Non-compact cohomogeneity one Einstein manifolds
Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 1, pp. 135-177.
@article{BSMF_1999__127_1_135_0,
     author = {B\"ohm, Christoph},
     title = {Non-compact cohomogeneity one {Einstein} manifolds},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {135--177},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {127},
     number = {1},
     year = {1999},
     doi = {10.24033/bsmf.2345},
     mrnumber = {2000h:53057},
     zbl = {0935.53021},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2345/}
}
TY  - JOUR
AU  - Böhm, Christoph
TI  - Non-compact cohomogeneity one Einstein manifolds
JO  - Bulletin de la Société Mathématique de France
PY  - 1999
SP  - 135
EP  - 177
VL  - 127
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2345/
DO  - 10.24033/bsmf.2345
LA  - en
ID  - BSMF_1999__127_1_135_0
ER  - 
%0 Journal Article
%A Böhm, Christoph
%T Non-compact cohomogeneity one Einstein manifolds
%J Bulletin de la Société Mathématique de France
%D 1999
%P 135-177
%V 127
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2345/
%R 10.24033/bsmf.2345
%G en
%F BSMF_1999__127_1_135_0
Böhm, Christoph. Non-compact cohomogeneity one Einstein manifolds. Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 1, pp. 135-177. doi : 10.24033/bsmf.2345. https://www.numdam.org/articles/10.24033/bsmf.2345/

[1] Atiyah (M.), Hitchin (N.). - The geometry and dynamics of magnetic monopoles. - Princeton University Press, 1988. | MR | Zbl

[2] Alekseevsky (D.V.). - Classification of quaternionic spaces with a transitive solvable group of motions, Izv. Akad. Nauk SSSR Ser. Mat., t. 39, 1975; English transl. Math. USSR-Izv., t. 9, 1975, p. 297-339, p. 315-362. | Zbl

[3] Alekseevsky (D.V.), Kimel'Fel'D (B.N.). - Structure of homogeneous riemannian spaces with zero Ricci curvature, Funct. Analysis Appl., t. 9, 1975, p. 97-102. | MR | Zbl

[4] Bérard-Bergery (L.). - Sur de nouvelles variétés riemannienes d'Einstein, Inst. E. Cartan, t. 4, 1982, p. 1-60. | MR | Zbl

[5] Besse (A.L.). - Einstein Manifolds. - Springer-Verlag, Berlin Heidelberg, 1987. | MR | Zbl

[6] Böhm (C.). - Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces, Invent. Math., t. 134, 1998, p. 145-176. | MR | Zbl

[7] Böhm (C.). - Non-existence of cohomogeneity one Einstein metrics, to appear in Math. Ann. | Zbl

[8] Bourguignon (J.-P.), Karcher (H.). - Curvature operators: Pinching estimates and geometric examples, Ann. Sci. École Norm. Sup., t. 11, 1978, p. 71-92. | Numdam | MR | Zbl

[9] Bredon (G.E.). - Introduction to compact transformation groups. - Acad. Press, New York, London, 1972. | MR | Zbl

[10] Bryant (R.), Salamon (S.). - On the construction of some complete metrics with exceptional holonomy, Duke Math. J., t. 58, 1989, p. 829-850. | MR | Zbl

[11] Calabi (E.). - A construction of nonhomogeneous Einstein metrics, Differential Geometry, Proc. Symp. Pure Math., t. 27, 1975, p. 17-24. | MR | Zbl

[12] Calabi (E.). - Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup., 4e série, t. 12, 1979, p. 269-294. | Numdam | MR | Zbl

[13] Cartan (E.). - Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France, t. 54, 1926; t. 55, 1927, p. 114-134, p. 214-264. | JFM | Numdam

[14] Cartan (E.). - Sur la structure des groupes de transformations finis et continus. - Thèse, Paris, 1894. | JFM

[15] Cheeger (J.), Colding (T.H.). - Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math., t. 144, 1996, p. 189-237. | MR | Zbl

[16] Cheeger (J.), Tian (G.). - On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math., t. 118, 1994, p. 493-571. | MR | Zbl

[17] Dancer (A.), Wang (M.Y.). - Kähler-Einstein manifolds of cohomogeneity one, to appear in Math. Ann. | Zbl

[18] Eguchi (T.), Hanson (A.). - Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, t. 74, 1978, p. 249-251.

[19] Eschenburg (J.-H.). - Lecture Notes on Symmetric spaces. - Preprint, 1997.

[20] Eschenburg (J.-H.), Wang (M.Y.). - The Initial Value Problem for Cohomogeneity One Einstein Metrics, to appear in J. Geom. Analysis. | Zbl

[21] Ferus (D.), Karcher (H.). - Non-rotational minimal spheres and minimizing cones, Comm. Math. Helv., t. 60, 1985, p. 247-269. | MR | Zbl

[22] Gallot (S.), Hulin (D.), Lafontaine (J.). - Riemannian Geometry. - Springer Verlag, New York, Berlin, Heidelberg, 1990. | MR | Zbl

[23] Gibbons (G.), Page (D.), Pope (C.N.). - Einstein metrics on S3, R3 and R4 bundles, Comm. Math. Phys., t. 127, 1990, p. 529-553. | MR | Zbl

[24] Hawking (S.W.). - Gravitational Instantons, Phys. Lett. A, t. 60, 1977, p. 81-83. | MR

[25] Heber (J.). - Non-compact homogeneous Einstein spaces, Invent. Math., t. 133, 1998, p. 279-352. | MR | Zbl

[26] Iwasawa (K.). - On some types of topological spaces, Ann. of Math., t. 50, 1949, p. 507-558. | MR | Zbl

[27] Jensen (G.R.). - Einstein metrics on principal fibre bundles, J. Differential Geometry, t. 8, 1973, p. 599-614. | MR | Zbl

[28] Malgrange (B.). - Sur les points singuliers des équations différentielles, L'Enseignement Math., t. 20, 1974, p. 147-176. | MR | Zbl

[29] Milnor (J.). - Morse Theory. - Annals of Mathematics Studies, Princeton University Press, 1963. | MR | Zbl

[30] Milnor (J.). - Curvatures of Left Invariant Metrics on Lie Groups, Advances in Math., t. 21, 1976, p. 293-329. | MR | Zbl

[31] Montgomery (D.), Samelson (H.). - Groups transitive on the n-dimensional torus, Bull. Amer. Math. Soc., t. 49, 1943, p. 455-456. | MR | Zbl

[32] Page (D.), Pope (C.N.). - Einstein metrics on quaternionic line bundles, Class. Quantum Grav., t. 3, 1986, p. 249-259. | MR | Zbl

[33] Page (D.), Pope (C.N.). - Inhomogeneous Einstein metrics on complex line bundles, Class. Quantum Grav., t. 4, 1987, p. 213-225. | MR | Zbl

[34] Perko (L.). - Differential equations and Dynamical Systems, TAM 7. - Springer-Verlag, New York, Berlin, Heidelberg.

[35] Stenzel (M.). - Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manu. Math., t. 80, 1993, p. 151-163. | MR | Zbl

[36] Wang (J.). - Einstein metrics on bundles. - Ph. D. thesis, McMaster Univ., 1996.

[37] Wang (J.), Wang (M.Y.). - Einstein metrics on S2-bundles, Math. Ann., t. 310, 1998, p. 497-526. | MR | Zbl

[38] Wang (M.Y.), Ziller (W.). - Existence and non-existence of homogeneous Einstein metrics, Invent. Math., t. 84, 1986, p. 177-194. | MR | Zbl

[39] Wang (M.Y.), Ziller (W.). - On isotropy irreducible Riemannian manifolds, Acta Math., t. 166, 1991, p. 223-261. | MR | Zbl

[40] Wolf (J.A.). - Spaces of constant curvature. - McGraw-Hill Series in Higher Math., 1967. | MR | Zbl

[41] Wolf (J.A.). - The structure of isotropy irreducible homogeneous spaces, Acta Math., t. 120, 1968 p. 59-148; correction, Acta Math., t. 152, 1984, p. 141-142. | MR | Zbl

[42] Ziller (W.). - Homogeneous Einstein Metrics on Spheres and Projective Spaces, Math. Ann., t. 259, 1982, p. 351-358. | MR | Zbl

  • Kröncke, Klaus; Szabó, Áron Optimal coordinates for Ricci-flat conifolds, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02780-y
  • Dahl, Mattias; Kröncke, Klaus Local and global scalar curvature rigidity of Einstein manifolds, Mathematische Annalen, Volume 388 (2024) no. 1, p. 453 | DOI:10.1007/s00208-022-02521-6
  • Stolarski, Maxwell Curvature Blow-up in Doubly-warped Product Metrics Evolving by Ricci Flow, Memoirs of the American Mathematical Society, Volume 295 (2024) no. 1470 | DOI:10.1090/memo/1470
  • Nienhaus, Jan; Wink, Matthias New Expanding Ricci Solitons Starting in Dimension Four, The Journal of Geometric Analysis, Volume 34 (2024) no. 11 | DOI:10.1007/s12220-024-01778-4
  • Böhm, Christoph; Lafuente, Ramiro Non-compact Einstein manifolds with symmetry, Journal of the American Mathematical Society, Volume 36 (2023) no. 3, p. 591 | DOI:10.1090/jams/1022
  • Angella, Daniele; Pediconi, Francesco On cohomogeneity one Hermitian non-Kähler metrics, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 2, p. 545 | DOI:10.1017/prm.2022.5
  • Angenent, Sigurd B.; Knopf, Dan Ricci Solitons, Conical Singularities, and Nonuniqueness, Geometric and Functional Analysis, Volume 32 (2022) no. 3, p. 411 | DOI:10.1007/s00039-022-00601-y
  • Böhm, Christoph; Lafuente, Ramiro A Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, Geometry Topology, Volume 26 (2022) no. 2, p. 899 | DOI:10.2140/gt.2022.26.899
  • Chi, Hanci Einstein Metrics of Cohomogeneity One with S4m+3 as Principal Orbit, Communications in Mathematical Physics, Volume 386 (2021) no. 2, p. 1011 | DOI:10.1007/s00220-021-04092-0
  • Wink, Matthias Complete Ricci Solitons via Estimates on the Soliton Potential, International Mathematics Research Notices, Volume 2021 (2021) no. 6, p. 4487 | DOI:10.1093/imrn/rnaa147
  • Maschler, Gideon; Ream, Robert On the Completeness of Some Bianchi Type A and Related Kähler–Einstein Metrics, The Journal of Geometric Analysis, Volume 31 (2021) no. 8, p. 8347 | DOI:10.1007/s12220-020-00597-7
  • Borghini, Stefano; Mazzieri, Lorenzo On the Mass of Static Metrics with Positive Cosmological Constant: II, Communications in Mathematical Physics, Volume 377 (2020) no. 3, p. 2079 | DOI:10.1007/s00220-020-03739-8
  • Case, Jeffrey S.; Moreira, Ana Claudia; Wang, Yi Nonuniqueness for a fully nonlinear boundary Yamabe-type problem via bifurcation theory, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1566-4
  • Borghini, Stefano; Mazzieri, Lorenzo On the mass of static metrics with positive cosmological constant: I, Classical and Quantum Gravity, Volume 35 (2018) no. 12, p. 125001 | DOI:10.1088/1361-6382/aac081
  • Galaz-García, Fernando; Zarei, Masoumeh Cohomogeneity one topological manifolds revisited, Mathematische Zeitschrift, Volume 288 (2018) no. 3-4, p. 829 | DOI:10.1007/s00209-017-1915-y
  • Foscolo, Lorenzo; Haskins, Mark New G2-holonomy cones and exotic nearly Kähler structures on S6 and S3×S3, Annals of Mathematics, Volume 185 (2017) no. 1 | DOI:10.4007/annals.2017.185.1.2
  • Buzano, Maria; Dancer, Andrew; Gallaugher, Michael; Wang, McKenzie Non-Kähler expanding Ricci solitons, Einstein metrics, and exotic cone structures, Pacific Journal of Mathematics, Volume 273 (2015) no. 2, p. 369 | DOI:10.2140/pjm.2015.273.369
  • He, Chenxu; Petersen, Peter; Wylie, William Uniqueness of Warped Product Einstein Metrics and Applications, The Journal of Geometric Analysis, Volume 25 (2015) no. 4, p. 2617 | DOI:10.1007/s12220-014-9528-8
  • Catino, Giovanni A note on four-dimensional (anti-)self-dual quasi-Einstein manifolds, Differential Geometry and its Applications, Volume 30 (2012) no. 6, p. 660 | DOI:10.1016/j.difgeo.2012.09.005
  • CASE, JEFFREY S. SMOOTH METRIC MEASURE SPACES AND QUASI-EINSTEIN METRICS, International Journal of Mathematics, Volume 23 (2012) no. 10, p. 1250110 | DOI:10.1142/s0129167x12501108
  • Godazgar, Mahdi; Reall, Harvey S Algebraically special axisymmetric solutions of the higher-dimensional vacuum Einstein equation, Classical and Quantum Gravity, Volume 26 (2009) no. 16, p. 165009 | DOI:10.1088/0264-9381/26/16/165009
  • Dancer, Andrew S.; Wang, McKenzie Y. Non-Kähler Expanding Ricci Solitons, International Mathematics Research Notices, Volume 2009 (2009) no. 6, p. 1107 | DOI:10.1093/imrn/rnn154
  • Kaus, Alexander; Reall, Harvey S Charged Randall-Sundrum black holes and 𝒩 = 4 super Yang-Mills inAdS2×S2, Journal of High Energy Physics, Volume 2009 (2009) no. 05, p. 032 | DOI:10.1088/1126-6708/2009/05/032
  • Dancer, A.; Wang, M. Superpotentials and the Cohomogeneity One Einstein Equations, Communications in Mathematical Physics, Volume 260 (2005) no. 1, p. 75 | DOI:10.1007/s00220-005-1410-x
  • Gastel, Andreas; Kronz, Manfred A Family of Expanding Ricci Solitons, Variational Problems in Riemannian Geometry (2004), p. 81 | DOI:10.1007/978-3-0348-7968-2_6
  • Gibbons, G. W.; Hartnoll, Sean A.; Pope, C. N. Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons, Physical Review D, Volume 67 (2003) no. 8 | DOI:10.1103/physrevd.67.084024
  • Dancer, A.; Wang, M. Y. The cohomogeneity one Einstein equations from the Hamiltonian viewpoint, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2000 (2000) no. 524 | DOI:10.1515/crll.2000.062

Cité par 27 documents. Sources : Crossref