[Interaction et pertinence du désordre pour le champ libre gaussien sur un réseau II : le cas bi-dimensionnel]
Cet article approfondit l'étude (commencée dans [35]) de la transition de localisation pour un champ libre gaussien défini sur le réseau en interaction avec un substrat désordonné qui affecte les points situés proches de la hauteur zéro. Le substrat peut avoir un effet attracteur ou répulsif selon le site considéré. Une transition a lieu lorsque le potentiel moyen d'interaction dépasse un certain seuil : cette valeur critique définit une phase délocalisée , au sein de laquelle le champ est globalement repoussé par le substrat, et une phase localisée ou le champ adhère au substrat. Notre objectif est d'évaluer les effets de la présence de désordre pour cette transition de phase. Nous nous concentrons sur le cas bi-dimensionnel , et démontrons que la valeur du point critique coincide avec celle du modèle moyenné (ou annealed), et ce quelle que soit la valeur de l'intensité du désordre . De plus, nous démontrons que, contrairement au cas pour lequel l'énergie libre a un comportement quadratique au voisinage du point critique, la transition de phase est ici d'ordre infini
This paper continues a study initiated in [35], on the localization transition of a lattice free field on interacting with a quenched disordered substrate that acts on the interface when its height is close to zero. The substrate has the tendency to localize or repel the interface at different sites. A transition takes place when the average pinning potential goes past a threshold : this critical value separates a delocalized phase , where the field is macroscopically repelled by the substrate from a localized one where the field sticks to the substrate. Our goal is to investigate the effect of the presence of disorder on this phase transition. We focus on the two dimensional case for which we had obtained so far only limited results. We prove that the value of is the same as for the annealed model, for all values of the disorder intensity . Moreover we prove that, in contrast with the case where the free energy has a quadratic behavior near the critical point, the phase transition is of infinite order
DOI : 10.24033/asens.2411
Keywords: Lattice Gaussian free field, disordered pinning model, localization transition, critical behavior, disorder relevance, co-membrane model
Mot clés : Champs libre gaussien sur un réseau, modèle d'accrochage désordonné, transition de localisation, comportement critique, pertinence du désordre, modèle de co-membrane
@article{ASENS_2019__52_6_1331_0, author = {Lacoin, Hubert}, title = {Pinning and disorder relevance for the lattice {Gaussian} {Free} {Field} {II:} {The} two dimensional case}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1331--1401}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {6}, year = {2019}, doi = {10.24033/asens.2411}, mrnumber = {4061024}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2411/} }
TY - JOUR AU - Lacoin, Hubert TI - Pinning and disorder relevance for the lattice Gaussian Free Field II: The two dimensional case JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1331 EP - 1401 VL - 52 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2411/ DO - 10.24033/asens.2411 LA - en ID - ASENS_2019__52_6_1331_0 ER -
%0 Journal Article %A Lacoin, Hubert %T Pinning and disorder relevance for the lattice Gaussian Free Field II: The two dimensional case %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1331-1401 %V 52 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2411/ %R 10.24033/asens.2411 %G en %F ASENS_2019__52_6_1331_0
Lacoin, Hubert. Pinning and disorder relevance for the lattice Gaussian Free Field II: The two dimensional case. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1331-1401. doi : 10.24033/asens.2411. http://www.numdam.org/articles/10.24033/asens.2411/
The extremal process of branching Brownian motion, Probab. Theory Related Fields, Volume 157 (2013), pp. 535-574 (ISSN: 0178-8051) | DOI | MR | Zbl
Convergence in law of the minimum of a branching random walk, Ann. Probab., Volume 41 (2013), pp. 1362-1426 (ISSN: 0091-1798) | DOI | MR | Zbl
The effect of disorder on polymer depinning transitions, Comm. Math. Phys., Volume 279 (2008), pp. 117-146 (ISSN: 0010-3616) | DOI | MR | Zbl
Weak convergence for the minimal position in a branching random walk: a simple proof, Period. Math. Hungar., Volume 61 (2010), pp. 43-54 (ISSN: 0031-5303) | DOI | MR | Zbl
Quenched and annealed critical points in polymer pinning models, Comm. Math. Phys., Volume 291 (2009), pp. 659-689 (ISSN: 0010-3616) | DOI | MR | Zbl
Path properties of the disordered pinning model in the delocalized regime, Ann. Appl. Probab., Volume 24 (2014), pp. 599-615 (ISSN: 1050-5164) | DOI | MR | Zbl
, State of the art in probability and statistics (Leiden, 1999) (IMS Lecture Notes Monogr. Ser.), Volume 36, Inst. Math. Statist., Beachwood, OH, 2001, pp. 134-149 | DOI | MR
Entropic repulsion and the maximum of the two-dimensional harmonic crystal, Ann. Probab., Volume 29 (2001), pp. 1670-1692 (ISSN: 0091-1798) | DOI | MR | Zbl
, J. Math. Phys., Volume 41, 2000, pp. 1211-1223 (Probabilistic techniques in equilibrium and nonequilibrium statistical physics) (ISSN: 0022-2488) | DOI | MR | Zbl
Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field, Electron. Commun. Probab., Volume 16 (2011), pp. 114-119 | DOI | MR | Zbl
Extreme local extrema of two-dimensional discrete Gaussian free field, Comm. Math. Phys., Volume 345 (2016), pp. 271-304 (ISSN: 0010-3616) | DOI | MR
Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, J. Inst. Math. Jussieu, Volume 17 (2018), pp. 305-346 (ISSN: 1474-7480) | DOI | MR
, Correlated random systems: five different methods (Lecture Notes in Math.), Volume 2143, Springer, 2015, pp. 1-43 | DOI | MR
Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., Volume 31 (1978), pp. 531-581 (ISSN: 0010-3640) | DOI | MR | Zbl
Annealed vs quenched critical points for a random walk pinning model, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 414-441 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
Disorder relevance for the random walk pinning model in dimension 3, Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 259-293 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
On the critical point of the random walk pinning model in dimension , Electron. J. Probab., Volume 15 (2010), pp. no. 21, 654-683 | DOI | MR | Zbl
Critical behavior of the massless free field at the depinning transition, Comm. Math. Phys., Volume 223 (2001), pp. 161-203 (ISSN: 0010-3616) | DOI | MR | Zbl
A note on the extremal process of the supercritical Gaussian free field, Electron. Commun. Probab., Volume 20 (2015) | DOI | MR
, Probability in complex physical systems (Springer Proc. Math.), Volume 11, Springer, 2012, pp. 289-311 | DOI | MR | Zbl
A note on the discrete Gaussian free field with disordered pinning on , (preprint arXiv:1303.6770 ) | MR | Zbl
A note on the discrete Gaussian free field with disordered pinning on , , Stochastic Process. Appl., Volume 123 (2013), pp. 3542-3559 (ISSN: 0304-4149) | DOI | MR | Zbl
A note on wetting transition for gradient fields, Stochastic Process. Appl., Volume 87 (2000), pp. 107-113 (ISSN: 0304-4149) | DOI | MR | Zbl
Extremes of the discrete two-dimensional Gaussian free field, Ann. Probab., Volume 34 (2006), pp. 962-986 (ISSN: 0091-1798) | DOI | MR | Zbl
Fractional moment bounds and disorder relevance for pinning models, Comm. Math. Phys., Volume 287 (2009), pp. 867-887 (ISSN: 0010-3616) | DOI | MR | Zbl
Effect of disorder on two-dimensional wetting, J. Statist. Phys., Volume 66 (1992), pp. 1189-1213 (ISSN: 0022-4715) | DOI | MR | Zbl
, Stochastic Modelling and Applied Probability, 38, Springer, 2010, 396 pages (ISBN: 978-3-642-03310-0) | DOI | MR | Zbl
Extreme values for two-dimensional discrete Gaussian free field, Ann. Probab., Volume 42 (2014), pp. 1480-1515 (ISSN: 0091-1798) | DOI | MR | Zbl
Walks, walls, wetting, and melting, J. Statist. Phys., Volume 34 (1984), pp. 667-729 (ISSN: 0022-4715) | DOI | MR | Zbl
Correlation inequalities on some partially ordered sets, Comm. Math. Phys., Volume 22 (1971), pp. 89-103 http://projecteuclid.org/euclid.cmp/1103857443 (ISSN: 0010-3616) | DOI | MR | Zbl
Aspects of statistical mechanics of random surfaces (2001) (Notes of the lectures given at IHP, https://www.lpma-paris.fr/modsto/_media/users/giacomin/ihp.pdf )
, Imperial College Press, London, 2007, 242 pages (ISBN: 978-1-86094-786-5; 1-86094-786-7) |, Lecture Notes in Math., 2025, Springer, 2011, 130 pages (ISBN: 978-3-642-21155-3) | DOI | MR | Zbl
Disorder and wetting transition: the pinned harmonic crystal in dimension three or larger, Ann. Appl. Probab., Volume 28 (2018), pp. 577-606 (ISSN: 1050-5164) | DOI | MR
Pinning and disorder relevance for the lattice Gaussian free field, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 199-257 (ISSN: 1435-9855) | DOI | MR
Hierarchical pinning models, quadratic maps and quenched disorder, Probab. Theory Related Fields, Volume 147 (2010), pp. 185-216 (ISSN: 0178-8051) | DOI | MR | Zbl
Marginal relevance of disorder for pinning models, Comm. Pure Appl. Math., Volume 63 (2010), pp. 233-265 (ISSN: 0010-3640) | DOI | MR | Zbl
Smoothing effect of quenched disorder on polymer depinning transitions, Comm. Math. Phys., Volume 266 (2006), pp. 1-16 (ISSN: 0010-3616) | DOI | MR | Zbl
Effect of random defects on the critical behaviour of Ising models, J. Phys. C, Volume 7 (1974), pp. 1671-1692
Remarks on the inequalities, Comm. Math. Phys., Volume 36 (1974), pp. 227-231 http://projecteuclid.org/euclid.cmp/1103859732 (ISSN: 0010-3616) | DOI | MR
Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, Ann. Probab., Volume 37 (2009), pp. 742-789 (ISSN: 0091-1798) | DOI | MR | Zbl
New bounds for the free energy of directed polymers in dimension and , Comm. Math. Phys., Volume 294 (2010), pp. 471-503 (ISSN: 0010-3616) | DOI | MR | Zbl
The martingale approach to disorder irrelevance for pinning models, Electron. Commun. Probab., Volume 15 (2010), pp. 418-427 | DOI | MR | Zbl
Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster, Probab. Theory Related Fields, Volume 159 (2014), pp. 777-808 (ISSN: 0178-8051) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 123, Cambridge Univ. Press, 2010, 364 pages (ISBN: 978-0-521-51918-2) | DOI | MR | Zbl
Maximum of a log-correlated Gaussian field, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 1369-1431 (ISSN: 0246-0203) | DOI | Numdam | MR
Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., Volume 65 (1944), pp. 117-149 (ISSN: 0031-899X) | DOI | MR | Zbl
A replica-coupling approach to disordered pinning models, Comm. Math. Phys., Volume 280 (2008), pp. 389-401 (ISSN: 0010-3616) | DOI | MR | Zbl
Coarse graining, fractional moments and the critical slope of random copolymers, Electron. J. Probab., Volume 14 (2009), pp. no. 20, 531-547 | DOI | MR | Zbl
Localization and delocalization of random interfaces, Probab. Surv., Volume 3 (2006), pp. 112-169 | DOI | MR | Zbl
Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three, Comm. Math. Phys., Volume 300 (2010), pp. 243-271 (ISSN: 0010-3616) | DOI | MR | Zbl
Cité par Sources :