@incollection{AST_2003__284__1_0, author = {Alinhac, Serge}, title = {An example of blowup at infinity for a quasilinear wave equation}, booktitle = {Autour de l'analyse microlocale - Volume en l'honneur de Jean-Michel Bony}, editor = {Lebeau Gilles}, series = {Ast\'erisque}, pages = {1--91}, publisher = {Soci\'et\'e math\'ematique de France}, number = {284}, year = {2003}, mrnumber = {2003417}, zbl = {1053.35097}, language = {en}, url = {http://www.numdam.org/item/AST_2003__284__1_0/} }
TY - CHAP AU - Alinhac, Serge TI - An example of blowup at infinity for a quasilinear wave equation BT - Autour de l'analyse microlocale - Volume en l'honneur de Jean-Michel Bony AU - Collectif ED - Lebeau Gilles T3 - Astérisque PY - 2003 SP - 1 EP - 91 IS - 284 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2003__284__1_0/ LA - en ID - AST_2003__284__1_0 ER -
%0 Book Section %A Alinhac, Serge %T An example of blowup at infinity for a quasilinear wave equation %B Autour de l'analyse microlocale - Volume en l'honneur de Jean-Michel Bony %A Collectif %E Lebeau Gilles %S Astérisque %D 2003 %P 1-91 %N 284 %I Société mathématique de France %U http://www.numdam.org/item/AST_2003__284__1_0/ %G en %F AST_2003__284__1_0
Alinhac, Serge. An example of blowup at infinity for a quasilinear wave equation, dans Autour de l'analyse microlocale - Volume en l'honneur de Jean-Michel Bony, Astérisque, no. 284 (2003), pp. 1-91. http://www.numdam.org/item/AST_2003__284__1_0/
[1] The null condition for quasilinear wave equations in two space dimensions I", Invent. Math. 145, (2001), 597-618. | DOI | MR | Zbl
- "[2] The null condition for quasilinear wave equations in two space dimensions II", Amer. J. Math. 123, (2000), 1-31. | MR | Zbl
- "[3] A remark on energy inequalities for perturbed wave equations", Preprint, Université Paris-Sud, (2001).
- "[4] Interaction d'ondes simples pour des équations complètement non linéaires", Ann. scient. Ec. Norm. Sup, quatrième série, tome 21, (1988), 91-132. | DOI | EuDML | Numdam | MR | Zbl
- "[5] Opérateurs pseudo-différentiels et théorème de Nash-Moser", InterÉditions & CNRS Éditions, Paris, (1991). | MR | Zbl
& - "[6] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires", Ann. scient. Ec. Norm. Sup, quatrième série, tome 14, (1981), 209-246. | DOI | EuDML | Numdam | MR | Zbl
- "[7] The global nonlinear stability of the Minkowski space", Princeton Mathematical series 41, (1993). | Numdam | MR | Zbl
& - "[8] Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasilinéaire à données petites en dimension ", Ann. scient. Ec. Norm. Sup., quatrième série, tome 34, (2001), 1-61. | DOI | EuDML | Numdam | MR | Zbl
- "[9] The Nash-Moser theorem and paradifferential calculus", Analysis, et cetera, Academic Press, Boston, 429-449. | MR | Zbl
- "[10] Lectures on Nonlinear Hyperbolic Equations", Math. et Applications 26, Springer Verlag, Heidelberg, (1997). | MR | Zbl
- "[11] Uniform decay estimates and the Lorentz invariance of the classical wave equation", Comm. Pure Appl. Math. 38, (1985), 321-332. | DOI | MR | Zbl
- "[12] A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations", Int. Math. Res. Notices 5, (2001), 221-274. | DOI | MR | Zbl
- "[13] Global solutions of nonlinear wave equations", Comm. Pure Appl. Math XLV, (1992), 1063-1096. | DOI | MR | Zbl
- "