Inverse mean curvature flow in complex hyperbolic space
[Flot par l'inverse de la courbure moyenne dans l'espace hyperbolique complexe]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1107-1135.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous considérons l'évolution par l'inverse de la courbure moyenne d'une surface étoilée, fermée et à courbure moyenne positive dans l'espace hyperbolique complexe. Nous montrons que le flot est défini pour tout temps positif et que la surface reste étoilée et à courbure moyenne positive. De plus, la métrique induite, après un changement d'échelle, converge vers un multiple conforme de la métrique sous-riemannienne standard sur la sphère de dimension impaire. Nous allons montrer l'existence d'exemples de données initiales telles que cette limite sous-riemannienne n'a pas courbure de Webster constante.

We consider the evolution by inverse mean curvature flow of a closed, mean convex and star-shaped hypersurface in the complex hyperbolic space. We prove that the flow is defined for any positive time, the evolving hypersurface stays star-shaped and mean convex. Moreover the induced metric converges, after rescaling, to a conformal multiple of the standard sub-Riemannian metric on the sphere. Finally we show that there exists a family of examples such that the Webster curvature of this sub-Riemannian limit is not constant.

Publié le :
DOI : 10.24033/asens.2404
Classification : 53C17, 53C40, 53C44.
Keywords: Inverse mean curvature flow, complex hyperbolic space, sub-Riemannian geometry.
Mot clés : Flot par l'inverse de la courbure moyenne, espace hyperbolique complexe, géométrie sous-riemannienne.
@article{ASENS_2019__52_5_1107_0,
     author = {Pipoli, Giuseppe},
     title = {Inverse mean curvature flow  in complex hyperbolic space},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1107--1135},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {5},
     year = {2019},
     doi = {10.24033/asens.2404},
     mrnumber = {4057778},
     zbl = {1462.53087},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2404/}
}
TY  - JOUR
AU  - Pipoli, Giuseppe
TI  - Inverse mean curvature flow  in complex hyperbolic space
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1107
EP  - 1135
VL  - 52
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2404/
DO  - 10.24033/asens.2404
LA  - en
ID  - ASENS_2019__52_5_1107_0
ER  - 
%0 Journal Article
%A Pipoli, Giuseppe
%T Inverse mean curvature flow  in complex hyperbolic space
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1107-1135
%V 52
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2404/
%R 10.24033/asens.2404
%G en
%F ASENS_2019__52_5_1107_0
Pipoli, Giuseppe. Inverse mean curvature flow  in complex hyperbolic space. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1107-1135. doi : 10.24033/asens.2404. http://www.numdam.org/articles/10.24033/asens.2404/

Besse, A. L., Ergebn. Math. Grenzg., 10, Springer, 1987, 510 pages (ISBN: 3-540-15279-2) | DOI | MR | Zbl

Ding, Q. The inverse mean curvature flow in rotationally symmetric spaces, Chin. Ann. Math. Ser. B, Volume 32 (2011), pp. 27-44 (ISSN: 0252-9599) | DOI | MR | Zbl

Dragomir, S.; Tomassini, G., Progress in Math., 246, Birkhäuser, 2006, 487 pages (ISBN: 978-0-8176-4388-1; 0-8176-4388-5) | MR | Zbl

Gerhardt, C., Series in Geometry and Topology, 39, International Press, 2006, 323 pages (ISBN: 978-1-57146-162-9; 1-57146-162-0) | MR | Zbl

Gerhardt, C. Inverse curvature flows in hyperbolic space, J. Differential Geom., Volume 89 (2011), pp. 487-527 http://projecteuclid.org/euclid.jdg/1335207376 (ISSN: 0022-040X) | MR | Zbl

Gerhardt, C. Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., Volume 32 (1990), pp. 299-314 http://projecteuclid.org/euclid.jdg/1214445048 (ISSN: 0022-040X) | MR | Zbl

Huisken, G.; Ilmanen, T. The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., Volume 59 (2001), pp. 353-437 http://projecteuclid.org/euclid.jdg/1090349447 (ISSN: 0022-040X) | MR | Zbl

Huisken, G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. math., Volume 84 (1986), pp. 463-480 (ISSN: 0020-9910) | DOI | MR | Zbl

Hung, P.-K.; Wang, M.-T. Inverse mean curvature flows in the hyperbolic 3-space revisited, Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 119-126 (ISSN: 0944-2669) | DOI | MR | Zbl

Jerison, D.; Lee, J. M. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., Volume 1 (1988), pp. 1-13 (ISSN: 0894-0347) | DOI | MR | Zbl

Krylov, N. V., Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., 1987, 462 pages (ISBN: 90-277-2289-7) | DOI | MR | Zbl

Koike, N.; Sakai, Y. The inverse mean curvature flow in rank one symmetric spaces of non-compact type, Kyushu J. Math., Volume 69 (2015), pp. 259-284 (ISSN: 1340-6116) | DOI | MR | Zbl

Neves, A. Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds, J. Differential Geom., Volume 84 (2010), pp. 191-229 http://projecteuclid.org/euclid.jdg/1271271798 (ISSN: 0022-040X) | MR | Zbl

O'Neill, B. The fundamental equations of a submersion, Michigan Math. J., Volume 13 (1966), pp. 459-469 http://projecteuclid.org/euclid.mmj/1028999604 (ISSN: 0026-2285) | DOI | MR | Zbl

Pipoli, G. Mean curvature flow and Riemannian submersions, Geom. Dedicata, Volume 184 (2016), pp. 67-81 (ISSN: 0046-5755) | DOI | MR | Zbl

Pipoli, G. Inverse mean curvature flow in quaternionic hyperbolic space, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Volume 29 (2018), pp. 153-171 (ISSN: 1120-6330) | DOI | MR | Zbl

Scheuer, J. The inverse mean curvature flow in warped cylinders of non-positive radial curvature, Adv. Math., Volume 306 (2017), pp. 1130-1163 (ISSN: 0001-8708) | DOI | MR | Zbl

Urbas, J. I. E. On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., Volume 205 (1990), pp. 355-372 (ISSN: 0025-5874) | DOI | MR | Zbl

Zhou, H. Inverse mean curvature flows in warped product manifolds, J. Geom. Anal., Volume 28 (2018), pp. 1749-1772 (ISSN: 1050-6926) | DOI | MR | Zbl

Cité par Sources :