Dans ce papier, nous construisons un isomorphisme explicite entre les espaces vectoriels des TQTC de Reshetikhin-Turaev de groupe de gauge et des espaces de sections holomorphes de fibrés en droites complexes sur une certaine variété kählerienne, suivant l'approche de la quantification géométrique. Les opérateurs courbes deviennent ainsi des opérateurs de Toeplitz de symboles principaux correspondant aux fonctions traces sur l'espace des modules. Nous en déduisons que les vecteurs propres de ces opérateurs se concentrent sur les lignes de niveaux de ces fonctions traces, et obtenons une formule asymptotique pour les produits scalaires de ces vecteurs propres. Ceci permet d'obtenir une asymptotique pour les coefficients de matrice des représentations quantiques satisfaisant une hypothèse de généricité.
This paper presents an explicit mapping between the -Reshetikhin-Turaev TQFT vector spaces of surfaces and spaces of holomorphic sections of complex line bundles on some Kähler manifold, following the approach of geometric quantization. We explain how curve operators in TQFT correspond to Toeplitz operators with symbols some trace functions. As an application, we show that eigenvectors of these operators are concentrated near the level sets of these trace functions, and obtain asymptotic estimates of pairings of such eigenvectors. This yields under some genericity assumptions an asymptotic for the matrix coefficients of quantum representations.
Keywords: Quantum invariants, TQFT, geometric quantization, Witten's asymptotic expansion conjecture.
Mot clés : Invariants quantiques, théories quantiques topologiques des champs, quantification géométrique, conjecture asymptotique de Witten.
@article{ASENS_2018__51_6_1599_0, author = {Detcherry, Renaud}, title = {Geometric quantization and asymptotics of pairings in {TQFT}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1599--1630}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {6}, year = {2018}, doi = {10.24033/asens.2382}, mrnumber = {3940905}, zbl = {1426.57034}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2382/} }
TY - JOUR AU - Detcherry, Renaud TI - Geometric quantization and asymptotics of pairings in TQFT JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1599 EP - 1630 VL - 51 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2382/ DO - 10.24033/asens.2382 LA - en ID - ASENS_2018__51_6_1599_0 ER -
%0 Journal Article %A Detcherry, Renaud %T Geometric quantization and asymptotics of pairings in TQFT %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1599-1630 %V 51 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2382/ %R 10.24033/asens.2382 %G en %F ASENS_2018__51_6_1599_0
Detcherry, Renaud. Geometric quantization and asymptotics of pairings in TQFT. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1599-1630. doi : 10.24033/asens.2382. http://www.numdam.org/articles/10.24033/asens.2382/
The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 (ISSN: 0080-4614) | DOI | MR | Zbl
The Witten invariant of finite order mapping tori I (preprint arXiv:1104.5576 ) | MR
Asymptotic faithfulness of the quantum representations of the mapping class groups, Ann. of Math., Volume 163 (2006), pp. 347-368 (ISSN: 0003-486X) | DOI | MR | Zbl
The Nielsen-Thurston classification of mapping classes is determined by TQFT, J. Math. Kyoto Univ., Volume 48 (2008), pp. 323-338 (ISSN: 0023-608X) | DOI | MR | Zbl
Asymptotics of the Hilbert-Schmidt norm of curve operators in TQFT, Lett. Math. Phys., Volume 91 (2010), pp. 205-214 (ISSN: 0377-9017) | DOI | MR | Zbl
, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 177-209 | DOI | MR | Zbl
Geometric construction of modular functors from conformal field theory, J. Knot Theory Ramifications, Volume 16 (2007), pp. 127-202 (ISSN: 0218-2165) | DOI | MR | Zbl
Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975) (Astérisque), Volume 34–35, Soc. Math. France (1976), pp. 123-164 | MR | Zbl
Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995), pp. 883-927 (ISSN: 0040-9383) | DOI | MR | Zbl
, Algorithms and Computation in Mathematics, 10, Springer, 2003, 602 pages (ISBN: 3-540-00973-6) | DOI | MR | Zbl
Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003), pp. 1527-1566 (ISSN: 0360-5302) | DOI | MR | Zbl
Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006), pp. 171-198 http://projecteuclid.org/euclid.jsg/1175790956 (ISSN: 1527-5256) | DOI | MR | Zbl
On the quantization of polygon spaces, Asian J. Math., Volume 14 (2010), pp. 109-152 (ISSN: 1093-6106) | DOI | MR | Zbl
Asymptotic properties of the quantum representations of the mapping class group, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 7507-7531 (ISSN: 0002-9947) | DOI | MR | Zbl
Knot state asymptotics I: AJ conjecture and Abelian representations, Publ. Math. Inst. Hautes Études Sci., Volume 121 (2015), pp. 279-322 (ISSN: 0073-8301) | DOI | MR | Zbl
Knot state asymptotics II: Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes Études Sci., Volume 121 (2015), pp. 323-361 (ISSN: 0073-8301) | DOI | MR | Zbl
Asymptotic formulae for curve operators in TQFT, Geom. Topol., Volume 20 (2016), pp. 3057-3096 (ISSN: 1465-3060) | DOI | MR | Zbl
Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. math., Volume 85 (1986), pp. 263-302 (ISSN: 0020-9910) | DOI | MR | Zbl
On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math., Volume 16 (2005), pp. 661-685 (ISSN: 0129-167X) | DOI | MR | Zbl
Flat connections and geometric quantization, Comm. Math. Phys., Volume 131 (1990), pp. 347-380 http://projecteuclid.org/euclid.cmp/1104200841 (ISSN: 0010-3616) | DOI | MR | Zbl
, Invariants of knots and 3-manifolds (Kyoto, 2001) (Geom. Topol. Monogr.), Volume 4, Geom. Topol. Publ., Coventry, 2002, pp. 69-87 | DOI | MR | Zbl
Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Comm. Math. Phys., Volume 147 (1992), pp. 563-604 http://projecteuclid.org/euclid.cmp/1104250751 (ISSN: 0010-3616) | DOI | MR | Zbl
Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys., Volume 150 (1992), pp. 593-630 http://projecteuclid.org/euclid.cmp/1104251961 (ISSN: 0010-3616) | DOI | MR | Zbl
Modular forms and quantum invariants of 3-manifolds, Asian J. Math., Volume 3 (1999), pp. 93-107 (ISSN: 1093-6106) | DOI | MR | Zbl
Geometry of representations spaces in (2009) (Strasbourg Master class of Geometry)
Toeplitz operators in TQFT via skein theory, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 3669-3704 (ISSN: 0002-9947) | DOI | MR | Zbl
Residue formulas for the large asymptotics of Witten's invariants of Seifert manifolds. The case of , Comm. Math. Phys., Volume 178 (1996), pp. 27-60 http://projecteuclid.org/euclid.cmp/1104286553 (ISSN: 0010-3616) | DOI | MR | Zbl
Some comments on Chern-Simons gauge theory, Comm. Math. Phys., Volume 126 (1989), pp. 409-420 http://projecteuclid.org/euclid.cmp/1104179858 (ISSN: 0010-3616) | DOI | MR | Zbl
Invariants of 3-manifolds via link polynomials and quantum groups, Invent. math., Volume 103 (1991), pp. 547-597 (ISSN: 0020-9910) | DOI | MR | Zbl
Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. reine angew. Math., Volume 544 (2002), pp. 181-222 (ISSN: 0075-4102) | DOI | MR | Zbl
Cité par Sources :