[Flot par l'inverse de la courbure moyenne dans l'espace hyperbolique complexe]
Nous considérons l'évolution par l'inverse de la courbure moyenne d'une surface étoilée, fermée et à courbure moyenne positive dans l'espace hyperbolique complexe. Nous montrons que le flot est défini pour tout temps positif et que la surface reste étoilée et à courbure moyenne positive. De plus, la métrique induite, après un changement d'échelle, converge vers un multiple conforme de la métrique sous-riemannienne standard sur la sphère de dimension impaire. Nous allons montrer l'existence d'exemples de données initiales telles que cette limite sous-riemannienne n'a pas courbure de Webster constante.
We consider the evolution by inverse mean curvature flow of a closed, mean convex and star-shaped hypersurface in the complex hyperbolic space. We prove that the flow is defined for any positive time, the evolving hypersurface stays star-shaped and mean convex. Moreover the induced metric converges, after rescaling, to a conformal multiple of the standard sub-Riemannian metric on the sphere. Finally we show that there exists a family of examples such that the Webster curvature of this sub-Riemannian limit is not constant.
DOI : 10.24033/asens.2404
Keywords: Inverse mean curvature flow, complex hyperbolic space, sub-Riemannian geometry.
Mot clés : Flot par l'inverse de la courbure moyenne, espace hyperbolique complexe, géométrie sous-riemannienne.
@article{ASENS_2019__52_5_1107_0, author = {Pipoli, Giuseppe}, title = {Inverse mean curvature flow in complex hyperbolic space}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1107--1135}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2404}, mrnumber = {4057778}, zbl = {1462.53087}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2404/} }
TY - JOUR AU - Pipoli, Giuseppe TI - Inverse mean curvature flow in complex hyperbolic space JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1107 EP - 1135 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2404/ DO - 10.24033/asens.2404 LA - en ID - ASENS_2019__52_5_1107_0 ER -
%0 Journal Article %A Pipoli, Giuseppe %T Inverse mean curvature flow in complex hyperbolic space %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1107-1135 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2404/ %R 10.24033/asens.2404 %G en %F ASENS_2019__52_5_1107_0
Pipoli, Giuseppe. Inverse mean curvature flow in complex hyperbolic space. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1107-1135. doi : 10.24033/asens.2404. http://www.numdam.org/articles/10.24033/asens.2404/
, Ergebn. Math. Grenzg., 10, Springer, 1987, 510 pages (ISBN: 3-540-15279-2) | DOI | MR | Zbl
The inverse mean curvature flow in rotationally symmetric spaces, Chin. Ann. Math. Ser. B, Volume 32 (2011), pp. 27-44 (ISSN: 0252-9599) | DOI | MR | Zbl
, Progress in Math., 246, Birkhäuser, 2006, 487 pages (ISBN: 978-0-8176-4388-1; 0-8176-4388-5) | MR | Zbl
, Series in Geometry and Topology, 39, International Press, 2006, 323 pages (ISBN: 978-1-57146-162-9; 1-57146-162-0) | MR | Zbl
Inverse curvature flows in hyperbolic space, J. Differential Geom., Volume 89 (2011), pp. 487-527 http://projecteuclid.org/euclid.jdg/1335207376 (ISSN: 0022-040X) | MR | Zbl
Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., Volume 32 (1990), pp. 299-314 http://projecteuclid.org/euclid.jdg/1214445048 (ISSN: 0022-040X) | MR | Zbl
The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., Volume 59 (2001), pp. 353-437 http://projecteuclid.org/euclid.jdg/1090349447 (ISSN: 0022-040X) | MR | Zbl
Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. math., Volume 84 (1986), pp. 463-480 (ISSN: 0020-9910) | DOI | MR | Zbl
Inverse mean curvature flows in the hyperbolic 3-space revisited, Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 119-126 (ISSN: 0944-2669) | DOI | MR | Zbl
Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., Volume 1 (1988), pp. 1-13 (ISSN: 0894-0347) | DOI | MR | Zbl
, Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., 1987, 462 pages (ISBN: 90-277-2289-7) | DOI | MR | Zbl
The inverse mean curvature flow in rank one symmetric spaces of non-compact type, Kyushu J. Math., Volume 69 (2015), pp. 259-284 (ISSN: 1340-6116) | DOI | MR | Zbl
Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds, J. Differential Geom., Volume 84 (2010), pp. 191-229 http://projecteuclid.org/euclid.jdg/1271271798 (ISSN: 0022-040X) | MR | Zbl
The fundamental equations of a submersion, Michigan Math. J., Volume 13 (1966), pp. 459-469 http://projecteuclid.org/euclid.mmj/1028999604 (ISSN: 0026-2285) | DOI | MR | Zbl
Mean curvature flow and Riemannian submersions, Geom. Dedicata, Volume 184 (2016), pp. 67-81 (ISSN: 0046-5755) | DOI | MR | Zbl
Inverse mean curvature flow in quaternionic hyperbolic space, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Volume 29 (2018), pp. 153-171 (ISSN: 1120-6330) | DOI | MR | Zbl
The inverse mean curvature flow in warped cylinders of non-positive radial curvature, Adv. Math., Volume 306 (2017), pp. 1130-1163 (ISSN: 0001-8708) | DOI | MR | Zbl
On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., Volume 205 (1990), pp. 355-372 (ISSN: 0025-5874) | DOI | MR | Zbl
Inverse mean curvature flows in warped product manifolds, J. Geom. Anal., Volume 28 (2018), pp. 1749-1772 (ISSN: 1050-6926) | DOI | MR | Zbl
Cité par Sources :