Nous étudions le maximum d’un champ Gaussien sur
We study the maximum of a Gaussian field on
@article{AIHPB_2015__51_4_1369_0, author = {Madaule, Thomas}, title = {Maximum of a log-correlated gaussian field}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1369--1431}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP633}, mrnumber = {3414451}, zbl = {1329.60138}, language = {en}, url = {https://www.numdam.org/articles/10.1214/14-AIHP633/} }
TY - JOUR AU - Madaule, Thomas TI - Maximum of a log-correlated gaussian field JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1369 EP - 1431 VL - 51 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/14-AIHP633/ DO - 10.1214/14-AIHP633 LA - en ID - AIHPB_2015__51_4_1369_0 ER -
Madaule, Thomas. Maximum of a log-correlated gaussian field. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1369-1431. doi : 10.1214/14-AIHP633. https://www.numdam.org/articles/10.1214/14-AIHP633/
[1] Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (2013) 1362–1426. | DOI | MR | Zbl
.[2] The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 42 (2014) 959–993. | DOI | MR | Zbl
and .[3] Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl
, , and .[4] Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61 (1–2) (2010) 43–54. | MR | Zbl
and .
[5] Lognormal
[6] Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012) 1693–1711. | MR | Zbl
, and .[7] Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011) 1647–1676. | DOI | MR | Zbl
, and .[8] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl
, and .[9] Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24 (2014) 1446–1481. | MR | Zbl
and .[10] J. Barral, A. Kupiainen, M. Nikula, E. Saksman and C. Webb Basic properties of critical lognormal multiplicative chaos. Preprint, 2013. Available at arXiv:1303.4548. | MR
[11] Limiting laws of supercritical branching random walks. C. R. Math. Acad. Sci. Paris 350 (2012) 535–538. | DOI | MR | Zbl
, and .[12] Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | DOI | MR | Zbl
.[13] Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl
, and .[14] Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. Electron. Commun. Probab. 16 (2011) 114–119. | DOI | MR | Zbl
, and .[15] Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29 (4) (2001) 1670–1692. | MR | Zbl
, and .[16] Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint, 2013. Available at arXiv:1301.6669.
, and .[17] Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 (2012) 1–20. | DOI | MR | Zbl
and .[18] Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E (3) 63 (2001) 026110.
and .[19] Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 (2014) 1769–1808. | DOI | MR | Zbl
, , and .[20] Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys. 330 (2014) 283–330. | DOI | MR | Zbl
, , and .[21] Regularité des trajectoires des fonctions aléatoires gaussiennes. In École d’Été de Probabilités de Saint-Flour IV – 1974 1–96. Lecture Notes in Math. 480. Springer, Berlin, 1975. | MR | Zbl
.[22] Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (2) (1985) 105–150. | MR | Zbl
.[23] Convergence in law for the branching random walk seen from its tip. Preprint, 2011. Available at arXiv:1107.2543v4. | MR
.[24] Local sample path properties of Gaussian fields. Ann. Probab. 7 (3) (1979) 477–493. | MR | Zbl
and .[25] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR | Zbl
and .Cité par Sources :