On the existence of weighted boundary limits of harmonic functions

Annales de l'institut Fourier, tome 40, nº 4 (1990), p. 811-833 http://www.numdam.org/item?id=AIF 1990 40 4 811 0>

© Annales de l'institut Fourier, 1990, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **40,** 4 (1990), 811-833

ON THE EXISTENCE OF WEIGHTED BOUNDARY LIMITS OF HARMONIC FUNCTIONS

by Yoshihiro MIZUTA

1. Introduction.

In this paper we are concerned with the existence of boundary limits of functions u which are harmonic in a bounded open set $G \subset \mathbb{R}^n$ and satisfy a condition of the form :

$$\int_G \Psi(|\operatorname{grad} u(x)|)\omega(x)\,dx < \infty\,,$$

where $\Psi(r)$ is a nonnegative nondecreasing function on the interval $[0,\infty)$ and ω is a nonnegative measurable function on G. In case G is a Lipschitz domain, $\Psi(r) = r^p$ and $\omega(x) = \rho(x)^\beta$, many authors studied the existence of (non) tangential boundary limits; see, for example, Carleson [2], Wallin [10], Murai [7], Cruzeiro [3] and Mizuta [5], [6]. Here $\rho(x)$ denotes the distance of x from the boundary ∂G . In this paper, we assume that Ψ is of the form $r^p \psi(r)$, where ψ is a nonnegative nondecreasing function on the interval $[0,\infty)$ such that $\psi(2r) \leq A_1\psi(r)$ for any r > 0, with a positive constant A_1 . In case G is a Lipschitz domain and $\omega(x)$ is of the form $\lambda(\rho(x))$, where λ is a positive and nondecreasing function on the interval $(0,\infty)$ such that $\lambda(2r) \leq A_2\lambda(r)$ for any r > 0 with a positive constant A_2 , our first aim is to find a positive function $\kappa(r)$ such that $[\kappa(\rho(x))]^{-1}u(x)$ tends to zero as x tends to the boundary ∂G ; when κ is bounded, u is shown to be extended to a continuous function on $G \cup \partial G$.

Key-words : Harmonic functions - Tangential boundary limits - Bessel capacity Hausdorff measure.

A.M.S. Classification · 31B25.

It is known (see [5]) that if u is a harmonic function on the unit ball B satisfying

$$\int_{B} |\operatorname{grad} u(x)|^{p} (1-|x|^{2})^{\beta} dx < \infty, \quad \beta \geq p-n,$$

then u(x) has a finite limit as $x \to \xi$ along $T_{\alpha}(\xi, a) = \{x \in B ; |x - \xi|^{\alpha} < a\rho(x)\}$ for any a > 0 and any $\xi \in \partial G$ except those in a suitable exceptional set, where $\alpha \ge 1$. Further it is known that this fact is best possible as to the size of the exceptional sets. We shall show in Theorem 1 that if u is a harmonic function on B satisfying the stronger condition :

$$\int_{B} \Psi_{p}(|\operatorname{grad} u(x)|)(1-|x|^{2})^{p-n} dx < \infty$$

and if ψ is of logarithmic type (see condition (ψ_1) below) and $\int_0^1 [\psi(t^{-1})]^{-1/(p-1)} t^{-1} dt < \infty$, then *u* is extended to a function which is continuous on $B \cup \partial B$.

Next let us consider the case where

$$G = G_{\alpha} \equiv \{ x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |x'|^{\alpha} < x_n < 1 \}.$$

In case $\alpha < 1$, G_{α} is not a Lipschitz domain. However, we will also find a positive function $\kappa(r)$ such that $[\kappa(|x|)]^{-1}u(x)$ tends to zero as $x \to 0$, $x \in G_{\alpha}$; when κ is bounded, u is shown to have a finite limit at the origin.

Further, we study the existence of (tangential) boundary limits

$$\lim_{x\to\xi,x\in T_{\alpha}(\xi,a,b)}u(x)$$

at $\xi \in \partial G$ except those in a suitable exceptional set, where $T_{\alpha}(\xi, a, b) = \{\xi + \Xi_{\xi} x; x_n > a | x' | + b | x' |^{\alpha}\}$ with $a \ge 0$, $b \ge 0$ and an orthogonal transformation Ξ_{ξ} . We note here that if G is a Lipschitz domain, then for any $\xi \in \partial G$, there exist $a_{\xi}, b_{\xi} \ge 0$, $r_{\xi} > 0$ and an orthogonal transformation Ξ_{ξ} such that $T_{\alpha}(\xi, a_{\xi}, b_{\xi}) \cap B(\xi, r_{\xi}) \subset G$, where B(x, r) denotes the open ball with center at x and radius r. If $\alpha = 1$, then our results will imply the usual angular limit theorem.

2. Weighted boundary limits.

Throughout this paper, let ψ be a nonnegative nondecreasing function on the interval $(0, \infty)$ satisfying the following condition:

 (ψ_1) There exists A > 1 such that $A^{-1}\psi(r) \le \psi(r^2) \le A\psi(r)$ whenever r > 0.

By condition (ψ_1) , we see that ψ satisfies the so-called (Δ_2) condition, that is, we can find $A_1 > 1$ such that

$$(\Delta_2) \qquad A_1^{-1}\psi(r) \leq \psi(2r) \leq A_1\psi(r) \quad \text{for any } r > 0.$$

For p > 1, set $\Psi_p(r) = r^p \Psi(r)$. Since $\Psi_p(r) \to 0$ as $r \to 0$, we may assume that $\Psi_p(0) = 0$.

If η is a positive measurable function on the interval $(0,\infty)$, then we define

$$\kappa_{\eta}(r) = \left(\int_{r}^{1} s^{p'(1-n/p)} \eta(s)^{-p'/p} s^{-1} ds\right)^{1/p'},$$

where 1/p + 1/p' = 1.

In this paper, let M_1, M_2, \ldots denote various constants independent of the variables in question. Further, we denote by B(x,r) the open ball with radius r and center at x.

Our first aim is to establish the following result, which gives a generalization of Theorem 1 in [6].

THEOREM 1. – Let λ be a nonnegative monotone function on the interval $(0,\infty)$ satisfying the (Δ_2) condition, and let ψ be a nonnegative nondecreasing function on the interval $(0,\infty)$ satisfying condition (ψ_1) . Set $\eta(r) = \psi(r^{-1})\lambda(r)$. Suppose u is a function harmonic in a bounded Lipschitz domain G in \mathbb{R}^n and satisfying

(1)
$$\int_{G} \Psi_{p}(|\operatorname{grad} u(x)|)\lambda(\rho(x)) \, dx < \infty \, .$$

If $\kappa_{\eta}(0) = \infty$, then $\lim_{x \to \partial G} [\kappa_{\eta}(\rho(x))]^{-1}u(x) = 0$; if $\kappa_{\eta}(0) < \infty$, then u has a finite limit at each boundary point of G.

Remark. – If $\lambda(r) = r^{p-n}$ and ψ satisfies the additional condition :

$$(\Psi_2) \qquad \int_0^1 [\Psi(r^{-1})]^{-1/(p-1)} r^{-1} dr < \infty,$$

then $\kappa_{\eta}(0) < \infty$.

For a proof of Theorem 1, we need the following lemma (see [6], Lemma 1).

LEMMA 1. – Let G be a bounded Lipschitz domain in \mathbb{R}^n . Then for each $\xi \in \partial G$, there exist $r_{\xi} > 0$ and $c_{\xi} > 0$ with the following properties :

i) if $0 < r < r_{\xi}$, then there exist $x_r \in G \cap B(\xi, r)$ and $\sigma_r > 0$ such that

$$E(x,x_r) = \bigcup_{0 \le t \le 1} B(X(t), c_{\xi}\rho(X(t))) \subset G \cap B(\xi,2r)$$

whenever $x \in G \cap B(\xi, \sigma_r)$, where $X(t) = (1-t)x + tx_r$;

- ii) $\rho(x) + |x-y| < M_1 \rho(y)$ whenever $y \in E(x, x_r)$;
- iii) if u is a function harmonic in G, then

$$|u(x)-u(x_r)| \leq M_2 \int_{E(x,x_r)} |\operatorname{grad} u(y)| \rho(y)^{1-n} dy$$

for any $x \in G \cap B(\xi, \sigma_r)$. Here M_1 and M_2 are positive constants independent of x, r and u.

Proof of Theorem 1. – Let u be as in the theorem, and let $\xi \in \partial G$. For a sufficiently small r > 0, by Lemma 1, we find that

$$|u(x)-u(x_r)| \leq M_1 \int_{E(x,x_r)} |\operatorname{grad} u(y)| \rho(y)^{1-n} \, dy$$

for any $x \in G \cap B(\xi, \sigma_r)$. Let $0 < \delta < 1$. By condition (ψ_1) , we can find a constant $A_{\delta} > 1$ such that

(2)
$$A_{\delta}^{-1}\psi(r) \leq \psi(r^{\delta}) \leq A_{\delta}\psi(r)$$
 whenever $r > 0$.

Hence, from Hölder's inequality we derive

$$|u(x) - u(x_r)| \leq M_1 \left(\int_{\{y \in E(x, x_r); f(y) > \rho(y)^{-\delta}\}} \rho(y)^{p'(1-n)} \Psi(f(y))^{-p'/p} \right)$$

$$\times \lambda(\rho(y))^{-p'/p} dy \int_{x_r}^{1/p'} F(r) + M_1 \int_{E(x, x_r)} \rho(y)^{1-n-\delta} dy$$

$$\leq M_{2} \left(\int_{0}^{3r} (\rho(x) + t)^{p'(1-n/p)-1} [\psi((\rho(x)+t)^{-1})]^{-p'/p} \right)$$

$$\times \lambda(\rho(x)+t)^{-p'/p} dt \int_{0}^{1/p'} F(r) + M_{2} \int_{B(x,2r)} |x-y|^{1-\delta-n} dy$$

$$\leq M_{3} \kappa_{\eta}(\rho(x)) F(r) + M_{3} r^{(1-\delta)/n},$$

where f(y) = |grad u(y)| and $F(r) = \left(\int_{G \cap B(\xi, 2r)} \Psi_p(f(y))\lambda(\rho(y)) \, dy\right)^{1/p}$. Consequently, if $\kappa_{\eta}(0) = \infty$, then we obtain

$$\limsup_{x \to \xi} \kappa_{\eta}(\rho(x))^{-1} |u(x)| \leq M_{3} \left(\int_{G \cap B(\xi, 2r)} \Psi_{p}(f(y)) \lambda(\rho(y)) \, dy \right)^{1/p}.$$

Condition (1) implies that the right hand side tends to zero as $r \to 0$, so that the left hand side is equal to zero.

On the other hand, if $\kappa_{\eta}(0) < \infty$, then we see that $\sup_{x \in G \cap B(\xi, \sigma_r)} |u(x) - u(x_r)|$ tends to zero as $r \to 0$, which implies that u(x)has a finite limit at ξ . Thus Theorem 1 is established.

3. The case $G = G_{\alpha}$ with $\alpha < 1$.

If $\alpha < 1$, then G_{α} is not a Lipschitz domain. However, we study the existence of boundary limits for *u* satisfying condition (1).

For simplicity, set

$$\kappa_{\eta,\alpha}(r) = \left(\int_r^1 s^{p'(1-n/p)} [\eta(s)]^{-p'/p} s^{\alpha-2} ds\right)^{1/p'}$$

and

$$K_{\eta,\alpha}(x) = \kappa_{\eta}(\rho(x)) + \kappa_{\eta,\alpha}(x_n^{1/\alpha}) \quad \text{for } x = (x', x_n).$$

THEOREM 2. – Let λ , ψ and η be as in Theorem 1. Let u be a function harmonic in G_{α} and satisfying condition (1). If $0 < \alpha < 1$ and $K_{\eta,\alpha}(x) \to \infty$ as $x \to 0$, then

$$\lim_{x \to 0, x \in G_{\alpha}} [K_{\eta, \alpha}(x)]^{-1} u(x) = 0;$$

and if $K_{\eta,\alpha}(x)$ is bounded, then u(x) has a finite limit as $x \to 0$, $x \in G_{\alpha}$.

Proof. – For r > 0, let X(r) = (0, ..., 0, r) and $B_r = B(X(r), \rho(X(r)))$. If $E(x, X(r)) \subset B_r$, then, in view of Lemma 1, we have

$$|u(x) - u(X(r))| \leq M_1 \int_{B_r} |\operatorname{grad} u(y)| \rho(y)^{1-n} dy.$$

As in the proof of Theorem 1, by use of Hölder's inequality we establish

(3)
$$|u(x) - u(X(r))| \leq M_2 \kappa_{\eta}(\rho(x), 2\rho(X(r))) U(r) + M_2[m_n(B_r)]^{(1-\delta)/n},$$

where
$$0 < \delta < \alpha < 1$$
, $\kappa_{\eta}(t, r) = \left(\int_{t}^{r} s^{p'(1-n/p)} \eta(s)^{-p'/p} s^{-1} ds\right)^{1/p'}$ and
 $U(r) = \left(\int_{B_{r}} \Psi_{p}(|\operatorname{grad} u(y)|) \lambda(\rho(y)) dy\right)^{1/p}$.

For a large integer $j(\ge j_0)$, set $r_j = M_3 j^{-\alpha/(1-\alpha)}$, where j_0 and $M_3 > 0$ are chosen so that $r_j - r_{j+1} < \rho(X(r_j))$. Now we define

$$F_j = \{x = (x', x_n) \in G_{\alpha}; |x_n - r_j| < \rho(X(r_j))\}.$$

We shall show the existence of N > 0 such that the number of F_m with $F_m \cap F_j \neq 0$ is at most N for any j. Letting a and b be positive numbers, we assume that $r_j - ar_j^{1/\alpha} \leq r_{j+k} + b(r_{j+k})^{1/\alpha}$. Then

$$j[1 - (j/(j + k))^{\alpha/(1-\alpha)}] \leq M_3^{(1-\alpha)/\alpha}[a + b(j/(j + k))^{1/(1-\alpha)}].$$

Since $M_4 = \inf_{0 < t < 1} (1 - t^{\alpha/(1 - \alpha)})/(1 - t) > 0$, we derive

$$jk/(j+k) \leqslant M_5$$
 with $M_5 = [M_3^{(1-\alpha)/\alpha}(a+b)]/M_4$,

so that

 $k \leq M_5 j/(j - M_5)$ when $j > M_5$.

From this fact we can readily find N > 0 with the required property. Thus $\{F_{\ell}\}$ is shown to satisfy the above condition.

By (3) we have

$$|u(X(r_{j})) - u(X(r_{j+k}))| \leq |u(X(r_{j})) - u(X(r_{j+k}))| + |u(X(r_{j+1})) - u(X(r_{j+2}))| + \dots + |u(X(r_{j+k-1})) - u(X(r_{j+k}))| \leq M_{6} \left(\sum_{\ell=j}^{j+k-1} U(r_{\ell})^{p} \right)^{1/p} \left(\sum_{\ell=j}^{j+k-1} \rho(X(r_{\ell}))^{p'(1-n/p)} \left[\eta(\rho(X(r_{\ell}))) \right]^{p'} \right)^{1/p'} + M_{2} \sum_{\ell=j}^{\infty} [m_{n}(B_{r_{\ell}})]^{(1-\delta)/n}.$$

We note here that

$$\sum_{\ell=j}^{\infty} [m_n(B_{r_\ell})]^{(1-\delta)/n} \leq M_7 \sum_{\ell=j}^{\infty} \ell^{-(1-\delta)/(1-\alpha)} < \infty$$

since $\delta < \alpha$, and, by setting $\sigma(j) = j^{-1/(1-\alpha)}$ for simplicity, j + k - 1

$$\sum_{\ell=j} \rho(X(r_{\ell}))^{p'(1-n/p)} [\eta(\rho(X(r_{\ell})))]^{-p'/p} \\ \leqslant M_{8} \sum_{\ell=j}^{j+k-1} [\ell^{-1/(1-\alpha)}]^{p'(1-n/p)} [\eta(\ell^{-1/(1-\alpha)})]^{-p'/p} \\ \leqslant M_{9} \int_{j}^{j+k} [t^{-1/(1-\alpha)}]^{p'(1-n/p)} [\eta(t^{-1/(1-\alpha)})]^{-p'/p} dt \\ = M_{10} \int_{\sigma(j+k)}^{\sigma(j)} s^{p'(1-n/p)} [\eta(s)]^{-p'/p} s^{\alpha-2} ds \\ \leqslant M_{10} [\kappa_{\eta,\alpha}(\sigma(j+k))]^{p'} \leqslant M_{11} [\kappa_{\eta,\alpha}(\rho(X(r_{j+k})))]^{p'}.$$

First suppose $K_{\eta,\alpha}(x) \to \infty$ as $x \to 0$. Then, since $\{F_\ell\}$ meets mutually at most N times, we obtain

$$\limsup_{k \to \infty} \left[K_{\eta, \alpha}(X(r_{j+k})) \right]^{-1} |u(X(r_{j+k}))| \\ \leqslant M_6[M_{11}]^{1/p'} \left(\int_{\bigcup_{\ell \geqslant j} F_\ell} \Psi_p(|\operatorname{grad} u(y)|) \lambda(\rho(y)) \, dy \right)^{1/p}$$

for any *j*. Thus it follows that the left hand side is equal to zero. We also see from (3) that

$$\lim_{r\to 0} \left[\sup_{x \in B_r \cap G_{\alpha}} [K_{\eta,\alpha}(x)]^{-1} | u(x) - u(X(r)) | \right] = 0.$$

Since B_r contains some $X(r_j)$, it follows that

$$\lim_{x\to 0,x\in G_{\alpha}}[K_{\eta,\alpha}(x)]^{-1}u(x)=0.$$

If $K_{\eta,\alpha}(x)$ is bounded, then we see that

$$\lim_{j\to\infty} \sup_{k\ge j} |u(X(r_j)) - u(X(r_k))| = 0$$
$$\lim_{k\ge j} \sup_{k\ge j} |u(x) - u(X(r))| = 0.$$

and

$$\lim_{r\downarrow 0} \sup_{x \in B_r} |u(x) - u(X(r))| = 0.$$

These facts imply that u has a finite limit at the origin.

Here we give a result, which is a generalization of Theorem 2.

PROPOSITION 1. – Let λ_1 and λ_2 be nonnegative monotone functions on the interval $(0, \infty)$ satisfying the (Δ_2) condition, and let Ψ be a nonnegative nondecreasing function on the interval $(0, \infty)$ satisfying condition (Ψ_1) . Suppose u is a function harmonic in G_{α} and satisfying

$$\int_{G_{\alpha}} \Psi_p(|\operatorname{grad} u(x)|) \lambda_1(\rho(x)) \lambda_2(|x|^{1/\alpha}) dx < \infty.$$

Set $\eta_1(r) = \psi(r^{-1})\lambda_1(r), \ \eta(r) = \psi(r^{-1})\lambda_1(r)\lambda_2(r)$ and $K(x) = \kappa_{\eta_1}(\rho(x))[\lambda_2(x_n^{1/\alpha})]^{-1/p} + \kappa_{\eta,\alpha}(x_n^{1/\alpha}).$

If $K(0) (= \lim_{x \to 0} K(x)) = \infty$, then $[K(x)]^{-1}u(x) \to 0$ as $x \to 0$, $x \in G_{\alpha}$; if K(x) is bounded, then u(x) has a finite limit as $x \to 0$, $x \in G_a$.

Proof. — As in the proof of Theorem 2, for $x \in B_r$, we see that

$$|u(x) - u(X(r))| \leq M_1 r^{1-\delta} + M_1 \kappa_{\eta_1}(\rho(x)) \left(\int_{B_r} \Psi_p(f((y))\lambda_1(\rho(y)) \, dy \right)^{1/p}$$

$$\leq M_1 r^{1-\delta} + M_2 \kappa_{\eta_1}(\rho(x))\lambda_2(r^{1/\alpha})^{-1/p} \\ \times \left(\int_{B_r} \Psi_p(f(y))\lambda_1(\rho(y))\lambda_2(|y|^{1/\alpha}) \, dy \right)^{1/p}$$

and

and

$$|u(X(r_{j})) - u(X(r_{j+k}))| \leq M_{3} j^{-(1-\delta)/(1-\alpha)} + M_{3} \kappa_{\eta,\alpha} \left(\rho(X(r_{j+k}))\right) \\ \times \left(\int_{(\Delta_{j+k,j})} \Psi_{p}\left(f(y)\right) \lambda_{1}(\rho(y)) \lambda_{2}(|y|^{1/\alpha}) \, dy\right)^{1/p},$$

where f(y) = |grad u(y)| and $\Delta_{k,j} = \bigcup_{l=j} Br_l$. Thus the remaining part of the proof is similar to the proof of Theorem 2.

Next, for 0 < a < 1, let $G_{\alpha}(a) = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; 0 < x_n < 1, |x'|^{\alpha} < ax_n\}$. Then the following result can be proved similarly.

PROPOSITION 2. — Let λ , ψ and η be as in Theorem 1. Let u be a function harmonic in G_{α} and satisfying

(4)
$$\int_{G_{\alpha}} \Psi_p(|\operatorname{grad} u(x)|)\lambda(|x|^{1/\alpha}) dx < \infty.$$

If $0 < \alpha < 1$ and $\kappa_{\eta,\alpha}(0) = \infty$, then

$$\lim_{x\to 0, x\in G_{\alpha}(a)} [\kappa_{\eta,\alpha}(\rho(x))]^{-1} u(x) = 0$$

for any a such that 0 < a < 1; and if $\kappa_{\eta,\alpha}(r)$ is bounded, then u(x) has a finite limit as $x \to 0$, $x \in G_{\alpha}(a)$, for any a such that 0 < a < 1.

Remark. — Proposition 2 is best possible as to the order of infinity in the following sense: if $\varepsilon > 0$, $\beta > \alpha p - \alpha - 1$ and D is the half plane $\{(x, y); x > 0\}$, then we can find a harmonic function u on D which satisfies condition (4) with $\lambda(r) = r^{\beta}$ and

(5)
$$\lim_{x\to 0} x^{-\varepsilon} [\kappa_{\eta,\alpha}(x^{1/\alpha})]^{-1} u(x,0) = \infty.$$

For this purpose, consider $u(x, y) = r^{-a} \cos a\theta$, where $r = (x^2 + y^2)^{1/2}$ and $\theta = \tan^{-1}(y/x)$. Then *u* is harmonic in *D*. Since $\lambda(r) = r^{\beta}$, we see that

$$M_1 \psi(r^{-1})^{-1/p} r^{-a_0} \leq \kappa_{n,\alpha}(r) \leq M_2 \psi(r^{-1})^{-1/p} r^{-a_0}$$

with $a_0 = (2 - p + \beta)/\alpha p + (1 - \alpha)/\alpha p'$. If $0 < a < a_0$, then

$$\int_{G_{\alpha}} \Psi_p \left(|\operatorname{grad} u(z)| \right) \lambda(\rho(z)) \, dz < \infty.$$

If a is taken so large that $-\varepsilon + a_0 < a < a_0$, then we see that u also satisfies (5).

4. Removability of the origin.

In this section we are concerned with the removability of the origin for harmonic functions satisfying condition (1) with $G = B(0, a) - \{0\}$, a > 0.

THEOREM 3. — Let λ , ψ and η be as in Theorem 1, and let u be a function which is harmonic in $B(0, r_0) - \{0\}$ and satisfies

$$\int_{B(0,r_0)-\{0\}} \Psi_p\left(|\operatorname{grad} u(x)|\right) \lambda(|x|) \, dx < \infty.$$

If $\limsup_{r \downarrow 0} N(r)^{-1} \kappa_{\eta}(r) < \infty$, then u can be extended to a function harmonic in $B(0, r_0)$, where $N(r) = \log(1/r)$ in case n = 2 and $N(r) = r^{2-n}$ in case $n \ge 3$.

Proof. — For $\varepsilon > 0$ and $x \in B(0, r_0/2) - \{0\}$, let $x_{\varepsilon} = \varepsilon x/|x|$. Then Lemma 1 gives

$$|u(x) - u(x_{\varepsilon})| \leq M \kappa_{\eta}(|x|) \left(\int_{B(0,2\varepsilon)} \Psi_{p}(|\operatorname{grad} u(y)|) \lambda(|x|) dx \right)^{1/p} + M \int_{B(0,2\varepsilon)} |y|^{1-\delta-n} dy,$$

where $0 < \delta < 1$. Consequently, it follows that $\lim_{x \to 0} N(|x|)^{-1} u(x) = 0$. Now our result is a consequence of a result in [1], p. 204.

5. Limits at infinity.

In this section, we discuss the existence of limits at infinity for harmonic functions on a tube domain $T_{\ell} = \{x = (x', x'') \in \mathbb{R}^{\ell} \times \mathbb{R}^{n-\ell}; |x''| < 1\}$. This T_{ℓ} is not generally obtained, by inversion, from G_{α} .

THEOREM 4. – Let u be a harmonic function on T_{ℓ} satisfying

$$\int_{T_{\ell}} \Psi_p(|\operatorname{grad} u(x)|) \, \rho(x)^{p-n} \, \lambda(|x|) \, dx < \infty \,,$$

where λ is a positive monotone function on $(0,\,\infty)$ satisfying the (Δ_2) condition. Set

$$\widetilde{\Psi}(r) = \left(\int_0^r \left[\Psi(t^{-1})\right]^{-p'/p} t^{-1} dt\right)^{1/p'}$$

and

$$\kappa(r) = \left(\int_1^r \left[\tilde{\Psi}(t) \,\lambda(t)^{-1/p}\right]^{p'} dt\right)^{1/p'},$$

r > 1. If $\kappa(r) \to \infty$ as $r \to \infty$, then $[\kappa(|x|)]^{-1}u(x) \to 0$ as $|x| \to \infty$, $x \in T_{\ell}$; and if $\kappa(r)$ is bounded, then u(x) has a finite limit at infinity.

For the study of the behavior at infinity, we do not think it necessary to replace $\rho(x)^{p-n}$ by a more general function $\lambda_1(\rho(x))$. The proof of this theorem is similar to the proofs of Theorem 2 and Proposition 1; but we give a proof for the sake of completeness.

Proof of Theorem 4. – For $x \in T_{\ell}$, take $x_0 \in T_{\ell}$ such that $E(x, x_0) \subset B(x_0, 1)$. Then, by Lemma 1, we have

$$|u(x) - u(x_0)| \leq M_1 \int_{E(x,x_0)} f(y) \rho(y)^{1-n} dy$$

where $f(y) = |\operatorname{grad} u(y)|$. Hence Hölder's inequality implies that

$$\begin{split} |u(x) - u(x_{0})| &\leq M_{1} \left(\int_{\{y \in E(x, x_{0}); f(y) \geq \alpha \rho(y)^{-\delta}\}} \Psi_{p}(f(y)) \rho(y)^{p-n} dy \right)^{1/p} \\ &\times \left(\int_{\{y \in E(x, x_{0}) ; f(y) \geq \alpha \rho(y)^{-\delta}\}} \rho(y)^{p'(1-n)} [\Psi(f(y)) \rho(y)^{p-n}]^{-p'/p} dy \right)^{1/p'} \\ &+ \alpha \int_{E(x, x_{0})} \rho(y)^{1-n-\delta} dy \\ &\geq M_{1} \left(\int_{B(x_{0}, 1)} \Psi_{p}(f(y)) \rho(y)^{p-n} dy \right)^{1/p} \\ &\times \left(\int_{E(x, x_{0})} [\Psi(\alpha \rho(y)^{-\delta})]^{-p'/p} \rho(y)^{-n} dy \right)^{1/p'} + M_{2} \alpha \,, \end{split}$$

where $\alpha > 0$ and $0 < \delta < 1$. If we note that

$$\left(\int_{E(x,x_0)} \left[\Psi(\alpha\rho(y)^{-\delta})\right]^{-p'/p}\rho(y)^{-n}dy\right)^{1/p'} \leq M_3\left(\int_0^2 \left[\Psi(\alpha r^{-\delta})\right]^{-p'/p}r^{-1}dr\right)^{1/p'} \leq M_4\,\Psi(\alpha^{-1}),$$

then

$$|u(x) - u(x_0)| \leq M_5 \left(\int_{B(x_0,1)} \Psi_p(f(y)) \rho(y)^{p-n} dy \right)^{1/p} \tilde{\psi}(\alpha^{-1}) + M_2 \alpha.$$

Taking $\alpha = |x|^{-2}$, we have

$$|u(x) - u(x_0)| \leq M_6 \left(\int_{B(x_0, 1)} \Psi_p(f(y)) \rho(y)^{p-n} \lambda(|y|) dy \right)^{1/p} \\ \times \tilde{\Psi}(|x|) \lambda(|x|)^{-1/p} + M_2 |x|^{-2}.$$

For x = (x', x''), let k be the nonnegative integer such that $k \leq |x'| < k + 1$. Put $x_j = j(x', 0)/|x'|$ for j = 0, 1, ..., k and

$$\begin{aligned} |u(x) - u(x_{j_0})| &\leq |u(x) - u(x_{k+1})| + |u(x_{k+1}) - u(x_k)| + \cdots \\ &+ |u(x_{j_0+1}) - u(x_{j_0})| \\ &\leq M_6 \bigg(\int_{\Delta(x, x_{j_0})} \Psi_p(f(y)) \rho(y)^{p-n} \lambda(|y|) dy \bigg)^{1/p} \\ &\times \bigg(\sum_{j=j_0}^{k+1} [\tilde{\Psi}(j) \lambda(j)^{-1/p}]^{p'} \bigg)^{1/p'} + M_2 \bigg(\sum_{j=j_0}^{k+1} j^{-2} \bigg) \\ &\leq M_7 \bigg(\int_{\Delta(x, x_{j_0})} \Psi_p(f(y)) \rho(y)^{p-n} \lambda(|y|) dy \bigg)^{1/p} \kappa(|x|) + M_7 j_0^{-1}, \end{aligned}$$

where $\Delta(x, x_{j_0}) = \bigcup_{j_0 \le j \le k+1} B(x_j, 1)$. If $\kappa(r)$ is not bounded, then it follows that

$$\limsup_{|x'| \to \infty, x \in T_{\ell}} [\kappa(|x|)]^{-1} |u(x)| \leq M_{7} \left(\int_{T_{\ell} - B(0, j_{0} - 1)} \Psi_{p}(f(y)) \rho(y)^{p-n} \lambda(|y|) dy \right)^{1/p}$$

for any j_0 , which implies that the left hand side equals zero.

If $\kappa(r)$ is bounded, then u(x) is shown to have a finite limit at infinity.

6. Global boundary behavior.

In this section we are concerned with the global existence of tangential boundary limits of harmonic functions u on G satisfying (1). Our aim is to give generalizations of the author's results [5], [6]. We consider the sets

$$E_0 = \left\{ \xi \in \partial G \; ; \int_{G \cap B(\xi, 1)} |\xi - y|^{1-n} |\operatorname{grad} u(y)| \, dy = \infty \right\}$$

and

$$E_h = \left\{ \xi \in \partial G ; \limsup_{r \downarrow 0} h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi_p(|\operatorname{grad} u(y)|) \lambda(\rho(y)) dy > 0 \right\},$$

 $x_{k+1} = (x', 0)$. Then

WEIGHTED BOUNDARY LIMITS OF HARMONIC FUNCTIONS

where h is a positive nondecreasing function on the interval $(0,\infty)$. From condition (1) it follows that $H_h(E_h) = 0$; moreover, in case $\lambda(r) = r^{\beta}$, $B_{1-\beta/p,p}(E_0) = 0$. Here H_h denotes the Hausdorff measure with the measure function h and $B_{\alpha,p}$ denotes the Bessel capacity of index (α, p) (see Meyers [4]). As to the size of E_0 , we shall give a precise evaluation in Proposition 3 below, after discussing the Ψ_p norm inequality of singular integrals.

Further, let φ be a positive nondecreasing function on the interval $(0,\infty)$ such that $\lim_{r\downarrow 0} \varphi(r) = 0$, $\varphi(r)/r$ is nondecreasing on $(0,\infty)$ and $\varphi(2r) \leq M\varphi(r)$ for any r > 0 with a positive constant M. For a > 0 and $\xi \in \partial G$, set

$$S_{\varphi}(a) = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; \varphi(|x-\xi|) < ax_n\}$$

and

$$T_{\varphi}(\xi,a) = \{\xi + \Xi_{\xi}x ; x \in S(a)\}$$

with an orthogonal transformation Ξ_{ξ} .

THEOREM 5. – Let G be a Lipschitz domain in \mathbb{R}^n , and let u be a harmonic function on G satisfying condition (1). If $\xi \in \partial G - E_0 \cup E_h$, $T_{\varphi}(\xi, a) \subset G$ and $\kappa_{\eta}(\rho(x)) \leq M(a) h(|\xi - x|)^{-1/p}$ on $T_{\varphi}(\xi, a)$, with a positive constant M(a), then u(x) has a finite limit as $x \to \xi$, $x \in T_{\varphi}(\xi, a)$.

Proof. – In view of Lemma 1, we can find $\{r_j\}$, $\{x_j\}$ and c > 0 (in Lemma 1) with the following properties :

- i) $0 < r_{j+1} < r_j < 1/j$.
- ii) $x_j \in G \cap B(\xi, r_j)$.
- iii) If $x \in G \cap B(\xi, r_{j+1})$, then $E(x, x_j) \subset G \cap B(\xi, r_j)$, $\rho(x) + |x-y| \leq M_1 \rho(y)$ for any $y \in E(x, x_j)$ and

$$|u(x) - u(x_j)| \leq M_1 \int_{E(x,x_j)} f(y) \, \rho(y)^{1-n} \, dy$$

where f(y) = |grad u(y)|. Hence, as in the proof of Theorem 1, we obtain

$$\begin{aligned} |u(x) - u(x_j)| &\leq M_1 \int_{E(x,x_j) - B(\xi,2|x-\xi|)} f(y) \,\rho(y)^{1-n} \, dy \\ &+ M_1 \int_{\{y \in G \cap B(\xi,2|x-\xi|) \ ; f(y) < \rho(y)^{-\delta}\}} \rho(y)^{1-\delta-n} \, dy \\ &+ M_2 \kappa_{\eta}(\rho(x)) \left(\int_{G \cap B(\xi,2|\xi-x|)} \Psi_p(f(y)) \lambda(\rho(y)) dy \right)^{1/p} \\ &\leq M_3(I_1 + I_2 + I_3), \end{aligned}$$

where $0 < \delta < 1$. If $y \in E(x, x_j)$ and $|y - \xi| \ge 2|x - \xi|$, then $\rho(y) \ge M_1^{-1}|x - y| \ge M_1^{-1}(|y - \xi| - |x - \xi|) \ge (2M_1)^{-1}|y - \xi|$, so that

$$I_1 \leq M_4 \int_{E(x,x_j) - B(\xi,2|x-\xi|)} f(y) |\xi - y|^{1-n} dy$$

Moreover, $I_2 \leq M_5 |x-\xi|^{1-\delta}$ and $\kappa_{\eta}(\rho(x)) \leq M(a) h(|x-\xi|)^{-1/p}$ for $x \in T_{\varphi}(\xi, a)$ by our assumption. Consequently, if $\xi \in \partial G - (E_0 \cup E_h)$, then $\{u(x_\ell)\}_{\ell \geq j+1}$ is bounded, so that we can find a subsequence $\{u(x_{j_k})\}$ which converges to a number u_{ϱ} as $k \to \infty$. Hence, since

$$\lim_{j\to\infty} \left[\lim_{x\to\xi, x\in T_{\varphi}(\xi,a)} \sup |u(x) - u(x_j)| \right] = 0,$$

it follows that $u(x) \to u_0$ as $x \to \xi$ along $T_{\varphi}(\xi, a)$.

For $a, b \ge 0$ and $\alpha > 1$, set

$$S_{\alpha}(a,b) = \{x = (x', x_n); x_n > a | x' | + b | x' |^{\alpha} \}.$$

If G is a Lipschitz domain, then, for each $\xi \in \partial G$ we can find a_{ξ} , $b_{\xi} \ge 0$, $r_{\xi} > 0$ and an orthogonal transformation Ξ_{ξ} such that

$$\{\xi + \Xi_{\xi}x ; x \in S_{\alpha}(a_{\xi}, b_{\xi})\} \cap B(\xi, r_{\xi}) \subset G.$$

For $b > b_{\xi}$, put

$$T_{\alpha}(\xi,b) = T_{\alpha}(\xi,\Xi_{\xi},b) \equiv \{\xi + \Xi_{\xi}x; x \in S_{\alpha}(a_{\xi},b)\} \cap B(\xi,r_{\xi}).$$

COROLLARY – Let G be a Lipschitz domain. For $\alpha > 1$, let $\{T_{\alpha}(\xi, b); \xi \in \partial G, b > b_{\xi}\}$ be given as above. If u is a function which is harmonic in G and satisfies

$$\int_{G} \Psi_{p}(|\operatorname{grad} u(x)|)\rho(x)^{\beta} dx < \infty$$

for $\beta > p - n$, then there exists a set $E \subset \partial G$ such that

- i) $H_h(E) = 0$ for $h(r) = \inf_{t \ge r} t^{\alpha(n-p+\beta)} \psi(t^{-1})$;
- ii) u(x) has a finite limit as $x \to \xi$ along $T_{\alpha}(\xi, b)$ whenever $\xi \in \partial G E$ and $b > b_{\xi}$.

Proof. – First note that for $\varepsilon > 0$, $r^{\varepsilon}\psi(r^{-1}) \ge M_1 s^{\varepsilon}\psi(s^{-1})$ whenever 0 < s < r, on account of condition (ψ_1) . Hence, since $\rho(x) \ge M_1 |x - \xi|^{\alpha}$

for $x \in T_{\alpha}(\xi, b)$,

$$\begin{split} \kappa_{\eta}(\rho(x)) &\leqslant \left(\int_{M_{1}r^{\alpha}}^{1} [s^{n-p+\beta} \psi(s^{-1})]^{-p'/p} s^{-1} \, ds \right)^{1/p'} \\ &\leqslant M_{2} [r^{\alpha(n-p+\beta-\delta)} \psi(r^{-1})]^{-1/p} \left(\int_{M_{1}r^{\alpha}}^{1} s^{-\delta p'/p-1} \, ds \right)^{1/p'} \\ &\leqslant M_{3} h(r)^{-1/p}, \end{split}$$

where $0 < \delta < n - p + \beta$ and $r = |x - \xi|$. Let $E = E_0 \cup E_h$ in the notation given in Theorem 5. Since $B_{1-\beta/p,p}(E_0) = 0$ implies that E_0 has Hausdorff dimension at most $n - p + \beta$, on account of [4], Theorem 22. Since $\alpha > 1$ and $n - p + \beta > 0$, $\lim_{r \to 0} h(r)/r^{n-p+\beta} = 0$, so that we see that $H_h(E_0) = 0$. Hence $H_h(E) = 0$, and the Corollary follows from Theorem 5.

Remark 1. – In case $\psi(r) \equiv 1$, $\lambda(r) = r^{\beta}$ with $p - n \leq \beta$ $and <math>\varphi(r) = r^{\alpha}$ with $\alpha > 1$, we can take h so that $h(r) = r^{\alpha(n-p+\beta)}$ if $n - p + \beta > 0$ and $h(r) = [\log (2 + r^{-1})]^{1-p}$ if $n - p + \beta = 0$. Hence, Theorem 5 and its Corollary give the usual T_{α} -limit theorem (see [5]).

Remark 2. – Nagel, Rudin and Shapiro [8] proved the existence of T_{α} -limits of harmonic functions represented as Poisson integrals in a half space.

7. Singular integrals.

Here we establish the following result.

THEOREM 6. – Let f be a function on \mathbb{R}^n such that

$$\int (1+|y|)^{1-n} |f(y)| dy < \infty$$

and $\int \Psi_p(|f(y)||y_n|^{\beta/p}) dy < \infty$, where $-1 < \beta < p - 1$. If we set $u(x) = \int |x-y|^{1-n} f(y) dy$, then $\int \Psi_p(|\operatorname{grad} u(x)||x_n|^{\beta/p}) dx \leq M \int \Psi_p(|f(y)||y_n|^{\beta/p}) dy$

with a positive constant M independent of f.

Proof. – Without loss of generality, we may assume that $f \ge 0$ on \mathbb{R}^n . First we consider the case $\beta = 0$. We note, by the well-known fact from the theory of singular integral operators, that

$$\begin{split} \lambda(a) &\equiv H_n(\{x; |\text{grad } u(x)| > a\}) \\ &\leqslant M_1 a^{-1} \int_{\{y; f(y) \ge a/2\}} U(y) \, dy + M_1 a^{-q} \int_{\{y; f(y) < a/2\}} U(y)^q \, dy \\ &= M_1 \mu_1(a) + M_1 \mu_2(a) \,, \end{split}$$

where H_n denotes the *n*-dimensional Lebesgue measure, q > p and U(y) = |grad u(y)|. Hence we have

$$\begin{split} \int \Psi_p(|\operatorname{grad} u(x)|) \, dx &= \int_0^\infty \lambda(a) \, d\Psi_p(a) \\ &\leq M_1 \int_0^\infty \mu_1(a) \, d\Psi_p(a) + M_1 \int_0^\infty \mu_2(a) \, d\Psi_p(a) \\ &\leq M_1 \int U(y) \left(\int_0^{2f(y)} a^{-1} \, d\Psi_p(a) \right) dy + M_1 \int U(y)^q \left(\int_{2f(y)}^\infty a^{-q} \, d\Psi_p(a) \right) dy \\ &\leq M_2 \int \Psi_p(U(y)) \, dy \, . \end{split}$$

In case $\beta \neq 0$, set $g(y) = |y_n|^{\beta/p} U(y)$ and

$$v(x) = \int |x-y|^{1-n}g(y)\,dy\,.$$

For $j = 1, 2, \ldots, n$, we see that

$$||x_n|^{\beta/p} (\partial/\partial x_j) u(x) - (\partial/\partial x_j) v(x)| \leq M_3 \int K_{\beta}(x_n, y_n) \left(P_{|x_n - y_n|} g \right) (x', x_n) \, dy_n,$$

where $K_{\beta}(x_n, y_n) = |1 - |x_n/y_n|^{\beta/p}|/|x_n - y_n|$ and P denotes the Poisson kernel in the upper half space $D = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; x_n > 0\}$. By [9], Theorem 1, (a) in Chap. III and Theorem 1, (c) in Chap. I, we have for $q \ge 1$

$$\int [P_t g(x', x_n)]^q dx' \leq M_4 \int g(y', y_n)^q dy'.$$

Hence, by using Minkowski's inequality (cf. [9], Appendix A.1), we establish

$$\begin{split} \int & \left(\int K_{\beta}(x_n, y_n) \left(P_{|x_n - y_n|} g \right) (x', x_n) \, dy_n \right)^q dx \\ & \leqslant M_4 \int \left(\int K_{\beta}(x_n, y_n) \left(\int g(y', y_n)^q \, dy' \right)^{1/q} dy_n \right)^q dx_n. \end{split}$$

Let q_1 and q_2 be positive numbers such that $\beta < q_1 - 1$ and $1 < q_1 < p < q_2$. Applying Appendix A.3 in Stein's book [9], we see that

$$\lambda(a) \equiv H_n(\{x; ||x_n|^{\beta/p} (\partial/\partial x_j) u(x) - (\partial/\partial x_j) v(x)| > a\})$$

$$\leq M_5(\mu_1(a) + \mu_2(a)),$$

where

$$\mu_1(a) = a^{-q_1} \int_{\{y; g(y) \ge a/2\}} g(y)^{q_1} \, dy$$

and

or

$$\mu_2(a) = a^{-q_2} \int_{\{y; g(y) < a/2\}} g(y)^{q_2} \, dy \, .$$

Consequently, by the above considerations, we see that

$$\int \Psi_p(||x_n|^{\beta/p}(\partial/\partial x_j)u(x) - (\partial/\partial x_j)v(x)|) \leq M_6 \int \Psi_p(g(y)) \, dy \, .$$

Thus it follows that

$$\int \Psi_p(|x_n|^{\beta/p}(\partial/\partial x_j)u(x)|) \, dx \leq M_7 \int \Psi_p(g(y)) \, dy,$$
$$\int \Psi_p(|x_n|^{\beta/p}| \operatorname{grad} u(x)|) \, dx \leq M_8 \int \Psi_p(g(y)) \, dy < \infty.$$

Remark. - Consider the functions

,

$$u_{j}(x) = \int (x_{j} - y_{j}) |x - y|^{-n} f(y) \, dy \, .$$

Then the same inequality as in Theorem 6 still holds for each u_i .

For $\beta > 0$ and $E \subset \mathbb{R}^n$, we define

$$C_{\beta,\Psi_p}(E) = \inf \int \Psi_p(f(y)) \, dy \, ,$$

where the infimum is taken over all nonnegative measurable functions f on \mathbb{R}^n such that $\int_{B(x,1)} |x-y|^{\beta-n} f(y) \, dy \ge 1$ for every $x \in E$.

PROPOSITION 3. – Let f be a nonnegative measurable function on a Lipschitz domain G such that $\int_{G} \Psi_p(f(y))\rho(y)^\beta dy < \infty$, and set $E = \{\xi \in \partial G; \int_{G \cap B(\xi, 1)} |\xi - y|^{1-n} f(y) dy = \infty\}$. If $-1 < \beta < p - 1$, then $C_{1-\beta/p,\Psi_p}(E) = 0$.

Proof. – By a change of variables, we may assume that G is the half space D and f vanishes outside some ball B(0,N). Let $u(x) = \int_{D} |x-y|^{1-n} f(y) \, dy$ for a nonnegative measurable function f on D such that $\int_{D} \Psi_{p}(f(y)) y_{n}^{\beta} \, dy < \infty$. Here note that

$$\begin{split} \int \Psi_p(f(y)y_n^{\beta/p}) \, dy &\leq \int_{\{y \in D; \ f(y) \in \geqslant y_n^{\beta/p}\}} \Psi_p(f(y)y_n^{\beta/p}) \, dy \\ &+ \int_{\{y \in D; \ f(y) \in \leqslant y_n^{\beta/p}\}} \Psi_p(f(y)y_n^{\beta/p}) \, dy \\ &\leq \int_D y_n^\beta f(y)^p \Psi(f(y)^{1+\varepsilon}) \, dy \\ &+ \int_{\{y \in D; \ f(y) > 0\}} \Psi_p(y_n^{(1+\varepsilon^{-1})\beta/p}) \, dy < \infty \,, \end{split}$$

if $\varepsilon > 0$ and $\beta(1 + \varepsilon^{-1}) > -1$. Hence, from Theorem 6, it follows that $\int \Psi_p(|\operatorname{grad} u(x)||x_n|^{\beta/p}) \, dx < \infty. \quad \operatorname{Since} |\operatorname{grad} u(x)| = O(|x|^{-n}) \quad \operatorname{as} |x| \to \infty, \text{ we see that } \int_{\mathbb{R}^{n-B(0,a)}} \Psi_p(|\operatorname{grad} u(x)|)|x_n|^{\beta} \, dx < \infty \quad \text{for a}$

sufficiently large a. Moreover, we have, by letting $U(x) = |\operatorname{grad} u(x)|$,

$$\begin{split} \int_{B(0,a)} \Psi_p(U(x)) |x_n|^{\beta} dx &\leq \int_{\{x \in B(0,a); U(x) \geq |x_n|^{-(1+\delta^{-1})\beta/p}\}} \Psi_p(U(x)) |x_n|^{\beta} dx \\ &+ \int_{\{x \in B(0,a); U(x) < |x_n|^{-(1+\delta^{-1})\beta/p}\}} \Psi_p(U(x)) |x_n|^{\beta} dx \\ &\leq \int \Psi([U(x)|x_n|^{\beta/p}]^{1+\delta}) U(x)^p |x_n|^{\beta} dx \\ &+ \int_{B(0,a)} \Psi_p(|x_n|^{-(1+\delta^{-1})\beta/p}) |x_n|^{\beta} dx < \infty \,, \end{split}$$

if $\delta > 0$ and $\delta > \beta$. Thus $\int \Psi_p(U(x)) |x_n|^{\beta} dx < \infty$.

Consider the set

$$E^* = \{x \in \partial D; \int_D |x-y|^{1-\beta/p-n} [U(y)y_n^{\beta/p}] dy = \infty \}.$$

Then, by definition, $C_{1-\beta/p,\Psi_n}(E^*) = 0$. If $\xi \in \partial D - E^*$ and a > 0, then

$$\int_{\Gamma(\xi,a)} |\xi-y|^{1-n} |\operatorname{grad} u(y)| dy < \infty,$$

where $\Gamma(\xi, a) = \{x \in D; |x - \xi| < ax_n\}$. It follow that

$$\int_0^{r_0} |\operatorname{grad} u(\xi + r\theta)| dr < \infty \quad \text{for almost every } \theta \in \partial B(0,1),$$

which implies that $u(\xi + r\theta)$ has a finite limit for almost every $\theta \in \partial B(0,1)$. If $\xi \in E$, then $\liminf_{r \to 0} u(\xi + rx) \ge u(\xi) = \infty$ for any $x \in D$ by the lower semicontinuity of potentials. Thus $\xi \in \partial D - E$. Hence $E \subset E^*$, or $C_{1-\beta/p,\Psi_p}(E) = 0$.

8. Best possibility.

Here we deal with the best possibility of Theorem 1 as to the order of infinity. Let D be the upper half space, that is, $D = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; x_n > 0\}.$

PROPOSITION 4. – Let λ , ψ and η be as in Theorem 1. Suppose $\kappa_{\eta}(0) = \infty$ and $r^{\delta}\eta(r)^{-1}$ is bounded above on (0,1] for some $\delta > 1 - n$. If a(r) is a nonincreasing positive function on the interval $(0,\infty)$ such that $\lim_{r\downarrow 0} a(r) = \infty$, then there exists a nonnegative measurable function f such that f = 0 outside B(0,1),

$$\int_{\mathbb{R}^n} \Psi_p(f(y))\lambda(|y_n|) \, dy < \infty$$

and

$$\limsup_{r\downarrow 0} a(r)\kappa_{\eta}(r)^{-1}u(r\xi) = \infty \quad for \ any \ \xi \in D\,,$$

where
$$u(x) = \int_{R^{n}-D} (x_n - y_n) |x - y|^{-n} f(y) \, dy$$
.

Remark. – By the Remark after Theorem 6, if $\lambda(r) = r^{\beta}$ with $-1 < \beta < p - 1$, then

$$\int \Psi_p(|\operatorname{grad} u(x)|)|x_n|^\beta \, dx < \infty \, .$$

Proof of Proposition 4. – Let $\{r_j\}$ be a sequence of positive numbers such that $r_j < r_{j-1}/2$ and

$$\kappa_{\eta}(r_j) \leq 2 \left(\int_{r_j}^{r_{j-1}} [s^{n-p}\eta(s)]^{-p'/p} s^{-1} ds \right)^{1/p'}$$

Further take a sequence $\{b_j\}$ of positive numbers such that $\lim_{j \to \infty} b_j a(r_j) = \infty$ and $\sum_{j=1}^{\infty} b_j^p < \infty$. Let $\Gamma(c)$ be the cone $S_{\varphi}(c)$ with $\varphi(r) \equiv r$, and set $\widehat{\Gamma}(c) = \{x \in \mathbb{R}^n; -x \in \Gamma(c)\}$. Now we define

$$f(y) = b_j \kappa_{\eta}(r_j)^{-p'/p} [|y|^{n-1} \eta(|y|)]^{-p'/p}$$

if $y \in \hat{\Gamma}_j \equiv \hat{\Gamma}(1) \cap B(0, r_{j-1}) - B(0, r_j)$ and f = 0 otherwise, and consider the function u defined as in Proposition 4. If

$$x\in\Gamma(c)\cap B(0,2r_j)-B(0,r_j),$$

then

$$u(x) \ge M_1 b_j \kappa_{\eta}(r_j)^{-p'/p} \int_{\Gamma_j} |y|^{1-n} [|y|^{n-1} \eta(|y|)]^{-p'/p} dy$$

$$\ge M_2 b_j \kappa_{\eta}(r_j),$$

so that

$$\lim_{x \to 0, x \in \Delta(c)} a(|x|) \kappa_{\eta}(|x|)^{-1} u(x) = \infty$$

with $\Delta(c) = \bigcup_{j=1}^{\infty} \{x \in \Gamma(c); r_j < |x| < 2r_j\}$. On the other hand, since $r^{\delta} \eta(r)^{-1}$

is bounded above by our assumption, $f(y) \leq M_3 |y|^{-p'(n-1+\delta)/p}$, so that $\psi(f(y)) \leq M_4 \psi(|y|^{-1})$ by (2). Hence we establish

$$\begin{split} \int_{\mathbb{R}^n} \Psi_p(f(y)) \, \lambda(|y|) \, d\, y &\leq M_5 \sum_{j=1}^\infty b_j^p \, \kappa_\eta(r_j)^{-p'} \int_{\Gamma_j} |y|^{p'(1-n)} \, \eta(|y|)^{1-p'} \, d\, y \\ &\leq M_6 \sum_{j=1}^\infty b_j^p < \infty \, . \end{split}$$

Thus f satisfies all the required assertions.

The Corollary to Theorem 5 is best possible as to the size of the exceptional sets, in the following sense.

PROPOSITION 5. – Let ψ , λ and η be as in Theorem 1. Let φ be a nonnegative nondecreasing function on $(0,\infty)$ such that $\varphi(r) \leq Mr$ for any r > 0, with a positive constant M, and set

$$\varphi^*(r) = \int_{\varphi(r)}^{2Mr} [t^{n-p} \eta(t)]^{-p'/p} t^{-1} dt.$$

Suppose further that the following assertions hold :

- i) $r^{\delta_1}\lambda(r)^{-1}$ is nondecreasing on $(0,\infty)$ for some $\delta_1 > 1/p n$.
- ii) $r^{\delta_2}\lambda(r)$ is nondecreasing on $(0,\infty)$ for some $\delta_2 < 1$.
- iii) $\varphi^*(r) \to \infty$ as $r \to 0$.
- iv) $\phi^*(r) \leq M^*\phi^*(s)$ whenever 0 < s < r, with a positive constant M^* .

We now define $h(r) = \inf_{s \ge r} [\phi^*(s)]^{-p/p'}$. Then, for a compact set $K \subset \partial D$ such that $H_h(K) = 0$, there exists a nonnegative measurable function f on \mathbb{R}^n such that

$$\int \Psi_p(f(y)) \, \lambda(|y_n|) \, dy < \infty$$

and $Uf(x) \equiv \int_{\mathbb{R}^{n}-D} (x_n - y_n) |y - y|^{-n} f(y) \, dy$ does not have a finite limit as $x \in T_{\varphi}(\xi, 1) \to \xi$ at any $\xi \in K$, where $T_{\varphi}(\xi, 1) \equiv \{x + \xi; x \in S_{\varphi}(1)\}$.

Proof. – For the construction of such f, we take, for each positive integrer m, a finite family $\{B(x_{j,m}, r_{j,m})\}$ of balls such that $x_{j,m} \in \partial D$, $r_{j,m} < 1/m$, $\sum_{j} h(r_{j,m}) < 2^{-m}/m$ and $\bigcup_{j} B(x_{j,m}, r_{j,m}) \supset K$. Setting

$$B_{i,j} = B(x_{i,j}, 2Mr_{i,j}) - B(x_{i,j}, \varphi(r_{i,j})),$$

we define

$$f_{m,j}(y) = m^{1/p} [h(r_{j,m})]^{p'/p} [|x_{j,m} - y|^{n-1} \eta(|x_{j,m} - y|)]^{-p'/p}$$

for $y \in B_{m,j}$ and $f_{m,j}(y) = 0$ elsewhere. Consider the function $f(y) = \sup_{m,j} f_{m,j}(y)$. Since $f_{m,j}(y) \leq M_1 |x_{j,m} - y|^{-\gamma}$, where

$$\gamma = 1/p + p'(n-1+\delta_1)/p > 0$$

we see that $\psi(f_{m,j}(y)) \leq M_2 \psi(|x_{j,m}-y|^{-1})$ on account of (2). Since $r^{\delta_2}\lambda(r)$ is nondecreasing and $\varphi^*(r) \leq M_3[h(r)]^{-p'/p}$, we establish

$$\int_{\mathbb{R}^{n}-D} \Psi_{p}(f(y)) \,\lambda(|y_{n}|) \,dy \leq M_{4} \sum_{m} m \left(\sum_{j} [h(r_{j,m})]^{p'} \int_{B_{j,m}} |x_{j,m} - y|^{p'(1-n)} \right)$$

$$\times [\eta(|x_{j,m} - y|)]^{p'} \,\psi(|x_{j,m} - y|^{-1}) [|x_{j,m} - y|^{\delta_{2}} \lambda(|x_{j,m} - y|)] |y_{n}|^{-\delta_{2}} dy$$

$$\leq M_{5} \sum_{m} m \left(\sum_{j} [h(r_{j,m})]^{p'} \,\varphi^{*}(r_{j,m}) \right)$$

$$\leq M_{6} \sum_{m} m \left(\sum_{j} h(r_{j,m}) \right) \leq M_{6} \sum_{m} 2^{-m} < \infty \,.$$

Further,

$$Uf(x) \ge \int (x_n - y_n) |x - y|^{-n} f_{m,j}(y) dy$$

$$\ge M_{\gamma} m^{1/p} [h(r_{j,m})]^{p'/p} \int_{\varphi(r_{i,j})}^{2Mr_{i,j}} r^{p'(1-n)} [\eta(r)]^{-p'/p} r^{-1} dr$$

$$\ge M_{\gamma} m^{1/p}$$

for any $x \cap D \cap B(x_{j,m}, \varphi(r_{j,m}))$. If $\xi \in K$, then for each *m* there exists j(m) such that $\xi \in B(x_{j(m),m}, r_{j(m),m})$. Since

$$B(x_{j(m),m},\varphi(r_{j(m),m})) \cap T_{\varphi}(\xi,1) \neq \emptyset,$$

if follows that

$$\limsup_{x\to\xi,x\in T_{\varphi}(\xi,1)} Uf(x) = \infty.$$

BIBLIOGRAPHY

- M. BRELOT, Élément de la théorie classique du potentiel, 4^e édition, Centre de Documentation Universitaire, Paris, 1969.
- [2] L. CARLESON, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [3] A. B. CRUZEIRO, Convergence au bord pour les fonctions harmoniques dans R^{d} de la classe de Sobolev W_{1}^{d} , C.R.A.S., Paris, 294 (1982), 71-74.
- [4] N. G. MEYERS, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
- [5] Y. MIZUTA, On the Boundary limits of harmonic functions with gradient in L^p, Ann. Inst. Fourier, 34-1 (1984), 99-109.
- [6] Y. MIZUTA, On the boundary limits of harmonic functions, Hiroshima Math. J., 18 (1988), 207-217.
- [7] T. MURAI, On the behavior of functions with finite weighted Dirichlet integral near the boundary, Nagoya Math. J., 53 (1974), 83-101.
- [8] A. NAGEL, W. RUDIN and J. H. SHAPIRO, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360.
- [9] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [10] H. WALLIN, on the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1985), 510-525.

Manuscrit reçu le 3 mai 1989.

Yoshihiro MIZUTA, Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Hiroshima 730 (Japon).