Nous étudions les représentations des réseaux de dans . Nous montrons que si la représentation est réductive et si est supérieur ou égal à 2, il existe une application équivariante harmonique d’énergie finie de l’espace hyperbolique complexe de dimension dans l’espace hyperbolique complexe de dimension . Ceci nous permet de donner une preuve géométrique de résultats de rigidité obtenus par M. Burger et A. Iozzi. Nous définissons aussi un nouvel invariant associé aux représentations dans des groupes fondamentaux des surfaces orientables de type topologique fini et de caractéristique d’Euler négative. Nous montrons que cet invariant est borné par une constante dépendant uniquement de la caractéristique d’Euler de la surface et nous donnons une caractérisation complète des représentations d’invariant maximal, généralisant ainsi les résultats de D. Toledo sur les surfaces compactes.
We study representations of lattices of into . We show that if a representation is reductive and if is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic -space to complex hyperbolic -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into of non-uniform lattices in , and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.
Keywords: Representations, non-uniform lattices, complex hyperbolic space, Toledo invariant, harmonic maps, surfaces of finite topological type, rigidity
Mot clés : représentations, réseaux non uniformes, espace hyperbolique complexe, invariant de Toledo, applications harmoniques, surfaces de type topologique fini, rigidité
@article{AIF_2008__58_2_507_0, author = {Koziarz, Vincent and Maubon, Julien}, title = {Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$}, journal = {Annales de l'Institut Fourier}, pages = {507--558}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {2}, year = {2008}, doi = {10.5802/aif.2359}, zbl = {1147.22009}, mrnumber = {2410381}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2359/} }
TY - JOUR AU - Koziarz, Vincent AU - Maubon, Julien TI - Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$ JO - Annales de l'Institut Fourier PY - 2008 SP - 507 EP - 558 VL - 58 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2359/ DO - 10.5802/aif.2359 LA - en ID - AIF_2008__58_2_507_0 ER -
%0 Journal Article %A Koziarz, Vincent %A Maubon, Julien %T Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$ %J Annales de l'Institut Fourier %D 2008 %P 507-558 %V 58 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2359/ %R 10.5802/aif.2359 %G en %F AIF_2008__58_2_507_0
Koziarz, Vincent; Maubon, Julien. Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 507-558. doi : 10.5802/aif.2359. http://www.numdam.org/articles/10.5802/aif.2359/
[1] Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2), Volume 71 (1960), pp. 579-590 | DOI | MR | Zbl
[2] Métriques d’Einstein à cusps et équations de Seiberg-Witten, J. Reine Angew. Math., Volume 490 (1997), pp. 129-154 | DOI | EuDML | MR | Zbl
[3] Bounded cohomology and representation varieties of lattices in PSU (2001) (Preprint)
[4] Letter, 2003
[5] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 219-280 | DOI | MR | Zbl
[6] Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) no. 69, pp. 173-201 | DOI | EuDML | Numdam | MR | Zbl
[7] Flat -bundles with canonical metrics, J. Differential Geom., Volume 28 (1988) no. 3, pp. 361-382 | MR | Zbl
[8] Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2), Volume 135 (1992) no. 1, pp. 165-182 | DOI | MR | Zbl
[9] Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl
[10] A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2), Volume 60 (1954), pp. 140-145 | DOI | Zbl
[11] Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math., Volume 88 (1987) no. 3, pp. 495-520 | DOI | MR | Zbl
[12] Representations of fundamental groups of surfaces, Geometry and topology (College Park, Md., 1983/84) (Lecture Notes in Math.), Volume 1167, Springer, Berlin, 1985, pp. 95-117 | MR | Zbl
[13] Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999 (Oxford Science Publications) | MR | Zbl
[14] Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) no. 76, pp. 165-246 | DOI | Numdam | MR | Zbl
[15] Representations of free Fuchsian groups in complex hyperbolic space, Topology, Volume 39 (2000) no. 1, pp. 33-60 | DOI | MR | Zbl
[16] Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant, Geom. Dedicata, Volume 97 (2003), pp. 151-185 Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999) | DOI | Zbl
[17] Groups and geometric analysis, Pure and Applied Mathematics, 113, Academic Press Inc., Orlando, FL, 1984 (Integral geometry, invariant differential operators, and spherical functions) | MR | Zbl
[18] Kähler manifolds and -pinching, Duke Math. J., Volume 62 (1991) no. 3, pp. 601-611 | DOI | MR | Zbl
[19] Cusp closing in rank one symmetric spaces, Invent. Math., Volume 123 (1996) no. 2, pp. 283-307 | DOI | MR | Zbl
[20] Bounded cohomology, boundary maps, and rigidity of representations into and , Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, pp. 237-260 | MR | Zbl
[21] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progr. Math.), Volume 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48-106 | MR | Zbl
[22] Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom., Volume 47 (1997) no. 3, pp. 469-503 | MR | Zbl
[23] On normal subgroups in the fundamental groups of complex surfaces, arXiv:math.GT/9808085
[24] Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, 2, Marcel Dekker, New York, 1970 | MR | Zbl
[25] Complete surfaces of at most quadratic area growth, Comment. Math. Helv., Volume 72 (1997) no. 1, pp. 67-71 | DOI | MR | Zbl
[26] Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), Academic Press, London, 1968/1969, pp. 341-402 | MR | Zbl
[27] On certain covers of the universal elliptic curve, Harvard University (1981) (Ph. D. Thesis)
[28] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991 | MR | Zbl
[29] Geometric superrigidity, Invent. Math., Volume 113 (1993) no. 1, pp. 57-83 | DOI | MR | Zbl
[30] Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J., 1973 (Annals of Mathematics Studies, No. 78) | MR | Zbl
[31] Sous-groupes discrets des groupes de Lie: rigidité, arithméticité, Astérisque (1995) no. 227, Exp. No. 778, 3, pp. 69-105 (Séminaire Bourbaki, Vol. 1993/94) | Numdam | MR | Zbl
[32] Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology, Volume 32 (1993) no. 4, pp. 899-907 | DOI | MR | Zbl
[33] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Volume 11 (1978) no. 2, pp. 211-228 | Numdam | MR | Zbl
[34] On univalent harmonic maps between surfaces, Invent. Math., Volume 44 (1978) no. 3, pp. 265-278 | DOI | MR | Zbl
[35] Arbres, amalgames, , Société Mathématique de France, Paris, 1977 (Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46) | Numdam | MR
[36] The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2), Volume 112 (1980) no. 1, pp. 73-111 | DOI | MR | Zbl
[37] Harmonic maps from surfaces to certain Kaehler manifolds, Math. Scand., Volume 45 (1979) no. 1, pp. 13-26 | MR | Zbl
[38] Representations of surface groups in complex hyperbolic space, J. Diff. Geom., Volume 29 (1989), pp. 125-133 | MR | Zbl
[39] Holomorphicity of certain harmonic maps from a surface to complex projective -space, J. London Math. Soc. (2), Volume 20 (1979) no. 1, pp. 137-142 | DOI | MR | Zbl
[40] cohomology of warped products and arithmetic groups, Invent. Math., Volume 70 (1982/83) no. 2, pp. 169-218 | DOI | MR | Zbl
Cité par Sources :