Une fonction sur qui est -invariante est convexe si et seulement si sa restriction au sous-espace des matrices diagonales est convexe. Ceci résulte de variantes de l’inégalité de Von Neumann et fait appel, dans le cas où , à la notion de valeur singulière signée.
A function on which is -invariant is convex if and only if its restriction to the subspace of diagonal matrices is convex. This results from Von Neumann type inequalities and appeals, in the case where , to the notion of signed singular value.
@article{AFST_2007_6_16_1_71_0, author = {Dacorogna, Bernard and Mar\'echal, Pierre}, title = {Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von {Neumann{\textquoteright}s} inequality}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {71--89}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {1}, year = {2007}, doi = {10.5802/afst.1139}, mrnumber = {2325592}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1139/} }
TY - JOUR AU - Dacorogna, Bernard AU - Maréchal, Pierre TI - Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 71 EP - 89 VL - 16 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1139/ DO - 10.5802/afst.1139 LA - en ID - AFST_2007_6_16_1_71_0 ER -
%0 Journal Article %A Dacorogna, Bernard %A Maréchal, Pierre %T Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 71-89 %V 16 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1139/ %R 10.5802/afst.1139 %G en %F AFST_2007_6_16_1_71_0
Dacorogna, Bernard; Maréchal, Pierre. Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 16 (2007) no. 1, pp. 71-89. doi : 10.5802/afst.1139. http://www.numdam.org/articles/10.5802/afst.1139/
[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archives For Rational Mechanics and Analysis, 63, p. 337-403 (1977). | MR | Zbl
[2] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR | Zbl
[3] B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, Birkhäuser, 1999. | MR | Zbl
[4] B. Dacorogna, H. Koshigoe, On the different notions of convexity for rotationally invariant functions, Annales de la Faculté des Sciences de Toulouse, II(2), p. 163-184 (1993). | Numdam | MR | Zbl
[5] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms, I and II, Springer-Verlag, 1993. | MR
[6] R. A. Horn, C. A. Johnson, Matrix Analysis, Cambridge University Press, 1985. | MR | Zbl
[7] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Annales Scientifiques de l’Ecole Normale Supérieure, 6, p. 413-455 (1973). | Numdam | MR | Zbl
[8] P. J. Laurent, Approximation et Optimisation, Hermann, 1972. | MR | Zbl
[9] H. Le Dret, Sur les fonctions de matrices convexes et isotropes, Comptes Rendus de l’Académie des Sciences, Paris, Série 1, Mathématiques, 310, p. 617-620 (1990). | MR | Zbl
[10] A. Lewis, Group invariance and convex matrix analysis, SIAM Journal of Matrix Analysis and Applications, 17, p. 927-949 (1996). | MR | Zbl
[11] A. Lewis, Convex analysis on Cartan subspaces, Nonlinear Analysis, 42, p. 813-820 (2000). | MR | Zbl
[12] A. Lewis, The mathematics of eigenvalue optimization, Mathematical Programming, Series B 97, p. 155-176 (2003). | MR | Zbl
[13] P. Rosakis, Characterization of convex isotropic functions, Journal of Elasticity, 49, p. 257-267 (1997). | MR | Zbl
[14] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. | MR | Zbl
[15] A. Seeger, Convex analysis of spectrally defined matrix functions, SIAM Journal on Optimization, 7(3), p. 679-696 (1997). | MR | Zbl
[16] D. Serre, Matrices: Theory and Applications, Grad. Text in Math. 216, Springer-Verlag, 2002. See also http://www.umpa.ens-lyon.fr/serre/publi.html. | MR | Zbl
[17] F. Vincent, Une note sur les fonctions convexes invariantes, Annales de la Faculté des Sciences de Toulouse, p. 357-363 (1997). | Numdam | MR | Zbl
Cité par Sources :