L’extension universelle vectorielle d’une courbe est décrite en termes de la géométrie de la courbe.
The universal vectorial extension of a curve is described in terms of the geometry of the curve.
@article{AIF_1990__40_4_769_0, author = {Coleman, Robert F.}, title = {Vectorial extensions of {Jacobians}}, journal = {Annales de l'Institut Fourier}, pages = {769--783}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {4}, year = {1990}, doi = {10.5802/aif.1234}, mrnumber = {92e:14042}, zbl = {0739.14016}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1234/} }
TY - JOUR AU - Coleman, Robert F. TI - Vectorial extensions of Jacobians JO - Annales de l'Institut Fourier PY - 1990 SP - 769 EP - 783 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1234/ DO - 10.5802/aif.1234 LA - en ID - AIF_1990__40_4_769_0 ER -
Coleman, Robert F. Vectorial extensions of Jacobians. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 769-783. doi : 10.5802/aif.1234. http://www.numdam.org/articles/10.5802/aif.1234/
[C1] The Universal Vectorial Bi-extension and p-adic Heights, to appear in Inventiones. | Zbl
,[C2] Duality for the de Rham Cohomology of Abelian Schemes, to appear. | Numdam | Zbl
,[CG] p-adic Heights on Curves, Advances in Math., 17 (1989), 73-81. | MR | Zbl
, and ,[C-C] La jacobienne généralisée d'une courbe relative, C.R. Acad. Sci., Paris, t. 289 (279), 203-206. | MR | Zbl
,[G] Revêtement Étale et Groupe Fondamental (SGA I) SLN 224 (1971). | Zbl
,[MaMe] Universal Extensions and One Dimensional Crystalline Cohomology, Springer Lecture Notes, 370, 1974. | MR | Zbl
and ,[MaT] Canonical Height Pairings via Bi-extensions, Arithmetic and Geometry, Vol. I, Birkhauser, (1983), 195-237. | MR | Zbl
and ,[O] Rational Maps and Albanese Schemes, Thesis, University of California at Berkeley, (1984).
,[S] Groupes Algébriques et Corps de Classes, Hermann, 1959. | MR | Zbl
,Cité par Sources :