[Décroissance des solutions des équations d'ondes sur un arrière-plan courbe]
Nous étudions pour quelles métriques (proches de la métrique standard ) les solutions du d’Alembertien pour se comportent comme des solutions libres de l’équation des ondes standard. Nous proposons des conditions de décroissance assez faibles (i.e., non intégrables) sur ; en particulier, décroît comme le long des cônes d’onde.
We investigate for which metric (close to the standard metric ) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on ; in particular, decays like along wave cones.
Keywords: energy inequality, wave equation, decay of solutions
Mot clés : inégalité d'énergie, équation des ondes, décroissance des solutions
@article{BSMF_2005__133_3_419_0, author = {Alinhac, Serge}, title = {Free decay of solutions to wave equations on a curved background}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {419--458}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {133}, number = {3}, year = {2005}, doi = {10.24033/bsmf.2493}, mrnumber = {2169825}, zbl = {1096.35013}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2493/} }
TY - JOUR AU - Alinhac, Serge TI - Free decay of solutions to wave equations on a curved background JO - Bulletin de la Société Mathématique de France PY - 2005 SP - 419 EP - 458 VL - 133 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2493/ DO - 10.24033/bsmf.2493 LA - en ID - BSMF_2005__133_3_419_0 ER -
%0 Journal Article %A Alinhac, Serge %T Free decay of solutions to wave equations on a curved background %J Bulletin de la Société Mathématique de France %D 2005 %P 419-458 %V 133 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2493/ %R 10.24033/bsmf.2493 %G en %F BSMF_2005__133_3_419_0
Alinhac, Serge. Free decay of solutions to wave equations on a curved background. Bulletin de la Société Mathématique de France, Tome 133 (2005) no. 3, pp. 419-458. doi : 10.24033/bsmf.2493. http://www.numdam.org/articles/10.24033/bsmf.2493/
[1] « An example of blowup at infinity for a quasilinear wave equation », Autour de l'analyse microlocale (G. Lebeau, éd.), vol. 284, Société Mathématique de France, 2003, p. 1-91. | Numdam | MR | Zbl
-[2] -, « Remarks on energy inequalities for wave and Maxwell equations on a curved background », 329 (2004), p. 707-722. | MR | Zbl
[3] « Asymptotic properties of linear field equations in Minkowski space », Comm. Pure Appl. Math. XLIII (1990), p. 137-199. | MR | Zbl
& -[4] -, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
[5] Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications, vol. 26, Springer Verlag, 1997. | MR | Zbl
-[6] « Almost global existence for some semilinear wave equations », J. Anal. Math. LXXXVII (2002), p. 265-280. | MR | Zbl
, & -[7] « A commuting vectorfields approach to strichartz type inequalities and applications to quasilinear wave equations », Int. Math. Res. Notices 5 (2001), p. 221-274. | MR | Zbl
-[8] The evolution problem in general relativity, Progress in Math. Physics, vol. 25, Birkhäuser, 2003. | MR | Zbl
& -[9] « Improved local well posedness for quasilinear wave equations in dimension three », 117 (2003), no. 1, p. 1-124. | MR | Zbl
& -[10] « On almost global existence for nonrelativistic wave equations in 3D », Comm. Pure Appl. Math. XLIX (1996), p. 307-321. | MR | Zbl
& -Cité par Sources :