Annales de l'institut Fourier

Yoshihiro Mizuta
 On the existence of weighted boundary limits of harmonic functions

Annales de l'institut Fourier, tome 40, no 4 (1990), p. 811-833
http://www.numdam.org/item?id=AIF_1990_40_4_811_0
© Annales de l'institut Fourier, 1990, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE EXISTENCE OF WEIGHTED BOUNDARY LIMITS OF HARMONIC FUNCTIONS

by Yoshihiro MIZUTA

1. Introduction.

In this paper we are concerned with the existence of boundary limits of functions u which are harmonic in a bounded open set $G \subset R^{n}$ and satisfy a condition of the form :

$$
\int_{G} \Psi(|\operatorname{grad} u(x)|) \omega(x) d x<\infty
$$

where $\Psi(r)$ is a nonnegative nondecreasing function on the interval $[0, \infty)$ and ω is a nonnegative measurable function on G. In case G is a Lipschitz domain, $\Psi(r)=r^{p}$ and $\omega(x)=\rho(x)^{\beta}$, many authors studied the existence of (non) tangential boundary limits; see, for example, Carleson [2], Wallin [10], Murai [7], Cruzeiro [3] and Mizuta [5], [6]. Here $\rho(x)$ denotes the distance of x from the boundary ∂G. In this paper, we assume that Ψ is of the form $r^{p} \psi(r)$, where ψ is a nonnegative nondecreasing function on the interval $[0, \infty)$ such that $\psi(2 r) \leqslant \mathrm{A}_{1} \psi(r)$ for any $r>0$, with a positive constant A_{1}. In case G is a Lipschitz domain and $\omega(x)$ is of the form $\lambda(\rho(x))$, where λ is a positive and nondecreasing function on the interval $(0, \infty)$ such that $\lambda(2 r) \leqslant A_{2} \lambda(r)$ for any $r>0$ with a positive constant A_{2}, our first aim is to find a positive function $\kappa(r)$ such that $[\kappa(\rho(x))]^{-1} u(x)$ tends to zero as x tends to the boundary ∂G; when κ is bounded, u is shown to be extended to a continuous function on $G \cup \partial G$.

[^0]It is known (see [5]) that if u is a harmonic function on the unit ball B satisfying

$$
\int_{B}|\operatorname{grad} u(x)|^{p}\left(1-|x|^{2}\right)^{\beta} d x<\infty, \quad \beta \geqslant p-n,
$$

then $u(x)$ has a finite limit as $x \rightarrow \xi$ along $T_{\alpha}(\xi, a)=\left\{x \in B ;|x-\xi|^{\alpha}<a \rho(x)\right\}$ for any $a>0$ and any $\xi \in \partial G$ except those in a suitable exceptional set, where $\alpha \geqslant 1$. Further it is known that this fact is best possible as to the size of the exceptional sets. We shall show in Theorem 1 that if u is a harmonic function on B satisfying the stronger condition :

$$
\int_{B} \Psi_{p}(|\operatorname{grad} u(x)|)\left(1-|x|^{2}\right)^{p-n} d x<\infty
$$

and if ψ is of logarithmic type (see condition $\left(\psi_{1}\right)$ below) and $\int_{0}^{1}\left[\psi\left(t^{-1}\right)\right]^{-1 /(p-1)} t^{-1} d t<\infty$, then u is extended to a function which is continuous on $B \cup \partial B$.

Next let us consider the case where

$$
G=G_{\alpha} \equiv\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ;\left|x^{\prime}\right|^{\alpha}<x_{n}<1\right\} .
$$

In case $\alpha<1, G_{\alpha}$ is not a Lipschitz domain. However, we will also find a positive function $\kappa(r)$ such that $[\kappa(|x|)]^{-1} u(x)$ tends to zero as $x \rightarrow 0, x \in G_{\alpha}$; when κ is bounded, u is shown to have a finite limit at the origin.

Further, we study the existence of (tangential) boundary limits

$$
\lim _{x \rightarrow \xi, x \in T_{\alpha}(\xi, a, b)} u(x)
$$

at $\xi \in \partial G$ except those in a suitable exceptional set, where $T_{\alpha}(\xi, a, b)=\left\{\xi+\Xi_{\xi} x ; x_{n}>a\left|x^{\prime}\right|+b\left|x^{\prime}\right|^{\alpha}\right\}$ with $a \geqslant 0, b \geqslant 0$ and an orthogonal transformation Ξ_{ξ}. We note here that if G is a Lipschitz domain, then for any $\xi \in \partial G$, there exist $a_{\xi}, b_{\xi} \geqslant 0, r_{\xi}>0$ and an orthogonal transformation Ξ_{ξ} such that $T_{\alpha}\left(\xi, a_{\xi}, b_{\xi}\right) \cap B\left(\xi, r_{\xi}\right) \subset G$, where $B(x, r)$ denotes the open ball with center at x and radius r. If $\alpha=1$, then our results will imply the usual angular limit theorem.

2. Weighted boundary limits.

Throughout this paper, let ψ be a nonnegative nondecreasing function on the interval $(0, \infty)$ satisfying the following condition:
$\left(\psi_{1}\right)$ There exists $A>1$ such that $A^{-1} \psi(r) \leqslant \psi\left(r^{2}\right) \leqslant A \psi(r)$ whenever $r>0$.

By condition $\left(\psi_{1}\right)$, we see that ψ satisfies the so-called $\left(\Delta_{2}\right)$ condition, that is, we can find $A_{1}>1$ such that
$\left(\Delta_{2}\right)$

$$
A_{1}^{-1} \psi(r) \leqslant \psi(2 r) \leqslant A_{1} \psi(r) \text { for any } r>0
$$

For $p>1$, set $\Psi_{p}(r)=r^{p} \psi(r)$. Since $\Psi_{p}(r) \rightarrow 0$ as $r \rightarrow 0$, we may assume that $\Psi_{p}(0)=0$.

If η is a positive measurable function on the interval $(0, \infty)$, then we define

$$
\kappa_{\eta}(r)=\left(\int_{r}^{1} s^{p^{\prime}(1-n / p)} \eta(s)^{-p^{\prime} / p} s^{-1} d s\right)^{1 / p^{\prime}}
$$

where $1 / p+1 / p^{\prime}=1$.
In this paper, let M_{1}, M_{2}, \ldots denote various constants independent of the variables in question. Further, we denote by $B(x, r)$ the open ball with radius r and center at x.

Our first aim is to establish the following result, which gives a generalization of Theorem 1 in [6].

Theorem 1. - Let λ be a nonnegative monotone function on the interval $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition, and let ψ be a nonnegative nondecreasing function on the interval $(0, \infty)$ satisfying condition $\left(\psi_{1}\right)$. Set $\eta(r)=\psi\left(r^{-1}\right) \lambda(r)$. Suppose u is a function harmonic in a bounded Lipschitz domain G in R^{n} and satisfying

$$
\begin{equation*}
\int_{G} \Psi_{p}(|\operatorname{grad} u(x)|) \lambda(\rho(x)) d x<\infty \tag{1}
\end{equation*}
$$

If $\kappa_{\eta}(0)=\infty$, then $\lim _{x \rightarrow \partial G}\left[\kappa_{\eta}(\rho(x))\right]^{-1} u(x)=0$; if $\kappa_{\eta}(0)<\infty$, then u has a finite limit at each boundary point of G.

Remark. - If $\lambda(r)=r^{p-n}$ and ψ satisfies the additional condition:

$$
\begin{equation*}
\int_{0}^{1}\left[\psi\left(r^{-1}\right)\right]^{-1 /(p-1)} r^{-1} d r<\infty \tag{2}
\end{equation*}
$$

then $\kappa_{\eta}(0)<\infty$.
For a proof of Theorem 1, we need the following lemma (see [6], Lemma 1).

Lemma 1. - Let G be a bounded Lipschitz domain in R^{n}. Then for each $\xi \in \partial G$, there exist $r_{\xi}>0$ and $c_{\xi}>0$ with the following properties :
i) if $0<r<r_{\xi}$, then there exist $x_{r} \in G \cap B(\xi, r)$ and $\sigma_{r}>0$ such that

$$
E\left(x, x_{r}\right)=\bigcup_{0 \leqslant t \leqslant 1} B\left(X(t), c_{\xi} \rho(X(t))\right) \subset G \cap B(\xi, 2 r)
$$

whenever $x \in G \cap B\left(\xi, \sigma_{r}\right)$, where $X(t)=(1-t) x+t x_{r}$;
ii) $\rho(x)+|x-y|<M_{1} \rho(y)$ whenever $y \in E\left(x, x_{r}\right)$;
iii) if u is a function harmonic in G, then

$$
\left|u(x)-u\left(x_{r}\right)\right| \leqslant M_{2} \int_{E\left(x, x_{r}\right)}|\operatorname{grad} u(y)| \rho(y)^{1-n} d y
$$

for any $x \in G \cap B\left(\xi, \sigma_{r}\right)$. Here M_{1} and M_{2} are positive constants independent of x, r and u.

Proof of Theorem 1. - Let u be as in the theorem, and let $\xi \in \partial G$. For a sufficiently small $r>0$, by Lemma 1, we find that

$$
\left|u(x)-u\left(x_{r}\right)\right| \leqslant M_{1} \int_{E\left(x, x_{r}\right)}|\operatorname{grad} u(y)| \rho(y)^{1-n} d y
$$

for any $x \in G \cap B\left(\xi, \sigma_{r}\right)$. Let $0<\delta<1$. By condition $\left(\psi_{1}\right)$, we can find a constant $A_{\delta}>1$ such that

$$
\begin{equation*}
A_{\delta}^{-1} \psi(r) \leqslant \psi\left(r^{\delta}\right) \leqslant A_{\delta} \psi(r) \quad \text { whenever } r>0 \tag{2}
\end{equation*}
$$

Hence, from Hölder's inequality we derive

$$
\begin{aligned}
\left|u(x)-u\left(x_{r}\right)\right| & \leqslant M_{1}\left(\int_{\left\{y \in E\left(x, x_{r}\right) ; f(y)>\rho(y)-\delta_{\}}\right.} \rho(y)^{p^{\prime}(1-n)} \psi(f(y))^{-p^{\prime} / p}\right. \\
& \left.\times \lambda(\rho(y))^{-p^{\prime} \mid p} d y\right)^{1 / p^{\prime}} F(r)+M_{1} \int_{E\left(x, x_{r}\right)} \rho(y)^{1-n-\delta} d y
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant M_{2}\left(\int_{0}^{3 r}(\rho(x)+t)^{p^{\prime}(1-n / p)-1}\left[\psi\left((\rho(x)+t)^{-1}\right)\right]^{-p^{\prime} / p}\right. \\
& \left.\times \lambda(\rho(x)+t))^{-p^{\prime} / p} d t\right)^{1 / p^{\prime}} F(r)+M_{2} \int_{B(x, 2 r)}|x-y|^{1-\delta-n} d y \\
& \leqslant M_{3} \kappa_{\eta}(\rho(x)) F(r)+M_{3} r^{(1-\delta) / n}
\end{aligned}
$$

where $f(y)=|\operatorname{grad} u(y)|$ and $F(r)=\left(\int_{G \cap B(\xi, 2 r)} \Psi_{p}(f(y)) \lambda(\rho(y)) d y\right)^{1 / p}$.
Consequently, if $\kappa_{\eta}(0)=\infty$, then we obtain

$$
\lim _{x \rightarrow \xi} \sup _{\kappa_{\eta}}(\rho(x))^{-1}|u(x)| \leqslant M_{3}\left(\int_{G \cap B(\xi, 2 r)} \Psi_{p}(f(y)) \lambda(\rho(y)) d y\right)^{1 / p}
$$

Condition (1) implies that the right hand side tends to zero as $r \rightarrow 0$, so that the left hand side is equal to zero.

On the other hand, if $\kappa_{\eta}(0)<\infty$, then we see that $\sup _{G \cap B\left(\xi, \sigma_{r}\right)}\left|u(x)-u\left(x_{r}\right)\right|$ tends to zero as $r \rightarrow 0$, which implies that $u(x)$ has a finite limit at ξ. Thus Theorem 1 is established.

3. The case $G=G_{\alpha}$ with $\alpha<1$.

If $\alpha<1$, then G_{α} is not a Lipschitz domain. However, we study the existence of boundary limits for u satisfying condition (1).

For simplicity, set

$$
\kappa_{\eta, \alpha}(r)=\left(\int_{r}^{1} s^{p^{\prime}(1-n / p)}[\eta(s)]^{-p^{\prime} / p} s^{\alpha-2} d s\right)^{1 / p^{\prime}}
$$

and

$$
K_{\eta, \alpha}(x)=\kappa_{\eta}(\rho(x))+\kappa_{\eta, \alpha}\left(x_{n}^{1 / \alpha}\right) \quad \text { for } x=\left(x^{\prime}, x_{n}\right)
$$

Theorem 2. - Let λ, ψ and η be as in Theorem 1. Let u be a function harmonic in G_{α} and satisfying condition (1). If $0<\alpha<1$ and $K_{\mathrm{r}, \alpha}(x) \rightarrow \infty$ as $x \rightarrow 0$, then

$$
\lim _{x \rightarrow 0, x \in G_{\alpha}}\left[K_{\eta, \alpha}(x)\right]^{-1} u(x)=0
$$

and if $K_{\eta, \alpha}(x)$ is bounded, then $u(x)$ has a finite limit as $x \rightarrow 0, x \in G_{\alpha}$.

Proof. - For $r>0$, let $X(r)=(0, \ldots, 0, r)$ and $B_{r}=B(X(r)$, $\rho(X(r)))$. If $E(x, X(r)) \subset B_{r}$, then, in view of Lemma 1, we have

$$
|u(x)-u(X(r))| \leqslant M_{1} \int_{B_{r}}|\operatorname{grad} u(y)| \rho(y)^{1-n} d y
$$

As in the proof of Theorem 1, by use of Hölder's inequality we establish

$$
\begin{equation*}
|u(x)-u(X(r))| \leqslant M_{2} \kappa_{\eta}(\rho(x), 2 \rho(X(r))) U(r)+M_{2}\left[m_{n}\left(B_{r}\right)\right]^{(1-\delta) / n} \tag{3}
\end{equation*}
$$

where $0<\delta<\alpha<1, \kappa_{\eta}(t, r)=\left(\int_{t}^{r} s^{p^{\prime}(1-n / p)} \eta(s)^{-p^{\prime} / p} s^{-1} d s\right)^{1 / p^{\prime}} \quad$ and $U(r)=\left(\int_{B_{r}} \Psi_{p}(|\operatorname{grad} u(y)|) \lambda(\rho(y)) d y\right)^{1 / p}$.

For a large integer $j\left(\geqslant j_{0}\right)$, set $r_{j}=M_{3} j^{-\alpha /(1-\alpha)}$, where j_{0} and $M_{3}>0$ are chosen so that $r_{j}-r_{j+1}<\rho\left(X\left(r_{j}\right)\right)$. Now we define

$$
F_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in G_{\alpha} ;\left|x_{n}-r_{j}\right|<\rho\left(X\left(r_{j}\right)\right)\right\} .
$$

We shall show the existence of $N>0$ such that the number of F_{m} with $F_{m} \cap F_{j} \neq 0$ is at most N for any j. Letting a and b be positive numbers, we assume that $r_{j}-a r_{j}^{1 / \alpha} \leqslant r_{j+k}+b\left(r_{j+k}\right)^{1 / \alpha}$. Then

$$
j\left[1-(j /(j+k))^{\alpha /(1-\alpha)}\right] \leqslant M_{3}^{(1-\alpha) / \alpha}\left[a+b(j /(j+k))^{1 /(1-\alpha)}\right]
$$

Since $M_{4}=\inf _{0<t<1}\left(1-t^{\alpha /(1-\alpha)}\right) /(1-t)>0$, we derive

$$
j k /(j+k) \leqslant M_{5} \quad \text { with } \quad M_{5}=\left[M_{3}^{(1-\alpha) / \alpha}(a+b)\right] / M_{4}
$$

so that

$$
k \leqslant M_{5} j /\left(j-M_{5}\right) \quad \text { when } \quad j>M_{5} .
$$

From this fact we can readily find $N>0$ with the required property. Thus $\left\{F_{\ell}\right\}$ is shown to satisfy the above condition.

By (3) we have

$$
\begin{aligned}
\mid u\left(X\left(r_{j}\right)\right) & -u\left(X\left(r_{j+k}\right)\right)\left|\leqslant\left|u\left(X\left(r_{j}\right)\right)-u\left(X\left(r_{j+k}\right)\right)\right|\right. \\
& +\left|u\left(X\left(r_{j+1}\right)\right)-u\left(X\left(r_{j+2}\right)\right)\right|+\cdots+\left|u\left(X\left(r_{j+k-1}\right)\right)-u\left(X\left(r_{j+k}\right)\right)\right| \\
& \leqslant M_{6}\left(\sum_{\ell=j}^{j+k-1} U\left(r_{\ell}\right)^{p}\right)^{1 / p}\left(\sum_{\ell=j}^{j+k-1} \rho\left(X\left(r_{\ell}\right)\right)^{p^{\prime}(1-n / p)}\left[\eta\left(\rho\left(X\left(r_{\ell}\right)\right)\right)\right]^{p^{\prime}}\right)^{1 / p^{\prime}} \\
& +M_{2} \sum_{\ell=j}^{\infty}\left[m_{n}\left(B_{r_{\ell}}\right)\right]^{(1-\delta) / n} .
\end{aligned}
$$

We note here that

$$
\sum_{\ell=j}^{\infty}\left[m_{n}\left(B_{r_{\ell}}\right)\right]^{(1-\delta) / n} \leqslant M_{7} \sum_{\ell=j}^{\infty} \ell^{-(1-\delta) /(1-\alpha)}<\infty
$$

since $\delta<\alpha$, and, by setting $\sigma(j)=j^{-1 /(1-\alpha)}$ for simplicity,

$$
\begin{aligned}
& \sum_{\ell=j}^{j+k-1} \rho\left(X\left(r_{\ell}\right)\right)^{p^{\prime}(1-n / p)}\left[\eta\left(\rho\left(X\left(r_{\ell}\right)\right)\right)\right]^{-p^{\prime} / p} \\
& \leqslant M_{8} \sum_{\ell=j}^{j+k-1}\left[\ell^{-1 /(1-\alpha)}\right]^{p^{\prime}(1-n / p)}\left[\eta\left(\ell^{-1 /(1-\alpha)}\right)\right]^{-p^{\prime} / p} \\
& \leqslant M_{9} \int_{j}^{j+k}\left[t^{-1 /(1-\alpha)}\right]^{p^{\prime}(1-n / p)}\left[\eta\left(t^{-1 /(1-\alpha)}\right)\right]^{-p^{\prime} / p} d t \\
&=M_{10} \int_{\sigma(j+k)}^{\sigma(j)} s^{p^{\prime}(1-n / p)}[\eta(s)]^{-p^{\prime} / p} s^{\alpha-2} d s \\
& \leqslant M_{10}\left[\kappa_{\mathrm{n}, \alpha}(\sigma(j+k))\right]^{p^{\prime}} \leqslant M_{11}\left[\kappa_{\mathrm{\eta}, \alpha}\left(\rho\left(X\left(r_{j+k}\right)\right)\right)\right]^{p^{\prime}}
\end{aligned}
$$

First suppose $K_{\eta, \alpha}(x) \rightarrow \infty$ as $x \rightarrow 0$. Then, since $\left\{F_{\ell}\right\}$ meets mutually at most N times, we obtain

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty}\left[K_{\mathrm{n}, \alpha}\left(X\left(r_{j+k}\right)\right)\right]^{-1}\left|u\left(X\left(r_{j+k}\right)\right)\right| \\
& \leqslant M_{6}\left[M_{11}\right]^{1 / p^{\prime}}\left(\int_{U_{\ell \geqslant \mathrm{j}} \mathrm{~F}_{\ell}} \Psi_{p}(|\operatorname{grad} u(y)|) \lambda(\rho(y)) d y\right)^{1 / p}
\end{aligned}
$$

for any j. Thus it follows that the left hand side is equal to zero. We also see from (3) that

$$
\lim _{r \rightarrow 0}\left[\sup _{x \in B_{r} \cap G_{\alpha}}\left[K_{\eta, \alpha}(x)\right]^{-1}|u(x)-u(X(r))|\right]=0 .
$$

Since B_{r} contains some $X\left(r_{j}\right)$, it follows that

$$
\lim _{x \rightarrow 0, x \in G_{\alpha}}\left[K_{\eta, \alpha}(x)\right]^{-1} u(x)=0
$$

If $K_{\eta, \alpha}(x)$ is bounded, then we see that

$$
\lim _{j \rightarrow \infty} \sup _{k \geqslant j}\left|u\left(X\left(r_{j}\right)\right)-u\left(X\left(r_{k}\right)\right)\right|=0
$$

and

$$
\lim _{r \downharpoonright 0} \sup _{x \in B_{r}}|u(x)-u(X(r))|=0
$$

These facts imply that u has a finite limit at the origin.
Here we give a result, which is a generalization of Theorem 2.

Proposition 1. - Let λ_{1} and λ_{2} be nonnegative monotone functions on the interval $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition, and let ψ be a nonnegative nondecreasing function on the interval $(0, \infty)$ satisfying condition $\left(\psi_{1}\right)$. Suppose u is a function harmonic in G_{α} and satisfying

$$
\int_{G_{\alpha}} \Psi_{p}(|\operatorname{grad} u(x)|) \lambda_{1}(\rho(x)) \lambda_{2}\left(|x|^{1 / \alpha}\right) d x<\infty
$$

Set $\eta_{1}(r)=\psi\left(r^{-1}\right) \lambda_{1}(r), \eta(r)=\psi\left(r^{-1}\right) \lambda_{1}(r) \lambda_{2}(r)$ and

$$
K(x)=\kappa_{n_{1}}(\rho(x))\left[\lambda_{2}\left(x_{n}^{1 / \alpha}\right)\right]^{-1 / p}+\kappa_{n, \alpha}\left(x_{n}^{1 / \alpha}\right) .
$$

If $K(0)\left(=\lim _{x \rightarrow 0} K(x)\right)=\infty$, then $[K(x)]^{-1} u(x) \rightarrow 0$ as $x \rightarrow 0, x \in \mathrm{G}_{\alpha}$; if $K(x)$ is bounded, then $u(x)$ has a finite limit as $x \rightarrow 0, x \in G_{a}$.

Proof. - As in the proof of Theorem 2, for $x \in B_{r}$, we see that

$$
\begin{aligned}
&|u(x)-u(X(r))| \leqslant M_{1} r^{1-\delta}+M_{1} \kappa_{\eta_{1}}(\rho(x))\left(\int_{B_{r}} \Psi_{p}\left(f((y)) \lambda_{1}(\rho(y)) d y\right)^{1 / p}\right. \\
& \leqslant M_{1} r^{1-\delta}+M_{2} \kappa_{\eta_{1}}(\rho(x)) \lambda_{2}\left(r^{1 / \alpha}\right)^{-1 / p} \\
& \times\left(\int_{B_{r}} \Psi_{p}(f(y)) \lambda_{1}(\rho(y)) \lambda_{2}\left(|y|^{1 / \alpha}\right) d y\right)^{1 / p}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|u\left(X\left(r_{j}\right)\right)-u\left(X\left(r_{j+k}\right)\right)\right| \leqslant M_{3} j^{-(1-\delta) /(1-\alpha)}+M_{3} K_{\mathrm{n}, \alpha}\left(\rho\left(X\left(r_{j+k}\right)\right)\right) \\
& \times\left(\int_{\left(\Delta_{j+k, j)}\right.} \Psi_{p}(f(y)) \lambda_{1}(\rho(y)) \lambda_{2}\left(|y|^{1 / \alpha}\right) d y\right)^{1 / p},
\end{aligned}
$$

where $f(y)=|\operatorname{grad} u(y)|$ and $\Delta_{k, j}=\bigcup_{l=j}^{k} B r_{l}$. Thus the remaining part of the proof is similar to the proof of Theorem 2.

Next, for $0<a<1$, let $G_{\alpha}(a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1}\right.$; $\left.0<x_{n}<1,\left|x^{\prime}\right|^{\alpha}<a x_{n}\right\}$. Then the following result can be proved similarly.

Proposition 2. - Let λ, ψ and η be as in Theorem 1. Let u be a function harmonic in G_{α} and satisfying

$$
\begin{equation*}
\int_{G_{\alpha}} \Psi_{p}(|\operatorname{grad} u(x)|) \lambda\left(|x|^{1 / \alpha}\right) d x<\infty \tag{4}
\end{equation*}
$$

If $0<\alpha<1$ and $\kappa_{\eta, \alpha}(0)=\infty$, then

$$
\lim _{x \rightarrow 0, x \in G_{\alpha}(a)}\left[\kappa_{\eta, \alpha}(\rho(x))\right]^{-1} u(x)=0
$$

for any a such that $0<a<1$; and if $\kappa_{\eta, \alpha}(r)$ is bounded, then $u(x)$ has a finite limit as $x \rightarrow 0, x \in G_{\alpha}(a)$, for any a such that $0<a<1$.

Remark. - Proposition 2 is best possible as to the order of infinity in the following sense : if $\varepsilon>0, \beta>\alpha p-\alpha-1$ and D is the half plane $\{(x, y) ; x>0\}$, then we can find a harmonic function u on D which satisfies condition (4) with $\lambda(r)=r^{\beta}$ and

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{-\varepsilon}\left[\kappa_{\eta, \alpha}\left(x^{1 / \alpha}\right)\right]^{-1} u(x, 0)=\infty . \tag{5}
\end{equation*}
$$

For this purpose, consider $u(x, y)=r^{-a} \cos a \theta$, where $r=\left(x^{2}+y^{2}\right)^{1 / 2}$ and $\theta=\tan ^{-1}(y / x)$. Then u is harmonic in D. Since $\lambda(r)=r^{\beta}$, we see that

$$
M_{1} \psi\left(r^{-1}\right)^{-1 / p} r^{-a_{0}} \leqslant \kappa_{\eta, \alpha}(r) \leqslant M_{2} \psi\left(r^{-1}\right)^{-1 / p} r^{-a_{0}}
$$

with $a_{0}=(2-p+\beta) / \alpha p+(1-\alpha) / \alpha p^{\prime}$. If $0<a<a_{0}$, then

$$
\int_{G_{\alpha}} \Psi_{p}(|\operatorname{grad} u(z)|) \lambda(\rho(z)) d z<\infty
$$

If a is taken so large that $-\varepsilon+a_{0}<a<a_{0}$, then we see that u also satisfies (5).

4. Removability of the origin.

In this section we are concerned with the removability of the origin for harmonic functions satisfying condition (1) with $G=B(0, a)-\{0\}$, $a>0$.

Theorem 3. - Let λ, ψ and η be as in Theorem 1, and let u be a function which is harmonic in $B\left(0, r_{0}\right)-\{0\}$ and satisfies

$$
\int_{B\left(0, r_{0}\right)-\{0\}} \Psi_{p}(|\operatorname{grad} u(x)|) \lambda(|x|) d x<\infty
$$

If limsup $N(r)^{-1} \kappa_{\eta}(r)<\infty$, then u can be extended to a function harmonic in $B\left(0, r_{0}\right)$, where $N(r)=\log (1 / r)$ in case $n=2$ and $N(r)=r^{2-n}$ in case $n \geqslant 3$.

Proof. - For $\varepsilon>0$ and $x \in B\left(0, r_{0} / 2\right)-\{0\}$, let $x_{\varepsilon}=\varepsilon x /|x|$. Then Lemma 1 gives

$$
\begin{aligned}
\left|u(x)-u\left(x_{\varepsilon}\right)\right| \leqslant M \kappa_{\eta}(|x|)\left(\int_{B(0,2 \varepsilon)} \Psi_{p}(|\operatorname{grad} u(y)|)\right. & \lambda(|x|) d x)^{1 / p} \\
& +M \int_{B(0,2 \varepsilon)}|y|^{1-\delta-n} d y
\end{aligned}
$$

where $0<\delta<1$. Consequently, it follows that $\lim _{x \rightarrow 0} N(|x|)^{-1} u(x)=0$. Now our result is a consequence of a result in [1], p. 204.

5. Limits at infinity.

In this section, we discuss the existence of limits at infinity for harmonic functions on a tube domain $T_{\ell}=\left\{x=\left(x^{\prime}, x^{\prime \prime}\right) \in R^{\ell} \times R^{n-\ell}\right.$; $\left.\left|x^{\prime \prime}\right|<1\right\}$. This T_{ℓ} is not generally obtained, by inversion, from G_{α}.

Theorem 4. - Let u be a harmonic function on T_{ℓ} satisfying

$$
\int_{T_{\ell}} \Psi_{p}(|\operatorname{grad} u(x)|) \rho(x)^{p-n} \lambda(|x|) d x<\infty
$$

where λ is a positive monotone function on $(0, \infty)$ satisfying the $\left(\Delta_{2}\right)$ condition. Set

$$
\tilde{\psi}(r)=\left(\int_{0}^{r}\left[\psi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}
$$

and

$$
\kappa(r)=\left(\int_{1}^{r}\left[\tilde{\psi}(t) \lambda(t)^{-1 / p}\right]^{p^{\prime}} d t\right)^{1 / p^{\prime}}
$$

$r>1$. If $\kappa(r) \rightarrow \infty$ as $r \rightarrow \infty$, then $[\kappa(|x|)]^{-1} u(x) \rightarrow 0$ as $|x| \rightarrow \infty$, $x \in T_{\ell}$; and if $\kappa(r)$ is bounded, then $u(x)$ has a finite limit at infinity.

For the study of the behavior at infinity, we do not think it necessary to replace $\rho(x)^{p-n}$ by a more general function $\lambda_{1}(\rho(x))$. The proof of this theorem is similar to the proofs of Theorem 2 and Proposition 1 ; but we give a proof for the sake of completeness.

Proof of Theorem 4. - For $x \in T_{\ell}$, take $x_{0} \in T_{\ell}$ such that $E\left(x, x_{0}\right) \subset B\left(x_{0}, 1\right)$. Then, by Lemma 1, we have

$$
\left|u(x)-u\left(x_{0}\right)\right| \leqslant M_{1} \int_{E\left(x, x_{0}\right)} f(y) \rho(y)^{1-n} d y
$$

where $f(y)=|\operatorname{grad} u(y)|$. Hence Hölder's inequality implies that

$$
\begin{aligned}
\left|u(x)-u\left(x_{0}\right)\right| & \leqslant M_{1}\left(\int_{\left\{y \in E\left(x, x_{0}\right) ; f(y) \geqslant \alpha \rho(y)^{-\delta}\right\}} \Psi_{p}(f(y)) \rho(y)^{p-n} d y\right)^{1 / p} \\
& \times\left(\int_{\left\{y \in E\left(x, x_{0}\right) ; f(y) \geqslant \alpha \rho(y)^{-\delta}\right\}} \rho(y)^{p^{\prime}(1-n)}\left[\psi(f(y)) \rho(y)^{p-n}\right]^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} \\
& +\alpha \int_{E\left(x, x_{0}\right)} \rho(y)^{1-n-\delta} d y \\
& \geqslant M_{1}\left(\int_{B\left(x_{0}, 1\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} d y\right)^{1 / p} \\
& \times\left(\int_{E\left(x, x_{0}\right)}\left[\psi\left(\alpha \rho(y)^{-\delta}\right)\right]^{-p^{\prime} \mid p} \rho(y)^{-n} d y\right)^{1 / p^{\prime}}+M_{2} \alpha
\end{aligned}
$$

where $\alpha>0$ and $0<\delta<1$. If we note that

$$
\begin{aligned}
& \left(\int_{E\left(x, x_{0}\right)}\left[\psi\left(\alpha \rho(y)^{-\delta}\right)\right]^{-p^{\prime} \mid p} \rho(y)^{-n} d y\right)^{1 / p^{\prime}} \\
& \\
& \quad \leqslant M_{3}\left(\int_{0}^{2}\left[\psi\left(\alpha r^{-\delta}\right)\right]^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}} \leqslant M_{4} \Psi\left(\alpha^{-1}\right)
\end{aligned}
$$

then

$$
\left|u(x)-u\left(x_{0}\right)\right| \leqslant M_{5}\left(\int_{B\left(x_{0}, 1\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} d y\right)^{1 / p} \Psi\left(\alpha^{-1}\right)+M_{2} \alpha
$$

Taking $\alpha=|x|^{-2}$, we have

$$
\begin{aligned}
&\left|u(x)-u\left(x_{0}\right)\right| \leqslant M_{6}\left(\int_{B\left(x_{0}, 1\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} \lambda(|y|) d y\right)^{1 / p} \\
& \quad \times \tilde{\psi}(|x|) \lambda(|x|)^{-1 / p}+M_{2}|x|^{-2}
\end{aligned}
$$

For $x=\left(x^{\prime}, x^{\prime \prime}\right)$, let k be the nonnegative integer such that $k \leqslant\left|x^{\prime}\right|<k+1$. Put $x_{j}=j\left(x^{\prime}, 0\right) /\left|x^{\prime}\right| \quad$ for $j=0,1, \ldots, k$ and
$x_{k+1}=\left(x^{\prime}, 0\right)$. Then

$$
\begin{aligned}
& \mid u(x)- u\left(x_{j_{0}}\right)\left|\leqslant\left|u(x)-u\left(x_{k+1}\right)\right|+\left|u\left(x_{k+1}\right)-u\left(x_{k}\right)\right|+\cdots\right. \\
&+\left|u\left(x_{j_{0}+1}\right)-u\left(x_{j_{0}}\right)\right|
\end{aligned} \quad \begin{aligned}
\leqslant & M_{6}\left(\int_{\Delta\left(x, x_{j_{0}}\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} \lambda(|y|) d y\right)^{1 / p} \\
& \times\left(\sum_{j=j_{0}}^{k+1}\left[\tilde{\psi}(j) \lambda(j)^{-1 / p}\right]^{p^{\prime}}\right)^{1 / p^{\prime}}+M_{2}\left(\sum_{j=j_{0}}^{k+1} j^{-2}\right) \\
\leqslant & M_{7}\left(\int_{\Delta\left(x, x_{j_{0}}\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} \lambda(|y|) d y\right)^{1 / p} \kappa(|x|)+M_{7 j_{0}}^{-1},
\end{aligned}
$$

where $\Delta\left(x, x_{j_{0}}\right)=\bigcup_{j_{0} \leqslant j \leqslant k+1} B\left(x_{j}, 1\right)$. If $\kappa(r)$ is not bounded, then it follows that

$$
\limsup _{\left|x^{\prime}\right| \rightarrow \infty, x \in T_{\ell}}[\kappa(|x|)]^{-1}|u(x)| \leqslant M_{7}\left(\int_{T_{\ell}-B\left(0, j_{0}-1\right)} \Psi_{p}(f(y)) \rho(y)^{p-n} \lambda(|y|) d y\right)^{1 / p}
$$

for any j_{0}, which implies that the left hand side equals zero.
If $\kappa(r)$ is bounded, then $u(x)$ is shown to have a finite limit at infinity.

6. Global boundary behavior.

In this section we are concerned with the global existence of tangential boundary limits of harmonic functions u on G satisfying (1). Our aim is to give generalizations of the author's results [5], [6]. We consider the sets

$$
E_{0}=\left\{\xi \in \partial G ; \int_{G \cap B(\xi, 1)}|\xi-y|^{1-n}|\operatorname{grad} u(y)| d y=\infty\right\}
$$

and

$$
E_{h}=\left\{\xi \in \partial G ; \lim _{r \downharpoonright 0} \sup h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi_{p}(|\operatorname{grad} u(y)|) \lambda(\rho(y)) d y>0\right\}
$$

where h is a positive nondecreasing function on the interval $(0, \infty)$. From condition (1) it follows that $H_{h}\left(E_{h}\right)=0$; moreover, in case $\lambda(r)=r^{\beta}, \mathrm{B}_{1-\beta / p, p}\left(E_{0}\right)=0$. Here H_{h} denotes the Hausdorff measure with the measure function h and $B_{\alpha, p}$ denotes the Bessel capacity of index (α, p) (see Meyers [4]). As to the size of E_{0}, we shall give a precise evaluation in Proposition 3 below, after discussing the Ψ_{p} norm inequality of singular integrals.

Further, let φ be a positive nondecreasing function on the interval $(0, \infty)$ such that $\lim _{r \downarrow 0} \varphi(r)=0, \varphi(r) / r$ is nondecreasing on $(0, \infty)$ and $\varphi(2 r) \leqslant M \varphi(r)$ for any $r>0$ with a positive constant M. For $a>0$ and $\xi \in \partial G$, set

$$
S_{\varphi}(a)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; \varphi(|x-\xi|)<a x_{n}\right\}
$$

and

$$
T_{\varphi}(\xi, a)=\left\{\xi+\Xi_{\xi} x ; x \in S(a)\right\}
$$

with an orthogonal transformation Ξ_{ξ}.
Theorem 5. - Let G be a Lipschitz domain in R^{n}, and let u be a harmonic function on G satisfying condition (1). If $\xi \in \partial G-E_{0} \cup E_{h}$, $T_{\varphi}(\xi, a) \subset G$ and $\kappa_{\eta}(\rho(x)) \leqslant M(a) h(|\xi-x|)^{-1 / p}$ on $T_{\varphi}(\xi, a)$, with a positive constant $M(a)$, then $u(x)$ has a finite limit as $x \rightarrow \xi, x \in T_{\varphi}(\xi, a)$.

Proof. - In view of Lemma 1, we can find $\left\{r_{j}\right\},\left\{x_{j}\right\}$ and $c>0$ (in Lemma 1) with the following properties:
i) $0<r_{j+1}<r_{j}<1 / j$.
ii) $x_{j} \in G \cap B\left(\xi, r_{j}\right)$.
iii) If $x \in G \bigcap B\left(\xi, r_{j+1}\right)$, then $E\left(x, x_{j}\right) \subset G \bigcap B\left(\xi, r_{j}\right), \quad \rho(x)+$ $|x-y| \leqslant M_{1} \rho(y)$ for any $y \in E\left(x, x_{j}\right)$ and

$$
\left|u(x)-u\left(x_{j}\right)\right| \leqslant M_{1} \int_{E\left(x, x_{j}\right)} f(y) \rho(y)^{1-n} d y
$$

where $f(y)=|\operatorname{grad} u(y)|$. Hence, as in the proof of Theorem 1, we obtain

$$
\begin{aligned}
\left|u(x)-u\left(x_{j}\right)\right| & \leqslant M_{1} \int_{E\left(x, x_{j}\right)-B(\xi, 2|x-\xi|)} f(y) \rho(y)^{1-n} d y \\
& +M_{1} \int_{\{y \in G \cap B(\xi, 2|x-\xi|) ; f(y)<\rho(y)-\delta\}} \rho(y)^{1-\delta-n} d y \\
& +M_{2} \kappa_{\eta}(\rho(x))\left(\int_{G \cap B(\xi, 2|\xi-x|)} \Psi_{p}(f(y)) \lambda(\rho(y)) d y\right)^{1 / p} \\
& \leqslant M_{3}\left(I_{1}+I_{2}+I_{3}\right),
\end{aligned}
$$

where $0<\delta<1$. If $y \in E\left(x, x_{j}\right)$ and $|y-\xi| \geqslant 2|x-\xi|$, then $\rho(y) \geqslant$ $M_{1}^{-1}|x-y| \geqslant M_{1}^{-1}(|y-\xi|-|x-\xi|) \geqslant\left(2 M_{1}\right)^{-1}|y-\xi|$, so that

$$
I_{1} \leqslant M_{4} \int_{E\left(x, x_{j}\right)-B(\xi, 2|x-\xi|)} f(y)|\xi-y|^{1-n} d y
$$

Moreover, $\quad I_{2} \leqslant M_{5}|x-\xi|^{1-\delta}$ and $\kappa_{\eta}(\rho(x)) \leqslant M(a) h(|x-\xi|)^{-1 / p}$ for $x \in T_{\varphi}(\xi, a)$ by our assumption. Consequently, if $\xi \in \partial G-\left(E_{0} \cup E_{h}\right)$, then $\left\{u\left(x_{\ell}\right)\right\}_{\ell \geqslant j+1}$ is bounded, so that we can find a subsequence $\left\{u\left(x_{j_{k}}\right)\right\}$ which converges to a number u_{0} as $k \rightarrow \infty$. Hence, since

$$
\lim _{j \rightarrow \infty}\left[\lim _{x \rightarrow \xi, x \in T_{\varphi}(\xi, a)}\left|u(x)-u\left(x_{j}\right)\right|\right]=0,
$$

it follows that $u(x) \rightarrow u_{0}$ as $x \rightarrow \xi$ along $T_{\varphi}(\xi, a)$.
For $a, b \geqslant 0$ and $\alpha>1$, set

$$
S_{\alpha}(a, b)=\left\{x=\left(x^{\prime}, x_{n}\right) ; x_{n}>a\left|x^{\prime}\right|+b\left|x^{\prime}\right|^{\alpha}\right\} .
$$

If G is a Lipschitz domain, then, for each $\xi \in \partial G$ we can find a_{ξ}, $b_{\xi} \geqslant 0, r_{\xi}>0$ and an orthogonal tranformation Ξ_{ξ} such that

$$
\left\{\xi+\Xi_{\xi} x ; x \in S_{\alpha}\left(a_{\xi}, b_{\xi}\right)\right\} \cap B\left(\xi, r_{\xi}\right) \subset G .
$$

For $b>b_{\xi}$, put

$$
T_{\alpha}(\xi, b)=T_{\alpha}\left(\xi, \Xi_{\xi}, b\right) \equiv\left\{\xi+\Xi_{\xi} x ; x \in S_{\alpha}\left(a_{\xi}, b\right)\right\} \cap B\left(\xi, r_{\xi}\right) .
$$

Corollary - Let G be a Lipschitz domain. For $\alpha>1$, let $\left\{T_{\alpha}(\xi, b)\right.$; $\left.\xi \in \partial G, b>b_{\xi}\right\}$ be given as above. If u is a function which is harmonic in G and satisfies

$$
\int_{G} \Psi_{p}(|\operatorname{grad} u(x)|) \rho(x)^{\beta} d x<\infty
$$

for $\beta>p-n$, then there exists a set $E \subset \partial G$ such that
i) $H_{h}(E)=0$ for $h(r)=\inf _{t \geqslant r} t^{\alpha(n-p+\beta)} \psi\left(t^{-1}\right)$;
ii) $u(x)$ has a finite limit as $x \rightarrow \xi$ along $T_{\alpha}(\xi, b)$ whenever $\xi \in \partial G-E$ and $b>b_{\xi}$.

Proof. - First note that for $\varepsilon>0, r^{\varepsilon} \psi\left(r^{-1}\right) \geqslant M_{1} s^{\varepsilon} \psi\left(s^{-1}\right)$ whenever $0<s<r$, on account of condition $\left(\psi_{1}\right)$. Hence, since $\rho(x) \geqslant M_{1}|x-\xi|^{\alpha}$
for $x \in T_{\alpha}(\xi, b)$,

$$
\begin{aligned}
\kappa_{\eta}(\rho(x)) & \leqslant\left(\int_{M_{1} r^{\alpha}}^{1}\left[s^{n-p+\beta} \psi\left(s^{-1}\right)\right]^{-p^{\prime} / p} s^{-1} d s\right)^{1 / p^{\prime}} \\
& \leqslant M_{2}\left[r^{\alpha(n-p+\beta-\delta)} \psi\left(r^{-1}\right)\right]^{-1 / p}\left(\int_{M_{1} r^{\alpha}}^{1} s^{-\delta p^{\prime}(p-1} d s\right)^{1 / p^{\prime}} \\
& \leqslant M_{3} h(r)^{-1 / p}
\end{aligned}
$$

where $0<\delta<n-p+\beta$ and $r=|x-\xi|$. Let $E=E_{0} \cup E_{h}$ in the notation given in Theorem 5. Since $B_{1-\beta / p, p}\left(E_{0}\right)=0$ implies that E_{0} has Hausdorff dimension at most $n-p+\beta$, on account of [4], Theorem 22. Since $\alpha>1$ and $n-p+\beta>0, \lim _{r \rightarrow 0} h(r) / r^{n-p+\beta}=0$, so that we see that $H_{h}\left(E_{0}\right)=0$. Hence $H_{h}(E)=0$, and the Corollary follows from Theorem 5.

Remark 1. - In case $\psi(r) \equiv 1, \lambda(r)=r^{\beta}$ with $p-n \leqslant \beta<p-1$ and $\varphi(r)=r^{\alpha}$ with $\alpha>1$, we can take h so that $h(r)=r^{\alpha(n-p+\beta)}$ if $n-p+\beta>0$ and $h(r)=\left[\log \left(2+r^{-1}\right)\right]^{1-p}$ if $n-p+\beta=0$. Hence, Theorem 5 and its Corollary give the usual T_{α}-limit theorem (see [5]).

Remark 2. - Nagel, Rudin and Shapiro [8] proved the existence of T_{α}-limits of harmonic functions represented as Poisson integrals in a half space.

7. Singular integrals.

Here we establish the following result.
Theorem 6. - Let f be a function on R^{n} such that

$$
\int(1+|y|)^{1-n}|f(y)| d y<\infty
$$

and $\int \Psi_{p}\left(|f(y)|\left|y_{n}\right|^{\beta / p}\right) d y<\infty$, where $-1<\beta<p-1$. If we set $u(x)=\int|x-y|^{1-n} f(y) d y$, then

$$
\int \Psi_{p}\left(|\operatorname{grad} u(x)|\left|x_{n}\right|^{\beta / p}\right) d x \leqslant M \int \Psi_{p}\left(|f(y)|\left|y_{n}\right|^{\beta / p}\right) d y
$$

with a positive constant M independent of f.

Proof. - Without loss of generality, we may assume that $f \geqslant 0$ on R^{n}. First we consider the case $\beta=0$. We note, by the well-known fact from the theory of singular integral operators, that

$$
\begin{aligned}
\lambda(a) & \equiv H_{n}(\{x ;|\operatorname{grad} u(x)|>a\}) \\
& \leqslant M_{1} a^{-1} \int_{\{y ; f(y) \geqslant a / 2\}} U(y) d y+M_{1} a^{-q} \int_{\{y ; f(y)<a / 2\}} U(y)^{q} d y \\
& =M_{1} \mu_{1}(a)+M_{1} \mu_{2}(a),
\end{aligned}
$$

where H_{n} denotes the n-dimensional Lebesgue measure, $q>p$ and $U(y)=|\operatorname{grad} u(y)|$. Hence we have

$$
\begin{aligned}
& \int \Psi_{p}(|\operatorname{grad} u(x)|) d x=\int_{0}^{\infty} \lambda(a) d \Psi_{p}(a) \\
& \leqslant M_{1} \int_{0}^{\infty} \mu_{1}(a) d \Psi_{p}(a)+M_{1} \int_{0}^{\infty} \mu_{2}(a) d \Psi_{p}(a) \\
& \leqslant M_{1} \int U(y)\left(\int_{0}^{2 f(y)} a^{-1} d \Psi_{p}(a)\right) d y+M_{1} \int U(y)^{q}\left(\int_{2 f(y)}^{\infty} a^{-q} d \Psi_{p}(a)\right) d y \\
& \leqslant M_{2} \int \Psi_{p}(U(y)) d y .
\end{aligned}
$$

In case $\beta \neq 0$, set $g(y)=\left|y_{n}\right|^{\beta / p} U(y)$ and

$$
v(x)=\int|x-y|^{1-n} g(y) d y
$$

For $j=1,2, \ldots, n$, we see that

$$
\left|\left|x_{n}\right|^{\beta / p}\left(\partial / \partial x_{j}\right) u(x)-\left(\partial / \partial x_{j}\right) v(x)\right| \leqslant M_{3} \int K_{\beta}\left(x_{n}, y_{n}\right)\left(P_{\mid x_{n}-y_{n}} g\right)\left(x^{\prime}, x_{n}\right) d y_{n}
$$

where $K_{\beta}\left(x_{n}, y_{n}\right)=\left|1-\left|x_{n} / y_{n}\right|^{\beta / p}\right| /\left|x_{n}-y_{n}\right|$ and P denotes the Poisson kernel in the upper half space $D=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; x_{n}>0\right\}$. By [9], Theorem 1, (a) in Chap. III and Theorem 1, (c) in Chap. I, we have for $q \geqslant 1$

$$
\int\left[P_{t} g\left(x^{\prime}, x_{n}\right)\right]^{q} d x^{\prime} \leqslant M_{4} \int g\left(y^{\prime}, y_{n}\right)^{q} d y^{\prime}
$$

Hence, by using Minkowski's inequality (cf. [9], Appendix A.1), we establish

$$
\begin{aligned}
& \int\left(\int K_{\beta}\left(x_{n}, y_{n}\right)\left(P_{\left|x_{n}-y_{n}\right|} g\right)\left(x^{\prime}, x_{n}\right) d y_{n}\right)^{q} d x \\
& \leqslant M_{4} \int\left(\int K_{\beta}\left(x_{n}, y_{n}\right)\left(\int g\left(y^{\prime}, y_{n}\right)^{q} d y^{\prime}\right)^{1 / q} d y_{n}\right)^{q} d x_{n}
\end{aligned}
$$

Let q_{1} and q_{2} be positive numbers such that $\beta<q_{1}-1$ and $1<q_{1}<p<q_{2}$. Applying Appendix A. 3 in Stein's book [9], we see that

$$
\begin{aligned}
\lambda(a) & \equiv H_{n}\left(\left\{x ;\left|\left|x_{n}\right|^{\beta / p}\left(\partial / \partial x_{j}\right) u(x)-\left(\partial / \partial x_{j}\right) v(x)\right|>a\right\}\right) \\
& \leqslant M_{5}\left(\mu_{1}(a)+\mu_{2}(a)\right)
\end{aligned}
$$

where

$$
\mu_{1}(a)=a^{-q_{1}} \int_{\{y ; g(y) \geqslant a \mid 2\}} g(y)^{q_{1}} d y
$$

and

$$
\mu_{2}(a)=a^{-q_{2}} \int_{\{y ; g(y)<a / 2\}} g(y)^{q_{2}} d y .
$$

Consequently, by the above considerations, we see that

$$
\int \Psi_{p}\left(\left.| | x_{n}\right|^{\beta / p}\left(\partial / \partial x_{j}\right) u(x)-\left(\partial / \partial x_{j}\right) v(x) \mid\right) \leqslant M_{6} \int \Psi_{p}(g(y)) d y
$$

Thus it follows that
or

$$
\begin{gathered}
\int \Psi_{p}\left(\left|x_{n}\right|^{\beta / p}\left(\partial / \partial x_{j}\right) u(x) \mid\right) d x \leqslant M_{7} \int \Psi_{p}(g(y)) d y \\
\int \Psi_{p}\left(\left|x_{n}\right|^{\beta / p}|\operatorname{grad} u(x)|\right) d x \leqslant M_{8} \int \Psi_{p}(g(y)) d y<\infty .
\end{gathered}
$$

Remark. - Consider the functions

$$
u_{j}(x)=\int\left(x_{j}-y_{j}\right)|x-y|^{-n} f(y) d y
$$

Then the same inequality as in Theorem 6 still holds for each u_{j}.

For $\beta>0$ and $E \subset R^{n}$, we define

$$
C_{\beta, \Psi_{p}}(E)=\inf \int \Psi_{p}(f(y)) d y
$$

where the infimum is taken over all nonnegative measurable functions f on R^{n} such that $\int_{B(x, 1)}|x-y|^{\beta-n} f(y) d y \geqslant 1$ for every $x \in E$.

Proposition 3. - Let f be a nonnegative measurable function on a Lipschitz domain G such that $\int_{G} \Psi_{p}(f(y)) \rho(y)^{\beta} d y<\infty$, and set $E=\left\{\xi \in \partial G ; \int_{G \cap B(\xi, 1)}|\xi-y|^{1-n} f(y) d y=\infty\right\}$. If $-1<\beta<p-1$, then $C_{1-\beta / p, \Psi_{p}}(E)=0$.

Proof. - By a change of variables, we may assume that G is the half space D and f vanishes outside some ball $B(0, N)$. Let $u(x)=\int_{D}|x-y|^{1-n} f(y) d y$ for a nonnegative measurable function f on D such that $\int_{D} \Psi_{p}(f(y)) y_{n}^{\beta} d y<\infty$. Here note that

$$
\begin{aligned}
\int \Psi_{p}\left(f(y) y_{n}^{\beta / p}\right) d y & \leqslant \int_{\left\{y \in D ; f(y)^{\varepsilon} \geqslant y_{n}^{\beta / p}\right\}} \Psi_{p}\left(f(y) y_{n}^{\beta / p}\right) d y \\
& +\int_{\left\{y \in D ; f(y)^{\varepsilon} \leqslant \nu_{n}^{\beta / p}\right\}} \Psi_{p}\left(f(y) y_{n}^{\beta / p}\right) d y \\
& \leqslant \int_{D} y_{n}^{\beta} f(y)^{p} \psi\left(f(y)^{1+\varepsilon}\right) d y \\
& +\int_{\{y \in D ; f(y)>0\}} \Psi_{p}\left(y_{n}^{(1+\varepsilon-1) \beta / p}\right) d y<\infty,
\end{aligned}
$$

if $\varepsilon>0$ and $\beta\left(1+\varepsilon^{-1}\right)>-1$. Hence, from Theorem 6, it follows that $\begin{array}{ll}\int \Psi_{p}\left(|\operatorname{grad} u(x)|\left|x_{n}\right|^{\beta / p}\right) d x<\infty . & \text { Since }|\operatorname{grad} u(x)|=O\left(|x|^{-n}\right) \text { as } \\ |x| \rightarrow \infty, \text { we see that } \int_{R^{n}-B(0, a)} \Psi_{p}(|\operatorname{grad} u(x)|)\left|x_{n}\right|^{\beta} d x<\infty \text { for a }\end{array}$
sufficiently large a. Moreover, we have, by letting $U(x)=|\operatorname{grad} u(x)|$,

$$
\begin{aligned}
\int_{B(0, a)} \Psi_{p}(U(x))\left|x_{n}\right|^{\beta} d x & \leqslant \int_{\left\{x \in B(0, a) ; U(x) \geqslant\left|x_{n}\right|^{-\left(1+\delta^{-1}\right) \beta / p_{\}}}\right.} \Psi_{p}(U(x))\left|x_{n}\right|^{\beta} d x \\
& +\int_{\left\{x \in B(0, a) ; U(x)<\left|x_{n}\right|^{\left.-\left(1+\delta^{-1}\right) \beta / p\right\}}\right.} \Psi_{p}(U(x))\left|x_{n}\right|^{\beta} d x \\
& \leqslant \int \Psi\left(\left[U(x)\left|x_{n}\right|^{\beta / p}\right]^{1+\delta}\right) U(x)^{p}\left|x_{n}\right|^{\beta} d x \\
& +\int_{B(0, a)} \Psi_{p}\left(\left|x_{n}\right|^{-\left(1+\delta^{-1}\right) \beta / p}\right)\left|x_{n}\right|^{\beta} d x<\infty
\end{aligned}
$$

if $\delta>0$ and $\delta>\beta$. Thus $\int \Psi_{p}(U(x))\left|x_{n}\right|^{\beta} d x<\infty$.
Consider the set

$$
E^{*}=\left\{x \in \partial D ; \int_{D}|x-y|^{1-\beta / p-n}\left[U(y) y_{n}^{\beta / p}\right] d y=\infty\right\}
$$

Then, by definition, $C_{1-\beta / p, \Psi_{p}}\left(E^{*}\right)=0$. If $\xi \in \partial D-E^{*}$ and $a>0$, then

$$
\int_{\Gamma(\xi, a)}|\xi-y|^{1-n}|\operatorname{grad} u(y)| d y<\infty,
$$

where $\Gamma(\xi, a)=\left\{x \in D ;|x-\xi|<a x_{n}\right\}$. It follow that

$$
\int_{0}^{r_{0}}|\operatorname{grad} u(\xi+r \theta)| d r<\infty \quad \text { for almost every } \theta \in \partial B(0,1),
$$

which implies that $u(\xi+r \theta)$ has a finite limit for almost every $\theta \in \partial B(0,1)$. If $\xi \in E$, then $\underset{r \rightarrow 0}{\liminf } u(\xi+r x) \geqslant u(\xi)=\infty$ for any $x \in D$ by the lower semicontinuity of potentials. Thus $\xi \in \partial D-E$. Hence $E \subset E^{*}$, or $C_{1-\beta / p, \Psi_{p}}(E)=0$.

8. Best possibility.

Here we deal with the best possibility of Theorem 1 as to the order of infinity. Let D be the upper half space, that is, $D=\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ; x_{n}>0\right\}$.

Proposition 4. - Let λ, ψ and η be as in Theorem 1. Suppose $\kappa_{\eta}(0)=\infty$ and $r^{\delta} \eta(r)^{-1}$ is bounded above on $(0,1]$ for some $\delta>1-n$. If $a(r)$ is a nonincreasing positive function on the interval $(0, \infty)$ such that $\lim _{r \downarrow 0} a(r)=\infty$, then there exists a nonnegative measurable function f such that $f=0$ outside $B(0,1)$,

$$
\int_{R^{n}} \Psi_{p}(f(y)) \lambda\left(\left|y_{n}\right|\right) d y<\infty
$$

and

$$
\underset{r \downarrow 0}{\lim \sup } a(r) \kappa_{\eta}(r)^{-1} u(r \xi)=\infty \quad \text { for any } \xi \in D
$$

where $u(x)=\int_{R^{n-D}}\left(x_{n}-y_{n}\right)|x-y|^{-n} f(y) d y$.
Remark. - By the Remark after Theorem 6, if $\lambda(r)=r^{\beta}$ with $-1<\beta<p-1$, then

$$
\int \Psi_{p}(|\operatorname{grad} u(x)|)\left|x_{n}\right|^{\beta} d x<\infty
$$

Proof of Proposition 4. - Let $\left\{r_{j}\right\}$ be a sequence of positive numbers such that $r_{j}<r_{j-1} / 2$ and

$$
\kappa_{\eta}\left(r_{j}\right) \leqslant 2\left(\int_{r_{j}}^{r_{j-1}}\left[s^{n-p} \eta(s)\right]^{-p^{\prime} / p} s^{-1} \cdot d s\right)^{1 / p^{\prime}}
$$

Further take a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j} a\left(r_{j}\right)=\infty$ and $\sum_{j=1}^{\infty} b_{j}^{p}<\infty$. Let $\Gamma(c)$ be the cone $S_{\varphi}(c)$ with $\varphi(r) \equiv r$, and set $\hat{\Gamma}(c)=\left\{x \in R^{n} ;-x \in \Gamma(c)\right\}$. Now we define

$$
f(y)=b_{j} \kappa_{\eta}\left(r_{j}\right)^{-p^{\prime} / p}\left[|y|^{n-1} \eta(|y|)\right]^{-p^{\prime} / p}
$$

if $y \in \hat{\Gamma}_{j} \equiv \hat{\Gamma}(1) \cap B\left(0, r_{j-1}\right)-B\left(0, r_{j}\right)$ and $f=0$ otherwise, and consider the function u defined as in Proposition 4. If

$$
x \in \Gamma(c) \cap B\left(0,2 r_{j}\right)-B\left(0, r_{j}\right)
$$

then

$$
\begin{aligned}
u(x) & \geqslant M_{1} b_{j} \kappa_{\eta}\left(r_{j}\right)^{-p^{\prime} \mid p} \int_{\hat{r}_{j}}|y|^{1-n}\left[|y|^{n-1} \eta(|y|)\right]^{-p^{\prime} / p} d y \\
& \geqslant M_{2} b_{j} \kappa_{\eta}\left(r_{j}\right),
\end{aligned}
$$

so that

$$
\lim _{x \rightarrow 0, x \in \Delta(c)} a(|x|) \kappa_{\eta}(|x|)^{-1} u(x)=\infty
$$

with $\Delta(c)=\bigcup_{j=1}^{\infty}\left\{x \in \Gamma(c) ; r_{j}<|x|<2 r_{j}\right\}$. On the other hand, since $r^{\delta} \eta(r)^{-1}$ is bounded above by our assumption, $f(y) \leqslant M_{3}|y|^{-p^{\prime}(n-1+\delta) / p}$, so that $\psi(f(y)) \leqslant M_{4} \psi\left(|y|^{-1}\right)$ by (2). Hence we establish

$$
\begin{aligned}
\int_{R^{n}} \Psi_{p}(f(y)) \lambda(|y|) d y & \leqslant M_{5} \sum_{j=1}^{\infty} b_{j}^{p} \kappa_{\eta}\left(r_{j}\right)^{-p^{\prime}} \int_{\hat{r}_{j}}|y|^{p^{\prime}(1-n)} \eta(|y|)^{1-p^{\prime}} d y \\
& \leqslant M_{6} \sum_{j=1}^{\infty} b_{j}^{p}<\infty
\end{aligned}
$$

Thus f satisfies all the required assertions.
The Corollary to Theorem 5 is best possible as to the size of the exceptional sets, in the following sense.

Proposition 5. - Let ψ, λ and η be as in Theorem 1. Let φ be a nonnegative nondecreasing function on $(0, \infty)$ such that $\varphi(r) \leqslant M r$ for any $r>0$, with a positive constant M, and set

$$
\varphi^{*}(r)=\int_{\varphi(r)}^{2 M r}\left[t^{n-p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t
$$

Suppose further that the following assertions hold:
i) $r^{\delta_{1}} \lambda(r)^{-1}$ is nondecreasing on $(0, \infty)$ for some $\delta_{1}>1 / p-n$.
ii) $r^{\delta_{2}} \lambda(r)$ is nondecreasing on $(0, \infty)$ for some $\delta_{2}<1$.
iii) $\varphi^{*}(r) \rightarrow \infty$ as $r \rightarrow 0$.
iv) $\varphi^{*}(r) \leqslant M^{*} \varphi^{*}(s)$ whenever $0<s<r$, with a positive constant M^{*}.
We now define $h(r)=\inf _{s \geqslant r}\left[\varphi^{*}(s)\right]^{-p / p^{\prime}}$. Then, for a compact set $K \subset \partial D$ such that $H_{h}(K)=0$, there exists a nonnegative measurable function f on R^{n} such that

$$
\int \Psi_{p}(f(y)) \lambda\left(\left|y_{n}\right|\right) d y<\infty
$$

and $U f(x) \equiv \int_{R^{n}-D}\left(x_{n}-y_{n}\right)|y-y|^{-n} f(y) d y$ does not have a finite limit as $x \in T_{\varphi}(\xi, 1) \rightarrow \xi$ at any $\xi \in K$, where $T_{\varphi}(\xi, 1) \equiv\left\{x+\xi ; x \in S_{\varphi}(1)\right\}$.

Proof. - For the construction of such f, we take, for each positive integrer m, a finite family $\left\{B\left(x_{j, m}, r_{j, m}\right)\right\}$ of balls such that $x_{j, m} \in \partial D$, $r_{j, m}<1 / m, \sum_{j} h\left(r_{j, m}\right)<2^{-m} / m$ and $\bigcup_{j} B\left(x_{j, m}, r_{j, m}\right) \supset K$. Setting

$$
B_{i, j}=B\left(x_{i, j}, 2 M r_{i, j}\right)-B\left(x_{i, j}, \varphi\left(r_{i, j}\right)\right),
$$

we define

$$
f_{m, j}(y)=m^{1 / p}\left[h\left(r_{j, m}\right)\right]^{p^{\prime} \mid p}\left[\left|x_{j, m}-y\right|^{n-1} \eta\left(\left|x_{j, m}-y\right|\right)\right]^{-p^{\prime} / p}
$$

for $y \in B_{m, j}$ and $f_{m, j}(y)=0$ elsewhere. Consider the function $f(y)=\sup _{m, j} f_{m, j}(y)$. Since $f_{m, j}(y) \leqslant M_{1}\left|x_{j, m}-y\right|^{-\gamma}$, where

$$
\gamma=1 / p+p^{\prime}\left(n-1+\delta_{1}\right) / p>0
$$

we see that $\psi\left(f_{m, j}(y)\right) \leqslant M_{2} \psi\left(\left|x_{j, m}-y\right|^{-1}\right)$ on account of (2). Since $r^{\delta_{2}} \lambda(r)$ is nondecreasing and $\varphi^{*}(r) \leqslant M_{3}[h(r)]^{-p^{\prime} / p}$, we establish

$$
\begin{aligned}
& \int_{R^{n}-D} \Psi_{p}(f(y)) \lambda\left(\left|y_{n}\right|\right) d y \leqslant M_{4} \sum_{m} m\left(\sum_{j}\left[h\left(r_{j, m}\right)\right]^{p^{\prime}} \int_{B_{j, m}}\left|x_{j, m}-y\right|^{p^{p^{\prime}(1-n)}}\right. \\
& \left.\quad \times\left[\eta\left(\left|x_{j, m}-y\right|\right)\right]^{p^{\prime}} \psi\left(\left|x_{j, m}-y\right|^{-1}\right)\left[\left|x_{j, m}-y\right|^{\delta_{2}} \lambda\left(\left|x_{j, m}-y\right|\right)\right]\left|y_{n}\right|^{-\delta_{2}} d y\right) \\
& \leqslant M_{5} \sum_{m} m\left(\sum_{j}\left[h\left(r_{j, m}\right)\right]^{p^{\prime}} \varphi^{*}\left(r_{j, m}\right)\right) \\
& \leqslant M_{6} \sum_{m} m\left(\sum_{j} h\left(r_{j, m}\right)\right) \leqslant M_{6} \sum_{m} 2^{-m}<\infty .
\end{aligned}
$$

Further,

$$
\begin{aligned}
U f(x) & \geqslant \int\left(x_{n}-y_{n}\right)|x-y|^{-n} f_{m, j}(y) d y \\
& \geqslant M_{7} m^{1 / p}\left[h\left(r_{j, m}\right)\right]^{p^{\prime} / p} \int_{\varphi\left(r_{i, j}\right)}^{2 M r_{i, j}} r^{p^{\prime}(1-n)}[\eta(r)]^{-p^{\prime} / p} r^{-1} d r \\
& \geqslant M_{7} m^{1 / p}
\end{aligned}
$$

for any $x \cap D \bigcap B\left(x_{j, m}, \varphi\left(r_{j, m}\right)\right)$. If $\xi \in K$, then for each m there exists $j(m)$ such that $\xi \in B\left(x_{j(m), m}, r_{j(m), m}\right)$. Since

$$
B\left(x_{j(m), m}, \varphi\left(r_{j(m), m}\right)\right) \cap T_{\varphi}(\xi, 1) \neq \varnothing,
$$

if follows that

$$
\limsup _{x \rightarrow \xi, x \in T_{\varphi}(\xi, 1)} U f(x)=\infty
$$

BIBLIOGRAPHY

[1] M. Brelot, Élément de la théorie classique du potentiel, 4^{e} édition, Centre de Documentation Universitaire, Paris, 1969.
[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[3] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans R^{d} de la classe de Sobolev W_{1}^{d}, C.R.A.S., Paris, 294 (1982), 71-74.
[4] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
[5] Y. Mizuta, On the Boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier, 34-1 (1984), 99-109.
[6] Y. Mizuta, On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217.
[7] T. Mural, On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101.
[8] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360.
[9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[10] H. Wallin, on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525.

Manuscrit reçu le 3 mai 1989.
Yoshihiro Mizuta,
Department of Mathematics
Faculty of Integrated Arts and Sciences
Hiroshima University
Hiroshima 730 (Japon).

[^0]: Key-words : Harmonic functions - Tangential boundary limits - Bessel capacity Hausdorff measure.
 A.M.S. Classification : 31B25.

