[Représentations supra-maximales des groupes fondamentaux de sphères épointées dans .]
Nous étudions une classe particulière de représentations du groupe fondamental des sphères épointées dans le groupe , que nous appelons supra-maximales. Bien qu'elles soient pour la plupart Zariski denses, nous montrons qu'elles sont totalement non hyperboliques, au sens où l'image de toute courbe fermée simple est elliptique ou parabolique. Nous montrons aussi qu'elles sont géométrisables (hormis celles qui sont réductibles) en un sens très fort : pour tout élément de l'espace de Teichmüller , il existe une unique application équivariante holomorphe à valeurs dans le demi-plan inférieur . Nous montrons également que les représentations supra-maximales forment des composantes compactes des variétés de caractère relatives. Munies de la structure symplectique de Atiyah-Bott-Goldman, ces composantes sont symplectomorphes à l'espace projectif complexe de dimension muni d'un multiple de la forme de Fubini-Study que nous calculons explicitement. Cela généralise un résultat de Benedetto-Goldman pour la sphère à quatre trous.
We study a particular class of representations from the fundamental groups of punctured spheres to the group , which we call supra-maximal. Though most of them are Zariski dense, we show that supra-maximal representations are totally non hyperbolic, in the sense that every simple closed curve is mapped to an elliptic or parabolic element. They are also shown to be geometrizable (apart from the reducible ones) in the following very strong sense : for any element of the Teichmüller space , there is a unique holomorphic equivariant map with values in the lower half-plane . In the relative character varieties, the components of supra-maximal representations are shown to be compact and symplectomorphic (with respect to the Atiyah-Bott-Goldman symplectic structure) to the complex projective space of dimension equipped with a certain multiple of the Fubini-Study form that we compute explicitly. This generalizes a result of Benedetto-Goldman [3] for the sphere minus four points.
@article{ASENS_2019__52_5_1305_0, author = {Deroin, Bertrand and Tholozan, Nicolas}, title = {Supra-maximal representations from fundamental groups of punctured spheres to~$\mathrm {PSL} (2,\mathbb {R})$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1305--1329}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2410}, mrnumber = {4057784}, zbl = {1473.57045}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2410/} }
TY - JOUR AU - Deroin, Bertrand AU - Tholozan, Nicolas TI - Supra-maximal representations from fundamental groups of punctured spheres to $\mathrm {PSL} (2,\mathbb {R})$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1305 EP - 1329 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2410/ DO - 10.24033/asens.2410 LA - en ID - ASENS_2019__52_5_1305_0 ER -
%0 Journal Article %A Deroin, Bertrand %A Tholozan, Nicolas %T Supra-maximal representations from fundamental groups of punctured spheres to $\mathrm {PSL} (2,\mathbb {R})$ %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1305-1329 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2410/ %R 10.24033/asens.2410 %G en %F ASENS_2019__52_5_1305_0
Deroin, Bertrand; Tholozan, Nicolas. Supra-maximal representations from fundamental groups of punctured spheres to $\mathrm {PSL} (2,\mathbb {R})$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1305-1329. doi : 10.24033/asens.2410. http://www.numdam.org/articles/10.24033/asens.2410/
The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 (ISSN: 0080-4614) | DOI | MR | Zbl
Universal length bounds for non-simple closed geodesics on hyperbolic surfaces, J. Topol., Volume 6 (2013), pp. 513-524 (ISSN: 1753-8416) | DOI | MR | Zbl
The topology of the relative character varieties of a quadruply-punctured sphere, Experiment. Math., Volume 8 (1999), pp. 85-103 http://projecteuclid.org/euclid.em/1047477115 (ISSN: 1058-6458) | DOI | MR | Zbl
Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity, Geom. Dedicata, Volume 125 (2007), pp. 1-23 (ISSN: 0046-5755) | DOI | MR | Zbl
Surface group representations with maximal Toledo invariant, Ann. of Math., Volume 172 (2010), pp. 517-566 (ISSN: 0003-486X) | DOI | MR | Zbl
Markov triples and quasi-Fuchsian groups, Proc. London Math. Soc., Volume 3 (1998), pp. 697-736 | DOI | MR | Zbl
Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France, Volume 116 (1988), pp. 315-339 | DOI | Numdam | MR | Zbl
Groups acting on the circle, Enseign. Math., Volume 47 (2001), pp. 329-407 (ISSN: 0013-8584) | MR | Zbl
Maximally stretched laminations on geometrically finite hyperbolic manifolds, Geom. Topol., Volume 21 (2017), pp. 693-840 (ISSN: 1465-3060) | DOI | MR | Zbl
The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math., Volume 151 (2000), pp. 625-704 (ISSN: 0003-486X) | DOI | MR | Zbl
The modular group action on real –characters of a one-holed torus, Geometry & Topology, Volume 7 (2003), pp. 443-486 | DOI | MR | Zbl
Mapping class group dynamics on surface group representations. Problems on mapping class groups and related topics, 189–214, Proc. Sympos. Pure Math, Volume 74 (2006) | DOI | MR | Zbl
Discontinuous groups and the Euler class, ProQuest LLC, Ann Arbor, MI (1980) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8029408 | MR
The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984), pp. 200-225 (ISSN: 0001-8708) | DOI | MR | Zbl
Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. math., Volume 85 (1986), pp. 263-302 (ISSN: 0020-9910) | DOI | MR | Zbl
Topological components of spaces of representations, Invent. math., Volume 93 (1988), pp. 557-607 (ISSN: 0020-9910) | DOI | MR | Zbl
Ergodic theory on moduli spaces, Ann. of Math., Volume 146 (1997), pp. 475-507 (ISSN: 0003-486X) | DOI | MR | Zbl
The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), pp. 59-126 (ISSN: 0024-6115) | DOI | MR | Zbl
Harmonic maps and representations of non-uniform lattices of , Ann. Inst. Fourier, Volume 58 (2008), pp. 507-558 http://aif.cedram.org/item?id=AIF_2008__58_2_507_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Point Singularities and Conformal Metrics on Riemann Surfaces, Proceedings of the American Mathematical Society, Volume 103 (1988), pp. 222-224 http://www.jstor.org/stable/2047555 | DOI | MR | Zbl
On the existence of a connection with curvature zero, Comment. Math. Helv., Volume 32 (1958), pp. 215-223 (ISSN: 0010-2571) | DOI | MR | Zbl
, In the tradition of Ahlfors-Bers. V (Contemp. Math.), Volume 510, Amer. Math. Soc., 2010, pp. 307-329 | DOI | MR | Zbl
Topology of representation spaces of surface groups in with assigned boundary monodromy, Pure and Applied Mathematics Quarterly, Volume 12 (2016), pp. 399-462 | DOI | MR | Zbl
The modular action on -characters in genus 2, Duke Math. J., Volume 165 (2016), pp. 371-412 | DOI | MR | Zbl
Branched -structures on surfaces with prescribed real holonomy, Math. Ann., Volume 300 (1994), pp. 649-667 (ISSN: 0025-5831) | DOI | MR | Zbl
Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 793-821 (ISSN: 0002-9947) | DOI | MR | Zbl
Bundles with totally disconnected structure group, Comment. Math. Helv., Volume 46 (1971), pp. 257-273 (ISSN: 0010-2571) | DOI | MR | Zbl
On type-preserving representations of the four-punctured sphere group, Geom. Topol., Volume 20 (2016), pp. 1213-1255 | DOI | MR | Zbl
Cité par Sources :