[Monodromie et fusion de Vinberg pour la dégénérescence principale principale de l'espace de -torseurs]
Nous étudions la géométrie et les singularités de la direction principale de la dégénérescence de Drinfeld-Lafforgue-Vinberg de l'espace moduli de -torseurs pour un groupe réductif arbitraire , et leur relation avec le groupe dual de Langlands .
L'article est constitué de deux parties. Dans la première partie, nous étudions l'action de monodromie sur les cycles proches de la dégénérescence principale de et la relions au groupe dual de Langlands . Nous décrivons la filtration par monodromie sur les cycles proches et généralisons les résultats de [37] du cas au cas d'un groupe réductif arbitraire . Notre description est donnée en termes de combinatoire du groupe dual de Langlands et de généralisations des oscillateurs de Picard-Lefschetz trouvés dans [37]. Nos preuves dans la première partie utilisent certains modèles locaux pour la dégénérescence principale de dont la géométrie est étudiée dans la seconde partie.
Nos modèles locaux fournissent deux types de dégénérescence des espaces Zastava; ces dégénérations sont de nature très différente, et équipent les espaces de Zastava avec l'analogue géométrique d'une structure d'algèbre de Hopf. La première dégénérescence correspond à la fusion Beilinson-Drinfeld des diviseurs. La deuxième dégénérescence est nouvelle et correspond à ce que nous appelons Vinberg fusion: Elle est obtenue non pas par des diviseurs dégénérés sur la courbe, mais en dégénérant le groupe via le semigroupe de Vinberg. De plus, au niveau de la cohomologie, la dégénérescence correspondant à la fusion de Vinberg donne lieu à une structure de algebra, tandis que la dégénérescence correspondant à la fusion de Beilinson-Drinfeld donne lieu à une structure de coalgebra; la compatibilité entre les deux dégénérations donne l'axiome de l'algèbre de Hopf.
We study the geometry and the singularities of the principal direction of the Drinfeld-Lafforgue-Vinberg degeneration of the moduli space of -bundles for an arbitrary reductive group , and their relationship to the Langlands dual group of .
The article consists of two parts. In the first and main part, we study the monodromy action on the nearby cycles sheaf along the principal degeneration of and relate it to the Langlands dual group . We describe the weight-monodromy filtration on the nearby cycles and generalize the results of [37] from the case to the case of an arbitrary reductive group . Our description is given in terms of the combinatorics of the Langlands dual group and generalizations of the Picard-Lefschetz oscillators found in [37]. Our proofs in the first part use certain local models for the principal degeneration of whose geometry is studied in the second part.
Our local models simultaneously provide two types of degenerations of the Zastava spaces; these degenerations are of very different nature, and together equip the Zastava spaces with the geometric analog of a Hopf algebra structure. The first degeneration corresponds to the usual Beilinson-Drinfeld fusion of divisors on the curve. The second degeneration is new and corresponds to what we call Vinberg fusion: it is obtained not by degenerating divisors on the curve, but by degenerating the group via the Vinberg semigroup. Furthermore, on the level of cohomology the degeneration corresponding to the Vinberg fusion gives rise to an algebra structure, while the degeneration corresponding to the Beilinson-Drinfeld fusion gives rise to a coalgebra structure; the compatibility between the two degenerations yields the Hopf algebra axiom.
DOI : 10.24033/asens.2398
Keywords: Geometric representation theory, geometric Langlands program, moduli spaces of $G$-bundles, nearby cycles, Picard-Lefschetz theory, weight-monodromy theory, Vinberg semigroup, Langlands duality.
Mot clés : Théorie géométrique des représentations, programme géométrique de Langlands, espaces de moduli de $G$-torseurs, cycles proches, théorie de Picard-Lefschetz, théorie de la monodromie, semigroupe de Vinberg, dualité de Langlands.
@article{ASENS_2019__52_4_821_0, author = {Schieder, Simon}, title = {Monodromy and {Vinberg} fusion for the principal degeneration of the space of~$G$-bundles}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {821--866}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {4}, year = {2019}, doi = {10.24033/asens.2398}, mrnumber = {4038453}, zbl = {1440.14057}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2398/} }
TY - JOUR AU - Schieder, Simon TI - Monodromy and Vinberg fusion for the principal degeneration of the space of $G$-bundles JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 821 EP - 866 VL - 52 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2398/ DO - 10.24033/asens.2398 LA - en ID - ASENS_2019__52_4_821_0 ER -
%0 Journal Article %A Schieder, Simon %T Monodromy and Vinberg fusion for the principal degeneration of the space of $G$-bundles %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 821-866 %V 52 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2398/ %R 10.24033/asens.2398 %G en %F ASENS_2019__52_4_821_0
Schieder, Simon. Monodromy and Vinberg fusion for the principal degeneration of the space of $G$-bundles. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 821-866. doi : 10.24033/asens.2398. http://www.numdam.org/articles/10.24033/asens.2398/
, I. M. Gel'fand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., 1993, pp. 1-50 | MR | Zbl
, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, 1982, pp. 5-171 | Numdam | MR | Zbl
Quantization of Hitchin's integrable system and Hecke eigensheaves (preprint http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf )
, American Mathematical Society Colloquium Publications, 51, Amer. Math. Soc., 2004, 375 pages (ISBN: 0-8218-3528-9) | DOI | MR | Zbl
, -theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Math.), Volume 1289, Springer, 1987, pp. 42-51 | DOI | MR | Zbl
Intersection cohomology of Drinfeld's compactifications, Selecta Math., Volume 8 (2002), pp. 381-418 (ISSN: 1022-1824) | DOI | MR | Zbl
Geometric Eisenstein series, Invent. math., Volume 150 (2002), pp. 287-384 (ISSN: 0020-9910) | DOI | MR | Zbl
Deformations of local systems and Eisenstein series, Geom. Funct. Anal., Volume 17 (2008), pp. 1788-1850 (ISSN: 1016-443X) | DOI | MR | Zbl
, Progress in Math., 231, Birkhäuser, 2005, 250 pages (ISBN: 0-8176-4191-2) | MR | Zbl
Geometry of second adjointness for -adic groups, Represent. Theory, Volume 19 (2015), pp. 299-332 (ISSN: 1088-4165) | DOI | MR | Zbl
Nearby cycles of Whittaker sheaves on Drinfeld's compactification (preprint arXiv:1702.04375 ) | MR
A formula for the geometric Jacquet functor and its character sheaf analogue, Geom. Funct. Anal., Volume 27 (2017), pp. 772-797 (ISSN: 1016-443X) | DOI | MR | Zbl
, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl
La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., Volume 52 (1980), pp. 137-252 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Geometric constant term functor(s), Selecta Math., Volume 22 (2016), pp. 1881-1951 (ISSN: 1022-1824) | DOI | MR | Zbl
Cohomology of compactified moduli varieties of -sheaves of rank 2, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 162 (1987), p. 107-158, 189 (ISSN: 0373-2703) | DOI | MR | Zbl
Moduli varieties of -sheaves, Funktsional. Anal. i Prilozhen., Volume 21 (1987), pp. 23-41 (ISSN: 0374-1990) | DOI | MR | Zbl
On a strange invariant bilinear form on the space of automorphic forms, Selecta Math., Volume 22 (2016), pp. 1825-1880 (ISSN: 1022-1824) | DOI | MR | Zbl
Semiinfinite Flags II. Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, Volume 194 (1999), pp. 113-148 | MR | Zbl
Semiinfinite Flags I. Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, Volume 194 (1999), pp. 81-112 | MR | Zbl
Notes on the Geometric Langlands Program (preprint http://www.math.harvard.edu/~gaitsgde/GL/ )
On de Jong's conjecture, Israel J. Math., Volume 157 (2007), pp. 155-191 (ISSN: 0021-2172) | DOI | MR | Zbl
Outline of the proof of the geometric Langlands conjecture for , Astérisque, Volume 370 (2015), pp. 1-112 (ISBN: 978-2-85629-806-0, ISSN: 0303-1179) | MR | Zbl
A “strange” functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017), pp. 1123-1162 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Spherical varieties and Langlands duality, Mosc. Math. J., Volume 10 (2010), p. 65-137, 271 (ISSN: 1609-3321) | DOI | MR | Zbl
Une compactification des champs classifiant les chtoucas de Drinfeld, J. Amer. Math. Soc., Volume 11 (1998), pp. 1001-1036 (ISSN: 0894-0347) | DOI | MR | Zbl
Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math., Volume 166 (2007), pp. 95-143 (ISSN: 0003-486X) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 133, Cambridge Univ. Press, 1988, 171 pages (ISBN: 0-521-35809-4) | DOI | MR | Zbl
, Encyclopaedia of Math. Sciences, 134, Springer, 2005, 246 pages (ISBN: 3-540-24241-4) | MR | Zbl
Very flat reductive monoids, Publ. Mat. Urug., Volume 9 (2001), pp. 93-121 (ISSN: 0797-1443) | MR | Zbl
Algebraic monoids with affine unit group are affine, Transform. Groups, Volume 12 (2007), pp. 601-605 (ISSN: 1083-4362) | DOI | MR | Zbl
Monoïdes algébriques et plongements de groupes (1997)
Algebraic monoids and group embeddings, Transform. Groups, Volume 3 (1998), pp. 375-396 (ISSN: 1083-4362) | DOI | MR | Zbl
Inverse Satake transforms (preprint arXiv:1410.2312 ) | MR
Non-categorical structures in harmonic analysis (2014) (MSRI talk, video https://www.msri.org/workshops/708/schedules/19168 )
Geometric Bernstein Asymptotics and the Drinfel'd-Lafforgue-Vinberg degeneration for arbitrary reductive groups (preprint arXiv:1607.00586 )
The Harder-Narasimhan stratification of the moduli stack of -bundles via Drinfeld's compactifications, Selecta Math., Volume 21 (2015), pp. 763-831 (ISSN: 1022-1824) | DOI | MR | Zbl
Picard-Lefschetz oscillators for the Drinfeld-Lafforgue-Vinberg degeneration for , Duke Math. J., Volume 167 (2018), pp. 835-921 (ISSN: 0012-7094) | DOI | MR | Zbl
, Lie groups and Lie algebras: E. B. Dynkin's Seminar (Amer. Math. Soc. Transl. Ser. 2), Volume 169, Amer. Math. Soc., 1995, pp. 145-182 | DOI | MR | Zbl
On an Invariant Bilinear Form on the Space of Automorphic Forms via Asymptotics, ISBN: 978-0355-07666-0, ProQuest LLC, Ann Arbor, MI (2017) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10266436 | MR
On the reductive monoid associated to a parabolic subgroup, J. Lie Theory, Volume 27 (2017), pp. 637-655 (ISSN: 0949-5932) | MR | Zbl
Cité par Sources :