On étudie l’existence de limites tangentielles sur le bord dans un domaine lipschitzien, pour des fonctions harmoniques des classes de Orlicz-Sobolev. L’ensemble exceptionnel est évalué par rapport aux capacités de Bessel et aux mesures de Hausdorff.
We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.
@article{AIF_1990__40_4_811_0, author = {Mizuta, Yoshihiro}, title = {On the existence of weighted boundary limits of harmonic functions}, journal = {Annales de l'Institut Fourier}, pages = {811--833}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {4}, year = {1990}, doi = {10.5802/aif.1236}, mrnumber = {92g:31010}, zbl = {0715.31002}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1236/} }
TY - JOUR AU - Mizuta, Yoshihiro TI - On the existence of weighted boundary limits of harmonic functions JO - Annales de l'Institut Fourier PY - 1990 SP - 811 EP - 833 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1236/ DO - 10.5802/aif.1236 LA - en ID - AIF_1990__40_4_811_0 ER -
%0 Journal Article %A Mizuta, Yoshihiro %T On the existence of weighted boundary limits of harmonic functions %J Annales de l'Institut Fourier %D 1990 %P 811-833 %V 40 %N 4 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1236/ %R 10.5802/aif.1236 %G en %F AIF_1990__40_4_811_0
Mizuta, Yoshihiro. On the existence of weighted boundary limits of harmonic functions. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 811-833. doi : 10.5802/aif.1236. http://www.numdam.org/articles/10.5802/aif.1236/
[1] Élément de la théorie classique du potentiel, 4e édition, Centre de Documentation Universitaire, Paris, 1969.
,[2] Selected problems on exceptional sets, Van Nostrand, Princeton, 1967. | MR | Zbl
,[3] Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. | MR | Zbl
,[4] A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl
,[5] On the Boundary limits of harmonic functions with gradient in Lp, Ann. Inst. Fourier, 34-1 (1984), 99-109. | Numdam | MR | Zbl
,[6] On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217. | MR | Zbl
,[7] On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101. | MR | Zbl
,[8] Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. | MR | Zbl
, and ,[9] Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl
,[10] on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525. | MR | Zbl
,Cité par Sources :