@article{AFST_1993_6_2_2_163_0, author = {Dacorogna, Bernard and Koshigoe, Hideyuki}, title = {On the different notions of convexity for rotationally invariant functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {163--184}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 2}, number = {2}, year = {1993}, mrnumber = {1253387}, zbl = {0828.49016}, language = {en}, url = {http://www.numdam.org/item/AFST_1993_6_2_2_163_0/} }
TY - JOUR AU - Dacorogna, Bernard AU - Koshigoe, Hideyuki TI - On the different notions of convexity for rotationally invariant functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 163 EP - 184 VL - 2 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1993_6_2_2_163_0/ LA - en ID - AFST_1993_6_2_2_163_0 ER -
%0 Journal Article %A Dacorogna, Bernard %A Koshigoe, Hideyuki %T On the different notions of convexity for rotationally invariant functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 163-184 %V 2 %N 2 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1993_6_2_2_163_0/ %G en %F AFST_1993_6_2_2_163_0
Dacorogna, Bernard; Koshigoe, Hideyuki. On the different notions of convexity for rotationally invariant functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 2, pp. 163-184. http://www.numdam.org/item/AFST_1993_6_2_2_163_0/
[1] An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rational Mech. Anal. 117 (1992), pp. 155-166. | MR | Zbl
) and ) .-[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 64 (1977), pp. 337-403. | MR | Zbl
) .-[3] On the envelopes of functions depending on singular values of matrices, to appear in Boll. Unione Mat. Italiana. | MR | Zbl
), ) and ) .-[4] Mathematical elasticity, Vol. 1, North Holland, 1987. | Zbl
) .-[5] Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. | MR | Zbl
) .-[6] Some examples of rank one convex functions in dimension two, Proc. Roy. Soc. Edinburgh 114 A (1990), pp. 135-150. | MR | Zbl
), ), ) and ) .-[7] Integral estimates for null Lagrangians, to appear in Arch. Rational Mech. Anal. | MR | Zbl
) and ) .-[8] Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. | MR | Zbl
) .-[9] Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London A 433 (1991), pp. 723-725. | MR | Zbl
) .-[10] Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120 A (1992), pp. 185-189. | MR | Zbl
) .-