the projective quadric
of a symmetric non-degenerate bilinear form b on and X’ is the

space of tangent hyperplanes of X. The structure of generalized projective
geometry over K is described in [Be0la], Ch. 5. The automorphism group
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of this geometry is the orthogonal group of b. The map X - X’,
[x] ~ [ker(b(x, .))] commutes with the action of this group and thus is

an absolute identification. The geometry (X, X’) is always connected.

3. Inner polar geometries.

3.1. We fix the following assumptions for this chapter: (X, X’)
is a connected inner polar geometry (Sections 1.5 and 1.6): there exists
(x, Y) E X x X such that Mx,y extends to a polarity, and Vxl n 0.
Moreover, we assume that there are no big orbits of translation groups at
first order infinity (Section 1.9).

The aim of this chapter is to show that under these assumptions the
formula n(a) = defines an absolute identification of X and X’.

(This formula is motivated by Formula (2.11) which implies that, if (n, n’) is
an absolute identification, then it must satisfy the relation Mx,y (n(x) ) = x,
whence n(x) - if the operator Mx,y is invertible. Moreover,
we will see in Section 6.3 that this formula is closely related the Jordan
theoretic formula x -1 - for the Jordan inverse in a Jordan

algebra. )

3.2. Faithfulness.

A connected inner polar geometry is faithful in the sense that different

points a, b E X’ define different affinizations of X, and dually (cf. [Be0lb],
2.8). In fact, assume p :== Mx,y : X’ - X is an inner polarity. Then
by assumption Yx 0, and by transitivity of the automorphism
group on X’, we may assume that a n V.1. Since Mx,y is injective,

E X’, we have Mx,y(b). Then either Va =,4 Vb; in this
case the affinizations given by a and b are different since their domains are
different; or Va - Vb ; in this case, the affine structures given by a and b on
Ya have to be different since they give different midpoints of x and y.

3.3. Orbit maps of dual translation groups.

Fix o e X, let Tl’ - vo C X’ and recall the definition of the dual
translation group TY~ acting on X x X’. For x E X we define the orbit map
similarly to the orbit maps defined by Equation (1.16):
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The orbit maps commute with the action of the translation group: for all

y E V’,
-F

In fact, Moreover, if
x does not lie in the second order infinity set of o, then the orbit map fx
can be completed to an adjoint pair (fx, in fact, since 0, we
can choose a point o’ E V~ n and let V = V,,,. Then x, o E V, the latter
taken as zero vector, and we can apply the symmetry principle ([BeOlb],
6.3) :

(where Q(x) is defined by Equation ( 1.6) ), which means that

and therefore f~ can be completed to the adjoint pair ( fx, f~) given by

Since Tx and 7~ are bijections, it follows from (3.4) and (3.5) that the map
Q(x) = Mx,-x extends to a bijection if and only if so does fx, i.e., if and

only if the orbit Tv .x is big (cf. 1.9). Summing up, for x not belonging to
the second order infinity set of o, the following are equivalent:

(a) the orbit Tv .x C X is big,

(b) the map Q(x) = M-x,x extends to a bijection; since Q is the quadratic
map of the associated Jordan pair (V, V’) (cf. Section 1.2), this means
that x is invertible in the Jordan pair (V, V’) (cf. [Lo75], 1.10),

(c) the maps Mx,-x, Mo,2x, are inner polarities.

(For (c), just note that (o, x), (o, 2x), (x, -x) E X x X are conjugate
under the action of the automorphism group und use that =

Moreover, any inner polarity Mx,y arises in the way described
by (c) since we may choose o’ E Vx n vy and o = Mx,y(o’) ; then x = -y
in the K-module ( V, o) . In particular, by the assumptions made in Section
3.1, pairs (o, x) with the desired property exist. Assume now that (a) -
(c) are satisfied. Then the orbit map fx extends to an anti-automorphism

given by
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The relation (3.2) implies, since our geometry is faithful, that

Relations (3.2) and (3.8) imply that can also be realized as some

translation group, but of course with respect to some new affinization: in
fact, for b E V’, :== Tb (the superscript indicates affinization and base
point with respect to which the dual translation is defined) can be written

this is a translation for the affinization given by f~ (o) E X’. Put another
way: the collection of all translation groups acting on X is the same as the
collection of all dual translation groups acting on X. Therefore, assuming
that all translation groups have at most one big orbit in X is the same as
assuming that all dual translation groups have at most one big orbit in X.

3.4. The absolute identification.

If o E X is fixed and x is as above, then we apply both sides of (3.8)
to the point o; since o is invariant under fv,, we get

To give a more explicit expression for f~.o, recall Equation (3.7) and note
that Q(x)’ - Q(x)-1 = thus

After replacing (3.10) and (3.11 ) show that the point 
is invariant under Tv, : for all y E Y’,

Therefore the point E X’ does not depend on the representative
x of the big orbit -Tv,.x. Now we are going to use for the first time the
assumption that there is at most one such orbit which, therefore, depends
only on the point o E X . Let us denote it by Oo :== Since the

automorphism group acts transitively on X and, for (g, g’ ) E Aut (X, X’ ) ,
is a big orbit of a dual translation group for the point g.o, it follows
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that for every point z E X there exists such an orbit Oz, and since it is

unique, we have the relation for all (g, g’) E 
Summing up, we have a well-defined map

Let us prove that it is an absolute identification. First of all, for all

(g, g’) E Aut(X, X’),

where y E and hence g-1y E 00. Thus the relation (A):
n o g = g’ o n holds for all (g, g’) E Aut (X, X’ ) , and the arguments leading
from (2.1) up to (2.8) show that then necessarily n = o =

holds. This implies both that n is actually a bijection with
inverse n’ given by n’ - o B and that (n, n’) is a correlation

which has to be a null-system according to 2.3.

4. The main theorem.

THEOREM 4.1. - Assume (X, X’) is a connected generalized pro-
jective geometry over ]I{ having no big orbits at first and second order
infinity. Then the following are equivalent:

(1) (X, X’ ) has a central null-system.

(2) (X, X’) has inner polarities.

(3) A dual translation group Tv’ has a big orbit in X.

(4) The Jordan pair associated to a base point (o, o’) in (X, X’) has
invertible elements (i.e., it comes from a unital Jordan algebra).

If these properties hold, then the central null-system is unique, the
inner polarities are all conjugate under the automorphism group and any
dual translation group has exactly one big orbit in X. The assumptions
formulated above are satisfied, in particular, if the geometry (X, X’) is

stable. Conversely, to every stable Jordan pair with invertible elements
we can associate (in a functorial way) a connected generalized projective
geometry with base point such that (1) - (4) hold.
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(2) « (4): this follows immediately from the fact that = Q(X)
- cf. the equivalence of (b) and (c) in Section 3.3.

(2) ,~ (3): this follows from Equation (3.4) - cf. the equivalence of
(a) and (b) in Section 3.3; for

(3) ~ (2) we use that, by assumption, the big orbits of do not

lie at second order infinity, and therefore the assumption on x made in 3.3
and 3.4 is fulfilled.

The central null-system is unique by 2.6, and as seen is Section 3.4,
the big orbit Oo of the dual translation group is unique. The inner

polarities are all conjugate under the automorphism group: fixing an origin
o E X as in Chapter 3, any inner polarity My,z is conjugate to an inner

polarity of the form Mo,x ; in Section 3.4 we have seen that then necessarily
x E 0o, and therefore My,z is conjugate to Mo,e with some base point
e E Oo.

Finally, given a Jordan pair, we can construct (in a functorial way) an
associated connected geometry (X , X’ ) ([BeOlb], Th. 10.1 ) . The geometry
(X, X’) is stable (in the sense of 1.7) since the associated Jordan pair is
stable (cf. [Lo95], Prop. 3.2), and it admits inner polarities Mx,-x = Q(x)
since by assumption the Jordan pair contains invertible elements x. Thus

property (2) and hence also the other properties hold. D

We do not know whether Theorem 4.1 generalizes to a bijection
between Jordan pairs having invertible elements and connected geometries
satisfying (1) - (4). Properties (2) and (4) are equivalent for any connected
geometry, but for the other equivalences we need more specific assumptions.
On a Jordan theoretic level, this corresponds to the problem of finding the
most general conditions under which Koecher’s theory of the Jordan inverse

([BK65], [Koe69]) can essentially be generalized - see Sections 4.3, 6.3 and
Problem 7.1.

4.2. Jordan algebras.

Recall that a unital Jordan algebra is essentially the same as a
Jordan pair together with a distinguished invertible element, say e, and
with product xy - (cf. [Lo75]). Therefore, under the
correspondence of Theorem 4.1, unital Jordan algebras correspond to a

geometry (X, X’) together with tulo base points (o, o’), (e, e’) satisfying
the relation of a harmonic quadruple - see Section 5.3.
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4.3. Alternative of proof in the finite dimensional case over
a field.

If one is willing to use some theory of finite dimensional Jordan
algebras, then the implication (4) ~ (1) from Theorem 4.1 can be proved
differently in the finite dimensional case over a field. Let us use here

notation and some results from [BeOO] which are given there for K = R;
but using results of Koecher [Koe69] these can be extended to the case of
an arbitray base field with 2 E K. Assume V is a finite-dimensional Jordan
algebra with unit element e and Jordan x-1 - 
The conformal group G = Co(V) is the group of birational maps generated
by the translations, the structure group Str(V) of V and the Jordan inverse
j. It carries an involution given by j* (g) = jgj. The conformal completion
of V is the imbedding

We let X’ :== X and put o := eP, o’ := j(o), V’ - j (V ); sometimes
one writes also 00 : = o’. For a = g.o’ E X’ = X we let Va - g(V) and
M - I (x, a) c E Val. Then (X, X’, M) is a generalized projective
geometry; in fact, it is easily verified that this is the geometry constructed
from the associated Jordan pair (V, V) of V in [BeOlb], Th. 10.1. Then

the identity map n = id : X - X’ is a central null-system. The central
null-system is identified with the Jordan inverse j if we use the realization
of X’ as X’ = Co ( V ) /P’, P’ = jPj (as in [BeOO]) - see Chapter 6 for
further remarks on the corresponding geometry.

4.4. Classification.

The well-known classification of finite-dimensional simple complex
Jordan algebras (cf. [Lo75] or [FK94]) yields the following list of finite-
dimensional complex simple central null-geometries. In the last column we
list the isomorphism class of the symmetric space SZ associated to the unique
class of inner polarities (cf. Chapter 6); these are the complexifications
of the symmetric cones from [FK94] (the symmetric cones and their
"satellites" would appear in a similar classification of the real geometries
which is too long to be presented here; cf. [BeOO], Ch. XII).
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In cases 1 and 2 the Jordan product on V is the usual symmetrized
matrix product X . Y = which is obtained from the Jordan triple
product T(X, Y, Z) - XYZ + ZYX by fixing the middle element to be
the invertible element 1/21n. The space (case 3) is stable under
T; if n is even, it contains invertible elements, for instance the element
J = -o n ) , and thus belongs to a unital Jordan algebra (matrices which
are symmetric with respect to J). If n is odd, then does not

contain invertible elements. This is geometrically explained in Example
2.8: the geometry (X, X) from line 3 has two connected components; if n
is even, then each component is stable under the central null-system, but
if n is odd, then this is not the case. In case 4 the Jordan product is given
by

where b(z, w) = 03A3iziwi and e such that b(e, e) = 1. The corresponding
geometry is the one of the complex quadric (cf. Example 2.9). Finally,
for definitions in the exceptional case cf. [FK94]; we give the associated
geometry in the form Co(Y)/P from Section 4.3 (P is a semidirect product
of the structure group E6 x C* and the translation group C21); it would be
nice to have a geometric model in which the central null-system becomes
better "visible". Finally, note that the classical series 1. - 4. have natural
counterparts in infinite dimension.

5. Harmonic range,
Jordan algebras and von Staudt’s theorem.

5.1. Harmonic range.

In this chapter (X, X’) may be any generalized projective geometry
(in Section 5.5 we specialize to the interesting case of null-geometries). A
quadruple (o, o’, a, b) of points in X x X’ x X x X is said to be in harmonic
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range if o, a, b E E, and one of the two following equivalent conditions is
satisfied:

(It is clear that both conditions are equivalent to a + b - o in (V,,, o) . ) The
set harmonic quadruples is precisely the graph of
the multiplication map

and in a similar way it can also be seen as the graph of p-1. Moreover,
corresponding to the definition of and on an extended domain, the
notion of harmonic range may be extended to quadruples of points such
that at least one of them is remote from o’.

5.2. Harmonic quadruples and orbits of the structure group.

The image of a harmonic quadruple under an automorphism (g, g’ ) of
(X, X’) clearly is again a harmonic quadruple. However, the action of the
automorphism group G on harmonic quadruples is in general not transitive:
first of all, since any triple (a, o’, b) of pairwise remote points can uniquely
be completed to a harmonic quadruple by putting o = Ma,b(o’), the set
of harmonic quadruples is in bijection with the set D C X x X’ x X. If

(X, X’) is connected, then the action of G on M C X x X’ is transitive

(Section 1.6), and any point in D is conjugate to (o, o’, x) for a fixed

base point (0, 0’) E M and x E The stabilizer of (o, o’) in G is the
structure group Str(V), and hence the G-orbits in D are in bijection with
the Str(V)-orbits in V. A classification of harmonic quadruples is therefore
equivalent to the classification of the orbits of the structure group. (In the
finite dimensional case over II~ = C or R, there is just a finite number of
such orbits, chararacterized by invariants such as rank and signature; in
the general case this is no longer true.)

5.3. The associated Jordan algebra.

Assume (o, o’, a, b) are in harmonic range, consider (o, o’) as base point
in (X, X’) and let e := a = -b. For x E V’ we let

According to [BeOlb, Th. 8.6], Q : V’ - Hom(V, V’) is quadratic polyno-
mial, and hence the squaring comes from a bilinear product



217

which is obtained from the associated Jordan pair (T, T’ ) via

Recall from Section 1.2 that the linearization (T, T’) of (Q, Q’) is a linear
Jordan pair. Therefore it follows from "Meyberg’s theorem" ([Lo75], 1.9)
that the product x ~ y defines a Jordan algebra (without unit in general).
Note that this Jordan algebra is naturally defined on the dual space. We
would need a "dual harmonic quadruple" in order to define a Jordan algebra
on V.

5.4. Center and centroid.

The center of a unital Jordan algebra (V, e) is defined by (cf. [BK65],
p. 24)

where

is the associator of three elements. Thus the center is a commutative and

associative subalgebra containing e, and V can be seen as a Jordan algebra
over Z(V). For general Jordan pairs the center is replaced by the centroid
which we define (slightly differently from [Lo75], 1.5) to be the center of the
multiplication algebra of (V, V’) which is the subalgebra of EndK(V (D V’)
generated by all inner operators T(x, y), T’(x, y), Q(x), Q’(y) together with
the projections onto V and V’ (cf. [Lo75], 2.4). By definition, the centroid
is a commutative and associative algebra, and its elements are of the form

(z, z’), z : V - V, z’ : V’ ~ V’ such that T and T’ are "trilinear with
respect to z, z’" . Thus our Jordan pair can be defined over the centroid

Z, and therefore it is possible to consider the corresponding connected
generalized projective geometry (X, X’) to be defined over K := Z.

In this situation we can define semi-linear automorphisms of the

geometry (X, X’): Let T be an automorphism of K; then cp’) is called

a T-con j ugate or semi linear homomorphism if it is remoteness preserving
and satisfies the identity

together with its dual identity.

THEOREM 5.5 (von Staudt’s theorem). - Assume (X, X’) is a

connected geometry over K, let k c K be the subring generated by the
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element -1 E K and let K = Z = Z(V, V’) be the centroid of one (and
hence of all) of the Jordan pairs corresponding to (X, X’). Then for a pair
of bijections X - X, ~p’ : X’ - X’ the following are equivalent:

(1) cp and cp’ map harmonic quadruples onto harmonic quadruples:
(a, o’, b, c) harmonic implies cp’(o’), cp(b), cp(c)) harmonic, and dually,

(2) (cp, cp’) is an automorphism of X, considered as geometry over the
subring k,

(3) is a conjugate-linear automorphism of X, considered as a
geometry over K.

Proof. If satisfies (2) or (3), then

and therefore the harmonic pair (a, b, o’, o) is mapped onto the harmonic
pair (cp(a), cp(b), Conversely, if cp preserves harmonic range,
then by (5.1) the maps and are cp-equivariant. But all vector

additions can be recovered from these since

and therefore all restrictions of (Yo~ , o) - are additive.

The compatibility with multiplication by scalars from k is an immediate
consequence. In order to exhibit their compatibility with multiplication
by scalars from K , we may and will assume (by composing with an
automorphism) that fixes the base point (o,c/). Then, since the
associated Jordan pair is defined by = Mx,-x(y), rp preserves the

Jordan pair associated to (o, o’ ) :

and it follows that, for all (c, c’) E Z(V), also

belongs to Z(V). Thus

is a ring automorphism, and it follows that is T-linear: for all r E K,

and dually. But this is precisely (5.7). 0

In general, nothing can be said about the behaviour of a harmonicity-
preserving map with respect to scalars from K - as an example one may
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take a geometry which is defined over C, but we take scalars from K = R
only. Since there exist automorphisms of C which do not stabilize R, there
exist in general harmonicity preserving maps of the geometry which are
not defined over R.

5.5. Case of a null-geometry.

If (X, X’ ) is a connected null-geometry, then, by (2.3), Equation ( 5.1 )
is equivalent to

I - . .. 

2 
. ,

It follows that (a, b, o, o’) are in harmonic range iff so are (b, a, o, o’),
and we may speak of a harmonic pair (o, o’), (a, b), having most of the
properties known from the classical case of the projective line. Using the
polarity p - (M,-) = (e = a = -b), we identify V and
V’, and our Jordan pair (T, T’ ) is turned into a Jordan triple system:
T(p) (x, y, z) = z). Fixing y = e, we obtain the squaring

(recall that e and Q(e)-le are identified) which defines a Jordan algebra
on V with unit e. Conversely, given a unital Jordan algebra (V,e), the
element (e, e) is an invertible element of the associated Jordan pair (V, V)
and ((e, -e), (o, o’)) is a harmonic pair. Thus unital Jordan algebras are
essentially in bijection with connected null-geometries together with a fixed
harmonic pair. In this case, von Staudt’s theorem may be announced by
forgetting the distinction between X and X’, and its proof really follows
the lines of the original proof in one dimension, replacing the associated
Jordan pair by the associated Jordan algebra and the centroid by the center
which, in the one-dimensional case, is just the base field itself.

5.6. Remark on the cross-ratio.

In [Br68], H. Braun defines an operator-valued cross-ratio E(w, x, ~/, z)
for four generic points in a Jordan algebra V and calls the four points
harmonic if This coincides with our definition: in

fact, according to our definition, for all x in the associated Jordan algebra
V, the quadruple

is harmonic; but it it is also harmonic in the sense of H. Braun since

in her case, by power associativity, the cross-ratio of (x2, e, -x, x) can
be calculated as for the projective line (loc. cit. p. 27) and thus gives
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- idv, whence harmonicity. General harmonic quadruples can always be
transformed into harmonic quadruples of this special form by using the
invariance of harmonicity under the group G = Aut(X, X’) (denoted by E
in [Br68]).

The matrix cases are treated by L.K. Hua in [Hua45]: for four generic
matrices A, B, C, D E Sym(n; C) he defines a matrix cross-ratio by

and calls a quadruple (A, B, C, D) harmonic if (A, B; C, D) = - 1. Since
(X 2,1, -X, X ) - -1, all definitions of harmonicity coincide. (The cross-
ratios of Hua and Braun differ by the fact that Hua’s cross-ratio is an

element of V, whereas Braun’s cross-ratio is an element of End(V).) In
the same way, Hua treats the other matrix cases ( 1. and 3. of the table
in Section 4.4) and obtains generalizations of von Staudt’s theorem which
are special cases of ours. However, in these cases the assumption that a
bijection X - X be remoteness-preserving (in Hua’s terms: preserving
"arithmetic distance") is very strong: here, in dimension bigger than one, a
version of the fundamental theorem of projective geometry ([Ch49]) already
implies that yJ is semi-linear. In our general case there is certainly no general
analogue of the fundamental theorem of projective geometry (cf. [BeOO],
Ch. XIII for a detailed discussion of this theorem), and in view of its proof it
seems that our version of von Staudt’s theorem is the most general theorem
characterizing the semilinear group.

6. Associated symmetric spaces.

6.1. The symmetric space of an inner polarity.

Assume (X, X’) satisfies the assumptions of Theorem 4.1. As before,
we identify X and X’ via the central null-system n. Let us fix (a, b) E M and
the inner polarity p = Ma,b. (Recall that all inner polarities are conjugate
to this one.) As for any polarity, there is an associated symmetric space

The isomorphism class of this symmetric space is canonically associated
to the geometry (X, X’) without adding any additional structure. The
points a and b do not belong to we call them the vertices 

The notation indicates that our space only depends on a and b and
not on other choices, and one may think of it as a sort of "generalized



221

interval with vertices a and b" - in fact, if the associated Jordan algebra
is formally real or Euclidean (cf. [FK94]), then a family given by convex
connected components of the defines a family of causal intervals for
the associated causal structure on X (cf. [BeOO], Th. XI.3.3).

6.2. The finite part of Q]a,b[-
If x E then also Ya nYb and hence C M.

Therefore

Moreover,

in fact, if (x, a) E M then (X, Ma,b(x)) E M is equivalent to (x, 2x,ab) E M
and hence to b) = (x, b) E M. We call

L

the finite part of In the finite dimensional case over a field, 
is equal to its finite part (if x, y both lie at infinity of Ya, then x and y
are always incident, i.e., (x, y) rf- M; cf. [BeOO] for the real case). Let us
show that in general the finite part is a subsymmetric space of the

symmetry a~~ with respect to x E Q],,,b[ is ax = = Mx,Ma,b(x),
whence 

I I - -

It follows that ax(Va) = Vb and hence ax (va n vb) = va n vb; thus Va n vb
is a subspace. Since all symmetries cr~ exchange the vertices, any products
of two symmetries preserve them. In particular, the transvection group

stabilizes both vertices a and b and therefore acts linearly on (Va, b) and
on (Vb, a). (One should "read" this statement in the "unbounded picture" ,
see below.)

6.3. Base points and Jordan algebras.

A base point in Qla,b[ is just a point x E Thus, letting
y := Ma,b(X), the quadruple of points (x, y, a, b) is harmonic (cf. 5.1). We
choose (o, o’) - (x, ~) as base point, then b = -a =: e and SZ = Q]-e-,e[-
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The associated Jordan algebra is defined by the squaring x2 = Q(x)e =
Mx,-x(e), and its Jordan inverse is

whence j = n is the canonical null-system. Recall from Equation (2.8) that
n = (-1 )a,bMa,b; therefore, if we use the polarity p = Ma,b as identification
of X and X’ (as usual for polar geometries; cf. [BeOlb]), then 1 describes the
polarity p = = ( -1 ) e, -e . The symmetry ~o with respect to our fixed
base point o is given by (-1)0,0~ (negative of the identity on Y = (Vo,, o)).

We have just defined the canonical realization which,
in fact, corresponds to the bounded realization of a symmetric cone (cf.
[BeOO], Th. XI.3.3). However, the most useful realization is the unbounded
linear realization: recall from Section 5.5 that (x, y, a, b) are harmonic if and
only if (a, b, x, y) are harmonic. Thus we may take (o, o’) - (a, b) E M as
base point and write oo := o’ (thus we image the vertices to lie at o and 00
and write Q = In this picture, the polarity is just multiplication by
-1 in V = (Vo,, o), and the base point is then written (x, ~) _ (e, -e) with
e E Q. As before, the Jordan inverse of the associated Jordan algebra is the
canonical null-system and we use the polarity Me,_e in order to identify
X and X’. Therefore the Jordan inverse now describes the polarity Me,-e
which is nothing but the symmetry 7e with respect to the point e E Q.
In this picture, the polarity p = Mo,o, is simply multiplication by -1 in
V - (Vo,, o).

Cleary, any automorphism cp of (X, X’) with a, cp(y) - b
interchanges these two pictures. There is a distinguished automorphism of
this kind, called the Cayley transform, cf. Remark 7.3.

Finally, recall from 5.2 that our symmetric spaces need not be

homogeneous under their automorphism group. Therefore, although all

polarities Ma,b, (a, b) E M, are equivalent, the pairs "associated symmetric
space + base point" need not be all equivalent: the space Qla,b[ defines an
associated Jordan algebra only up to isotopy (cf. Remark 9.9 in [Be01b]).

6.4. Quadratic prehomogeneous symmetric spaces.

We consider S2 = in its "linear realization" (see above). The
finite part is given by

by definition, this is the set Y X of invertible elements in the Jordan algebra
V. The multiplication map of this subsymmetric space is given by the
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formula

where j is the Jordan inverse. The latter formula shows that J.-L(x, y) depends
quadratically on x. Thus (V, e, Q) a quadratic prehomogeneous symmetric
space (with base point) in the following sense:

(1) Q : V - End ( V ) is a quadratic polynomial such that Q (e) = idv,

(2) V~ = ~x E is non-empty, and 
defines a map from V’ x Vx to Vx such that the

defining properties (M1) - (M4) of a symmetric space hold:

However, the precise formulation of the isolation property (M4) is

less clear in the unbounded picture than in the bounded realization. For
this reason we do not develop here the axiomatic theory of such spaces -
see [BeOO], Ch.2 for the finite dimensional case over K = R where one can
establish a bijection between quadratic prehomogeneous symmetric spaces
and unital Jordan algebras.

7. Problems and further topics.

7.1. Non-unital Jordan algebras.

The interpretation of non-unital Jordan algebras is difficult: they
appear in Section 5.3, but we have not given a geometric interpretation.
One may adjoin a unit element to a non-unital Jordan algebra (cf. [BK65]),
but the geometric meaning of this construction in the present context is not
clear. It seems possible that certain null-geometries which do not satisfy the
hypotheses of Theorem 4.1 correspond in some sense to non-unital Jordan

algebras. This is related to the "topological" problems encountered in the
proof of 4.1: our assumptions in Th. 4.1 are sufficient, but not necessary;
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what are the necessary and sufficient "topological" assumptions on the
geometry in order to get an equivalence with Jordan pairs having invertible
elements ?

7.2. Cross-ratio.

As mentioned in the introduction and in Remark 5.6, the definition
of a cross-ratio belongs to the topic of invariant theory on generalized
projective geometries which we hope to investigate in subsequent work.
A central role is played here by the Bergman operator B(x, y) (cf. [Be0lb],
Ch.6) .

7.3. Geometric Peirce theory.

Harmonic quadruples are closely related to idempotents of the associ-
ated Jordan pair. The latter give rise to homomorphisms of the projective
line into the geometry and lift to homomorphisms of Sl(2, K) into the au-
tomorphism group which serves then to define geometrically the associated
Peirce-decomposition. Also, the Cayley transform (cf. Section 6.3) is best

introduced in this context.
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