The Bialgebra of specified graphs and external structures
Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 3, pp. 307-335.

We construct a Hopf algebra structure on the space of specified Feynman graphs of a quantumfield theory. We introduce a convolution product and a semigroup of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer in [2] and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/9
Classification : 05-XX, 16-XX, 81-XX
Mots-clés : bialgebra, Hopf algebra, Feynman graphs, convolution product, Birkhoff decomposition
@article{AIHPD_2014__1_3_307_0,
     author = {Manchon, Dominique and Belhaj Mohamed, Mohamed},
     title = {The {Bialgebra} of specified graphs and external structures},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {307--335},
     volume = {1},
     number = {3},
     year = {2014},
     doi = {10.4171/aihpd/9},
     mrnumber = {3239274},
     zbl = {1301.05366},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/9/}
}
TY  - JOUR
AU  - Manchon, Dominique
AU  - Belhaj Mohamed, Mohamed
TI  - The Bialgebra of specified graphs and external structures
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2014
SP  - 307
EP  - 335
VL  - 1
IS  - 3
UR  - http://www.numdam.org/articles/10.4171/aihpd/9/
DO  - 10.4171/aihpd/9
LA  - en
ID  - AIHPD_2014__1_3_307_0
ER  - 
%0 Journal Article
%A Manchon, Dominique
%A Belhaj Mohamed, Mohamed
%T The Bialgebra of specified graphs and external structures
%J Annales de l’Institut Henri Poincaré D
%D 2014
%P 307-335
%V 1
%N 3
%U http://www.numdam.org/articles/10.4171/aihpd/9/
%R 10.4171/aihpd/9
%G en
%F AIHPD_2014__1_3_307_0
Manchon, Dominique; Belhaj Mohamed, Mohamed. The Bialgebra of specified graphs and external structures. Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 3, pp. 307-335. doi : 10.4171/aihpd/9. http://www.numdam.org/articles/10.4171/aihpd/9/

Cité par Sources :