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G. C A. W

Y.  C G. W

E. K

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy

13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64
Fax : (33) 04 91 41 17 51

email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 420 euros.
Abonnement avec supplément papier :

Europe : 540 e. Hors Europe : 595 e ($ 863). Vente au numéro : 77 e.

© 2018 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 51, 2018, p. 1599 à 1630

GEOMETRIC QUANTIZATION AND ASYMPTOTICS
OF PAIRINGS IN TQFT

 R DETCHERRY

A. – This paper presents an explicit mapping between the SU.2/-Reshetikhin-Turaev
TQFT vector spaces Vr .†/ of surfaces and spaces of holomorphic sections of complex line bundles
on some Kähler manifold, following the approach of geometric quantization. We explain how curve
operators in TQFT correspond to Toeplitz operators with symbols some trace functions. As an appli-
cation, we show that eigenvectors of these operators are concentrated near the level sets of these trace
functions, and obtain asymptotic estimates of pairings of such eigenvectors. This yields under some
genericity assumptions an asymptotic for the matrix coefficients of quantum representations.

R. – Dans ce papier, nous construisons un isomorphisme explicite entre les espaces vecto-
riels Vr .†/ des TQTC de Reshetikhin-Turaev de groupe de gauge SU.2/ et des espaces de sections ho-
lomorphes de fibrés en droites complexes sur une certaine variété kählerienne, suivant l’approche de la
quantification géométrique. Les opérateurs courbes deviennent ainsi des opérateurs de Toeplitz de sym-
boles principaux correspondant aux fonctions traces sur l’espace des modules. Nous en déduisons que
les vecteurs propres de ces opérateurs se concentrent sur les lignes de niveaux de ces fonctions traces,
et obtenons une formule asymptotique pour les produits scalaires de ces vecteurs propres. Ceci permet
d’obtenir une asymptotique pour les coefficients de matrice des représentations quantiques satisfaisant
une hypothèse de généricité.

1. Introduction

The study of topological quantum field theories (or TQFT) was developed after Witten
used the Jones polynomial to heuristically define a collection of invariants of 3-manifolds,
cobordisms, surfaces and mapping class on surfaces, satisfying some axioms, including some
compatibility with gluings or disjoint union, and gave the expected asymptotic expansion of
these 3-manifold invariants, in what is known as the Witten conjecture.

Later, these TQFT were constructed more rigorously by Reshetikhin and Turaev in [28],
and later by Blanchet, Masbaum, Habegger and Vogel in [9], in the case where the gauge
group is G D SU2, using skein calculus. This second approach, more combinatorial, is the
one we use in the following paper.
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1600 R. DETCHERRY

To each compact oriented surface † is associated by the TQFT a sequence of Hermitian
vector spaces Vr .†/, parametrized by an integer r called level, to each pair of pants decom-
position a basis .'˛/˛2Ir of Vr .†/, and to each simple closed curve on † a curve operator
T

r 2 End.Vr .†//. The goal of this paper is to compute the asymptotic behavior of pairings
h'˛;  ˇ i of basis vectors corresponding to two pants decomposition when the level goes to
infinity.

A helpful tool to study asymptotics of quantum invariants is the theory of geometric
quantization. Given a Kähler manifold .M;!; J / with dim.M/ D 2n, we define a prequan-
tization bundle as a complex line bundle with an Hermitian form h that has Chern curva-
ture 1

i
! and a half-form bundle, that is a square root of the bundle of complex n-forms.

For L a prequantization bundle and ı a half-form bundle, we have a sequence of (finite
dimensional when M is compact) vector spaces H 0.M;Lr ˝ ı/: the spaces of holomorphic
sections of Lr ˝ ı.

A natural candidate to present the vector space Vr .†/ and curve operators T r as arising
from the geometric quantization of some Kähler manifold and function is the moduli space
M .†/ D Hom.�1†; SU2/= SU2 of representations of the fundamental group of † in SU2

modulo conjugation. This space has a natural symplectic form on it, defined by Atiyah and
Bott in [7].

Also, in the setting of geometric quantization, to each smooth integrable function f

on M .†/ is associated a sequence of endomorphisms of H 0.M;Lr ˝ ı/ called a Toeplitz
operator of symbol f . Curve operators T r will be represented as Toeplitz operators with
principal symbol the trace functions f .�/ D �Tr.�.// which are continuous functions
on M .†/.

Then, results of microlocal analysis state that the joint eigenvectors of such Toeplitz
operators concentrate on the level sets of their principal symbol. As the TQFT basis .'˛/˛2Ir
associated to a pair of pants decomposition C of † is a basis of common eigenvectors of
curve operators, we get asymptotic estimates of these. In the geometric model, sequences of
vectors '˛r with ˛r

r
�����!
r!C1

x should carry most of their mass on a neighborhood of the set

ƒ C
�2 cos.�x/ D f� = Tr.�.Ci // D �2 cos.�xi /g:

The final goal of this paper is to compute the asymptotic expansion of pairings h'˛;  ˇ i of
basis vectors of Vr .†/ corresponding to two pants decompositions C and D of†. There are
two ways of thinking of these pairings: if one decomposition is the image of the other by an
element of the mapping class group �g of†, what we compute is a limit of matrix coefficients
of the quantum representations of �g on Vr .†/.

Alternatively, the pairings can be viewed as special Reshethikhin-Turaev invariants:
choose two handlebodies, one corresponding to each pants decomposition, insert a trivalent
colored graph in each with colorings ˛ and ˇ, and glue them together to obtain a 3-manifold
with a pair of trivalent-colored graphs inside, which represents some linear combination of
links. The pairing h'˛;  ˇ i is just the Reshetikhin-Turaev invariant of this manifold with
links.
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GEOMETRIC QUANTIZATION AND ASYMPTOTICS OF PAIRINGS IN TQFT 1601

The vectors '˛r and  ˇr concentrate on ƒ C
E˛r

and ƒD
Eˇr

where Ei˛r D �2 cos.� ˛
i
r

r
/.

Under some condition of genericity, the Lagrangian ƒ C
x and ƒD

y have a transverse intersec-
tion, consisting only of a finite number of points, and we show that the pairing h'˛r ;  ˇr i has
an asymptotic expansion consisting of a sum of contributions of these points as follows:

h'˛r ;  ˇr i D ur .
r

2�
/�

n
2

1r
Vol.ƒ C

E˛r
/Vol.ƒD

E 0
ˇr

/

X
z2ƒ C

E˛r
\ƒ

D

E0
ˇr

eir�.z0;z/

j det.f�i ; �0j g/j
1
2

im.z0;z/ CO.r�
n
2�1/;

where we set dim.M .†// D 2n (that is n D 3g�3), ur is a sequence of complex numbers of
moduli 1, the functions �i D �Tr.�.Ci // and �0j D �Tr.�.Dj // are the principal symbols

of T Cir and T
Dj
r , f�; �g is the Poisson bracket in M .†/, Vol.ƒ C

E˛r
/ (resp. Vol.ƒD

Eˇr
/) is the

volume for the volume formˇ D d�1^� � �^d�n (resp.ˇ0 D d� 01^� � � d�
0
n) where d�i (resp. d� 0i )

are basis of T �ƒ C
E˛r

(resp. T �ƒD
Eˇr

) dual to the Hamiltonian vector fieldsXi of �i (resp.X 0i
of �0i ).

Moreover, z0 is some specific point in the finite intersection, and for z 2 ƒ C
E˛r
\ ƒ C

E˛r
,

if we choose z0;z a loop consisting of a path from z0 to z in ƒ C
E˛r

and a path from z to z0

inƒD
Eˇr

, then �.z0; z/ is the holonomy of the prequantization bundleL along z0;z . The line

bundle L having curvature 1
i
!, the quantity �.z0; z/ can be defined alternatively as follows:

take an oriented disk D.z0; z/ in M .†/ whose boundary is the loop z0;z . Then �.z0; z/ is
its symplectic area: �.z0; z/ D

R
D.z0;z/

!

Finally, m.z0; z/ 2 Z and is some kind of Maslov index, the computation of which
is explained in Section 5. A path from z0 to z along ƒ C

E˛r
induces a path in the oriented

Lagrangian Grassmanian LGC.M .†//, similarly for the path from z to z0 in ƒ C
Eˇr

. We
connect these to get a loop in the oriented Lagrangian Grassmanian by turning “positively”
in the oriented Lagrangian Grassmanian of Tz M .†/ and Tz0 M .†/. The index m.z0; z/
ought to correspond the homotopy class of this loop in �1LGC.M .†// D Z.

Notice that the definition of �.z0; z/ depends only on the homotopy class of the loop z0;z
as the line bundleL is a flat bundle on the Lagrangianƒ C

E˛r
andƒD

Eˇr
. Actually, the quantity

r�.z0; z/C
�
2
m.z0; z/will be also independent of this homotopy class modulo 2�Z, as a result

of Bohr-Sommerfeld conditions.

Finally, we note that the first term of the asymptotic expansion of this pairing is defined
uniquely from the positions of the Lagrangianƒ C

E˛r
andƒD

Eˇr
and the symplectic structure

of M .†/, so it does not depend on the complex structure we introduced in the process of
geometric quantization.

The idea of linking curve operators in TQFT to Toeplitz operators originates in the
work of Andersen [1]. Andersen works in the geometrical viewpoint of TQFT, representing
TQFT vector spaces Vr .†/ as spaces V �r .†/ of holomorphic sections on the moduli space
depending on the choice of a complex structure � on †, and introduces in [1] some Toeplitz
operators with trace functions as principal symbols, and shows that they approximate curve
operators at first order. This approach proved rapidly fruitful: Andersen was able to use these
Toeplitz operators to derive the asymptotic faithfulness of the quantum representations of
the mapping class group [1], as well as other results [2, 3, 4].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1602 R. DETCHERRY

The geometrical viewpoint of TQFT makes an heavy use of the Hitchin connection
to relate the V �r .†/ for different choices of � , making the computations quite unexplicit.
Thereas, in this paper, as we are using only the skein-theoretic presentation of TQFT, we are
able to present a simple and explicit isomorphism between Vr .†/ and holomorphic sections
on some prequantized manifold M . The drawback is that M is a manifold with boundary,
whereas Andersen is able to work on smooth closed manifolds.

The present paper takes inspiration in the work of Marché and Paul [25], in which they
showed an asymptotic formula for curve operators on the pointed torus and the four-holed
sphere, then presented curve operators on these two surfaces as Toeplitz operators with trace
functions as principal symbols, and deduced from such a presentation the asymptotics of
quantum 6j -symbols and coefficients of the pointed S -matrix.

They also conjectured in [25] that their results would apply for arbitrary compact oriented
surfaces. The author devoted the paper [16] to the generalization of the first part of their
work, proving the conjectured asymptotic formula for curve operators on general surfaces.
We will recall this result in Section 3.1 as it will be needed in further sections.

Finally, after presenting in this paper curve operators on arbitrary surfaces † as Toeplitz
operators, we will apply this discussion to compute the asymptotics of some quantum invari-
ants.

Since their discovery the asymptotic behavior of the Witten-Reshetikhin-Turaev invari-
ants Zr .M/ of 3-manifolds M has been a big object of interest. Using his path integral
description of invariants, Witten conjectured an asymptotic expansion for Zr .M/. The
formula for this expansion, first mentioned in [21] is:

Zr .M/ D .1CO.r�1//
X

�2Hom.�1M;SU2/=SU2

e2i�rCS.�/r
h1.�//�h0.�//

2

p
Tor.M; �/I�;

where CS is the Chern-Simons functional, hi .�/ D dim.H i .M;Ad.�// are twisted coho-
mology groups ofM for the adjoint representation of �, Tor is the Reidemeister torsion and
I� is a root of unity of order 8, which can be computed using a spectral flow.

The semi-classical technics of this paper used to compute quantum invariants by counting
contributions of intersections of Lagrangians follow the spirit of a series of two papers by
Charles and Marché [14, 15]. Their paper establishes that the Reshetikhin-Turaev invariants
of Dehn fillings of the figure-eight knot satisfy the asymptotic expansion conjectured by
Witten. They used semi-classical analysis: the complement of the figure-eight knot, asso-
ciated by the TQFT to a vector (or “knot state” of the figure-eight knot) in Vr .T2/ where
T2 is the peripheral torus of the figure-eight knot. The space Vr .T2/ was reinterpreted as
a space of holomorphic sections on M .T2/ and the knot state was shown to concentrate
on the character variety of the figure-eight knot complement, allowing them to compute
the Reshetikhin-Turaev invariants of Dehn fillings by adding contributions of intersections
points of this character variety with some Lagrangian of M .T2/.

Other examples of 3-manifolds satisfying the Witten conjecture include many Seifert
manifolds, as shown by various authors [21, 29, 23, 19, 18], finite order mapping tori as
shown by Andersen [5] or mapping tori satisfying a transversality condition by a paper of
Charles [13].
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The limits of the papers [14] and [15] is that explicit formulas of colored Jones polynomial
of the figure-eight knot are used, making their approach difficult to generalize to arbitrary
knots. Similarly, most other proofs of specific cases of the Witten conjecture also use some
explicit computations, and thus have only a narrow range of applications.

Our asymptotic formula is in some sense a generalization of the formula of Witten:
we give the asymptotic expansion of quantum invariants of gluings of two handlebodies
with trivalent colored graphs in it. The Witten conjecture corresponds to the case of trivial
colorings of the trivalent graphs: if we choose a Heegaard decomposition H [

†
H 0 of M ,

the sum over representations �1M ! SU2 is a sum over the intersection points of the sets
of representations �1† ! SU2 which can be extended to �1H and �1H 0 respectively. The
Chern-Simons invariants is analog to our functional �, and the Reidemeister torsion to our
determinant of the matrix of Poisson bracket. Finally I� looks like the Maslov index in our
formula.

However, the proof of our formula fails in the case of trivial colorings of the trivalent
graphs: the Lagrangians of which we consider the intersections have always intersection in
the boundary of M , corresponding to intersections in the singular part of M .†/. Further-
more, proper vectors of Toeplitz operators at critical level of the principal symbol are not
well understood.

It is nonetheless possible that this approach could work if we had a deeper understanding
of the singularities of M .†/ and the process of geometric quantization in a singular setting.

Acknowledgments. – The author would like to thank Julien Marché and Laurent Charles
for many helpful discussions and for their constant support.

2. Overview of the moduli space M .†/

2.1. Pants decomposition and Hamiltonian torus action

Let † be a closed compact oriented surface. We write M .†/ D Hom.�1†; SU2/=SU2

for the moduli space of representations of the fundamental group of † in SU2 modulo
conjugation.

The set M .†/ is then a real algebraic variety. To see this, first notice that from the
presentation ha1; b1; : : : ag ; bg jŒa1; b1� : : : Œag ; bg �i of �1†g the space of representations
Hom.�1†g ; SU2/ can be identified with fA1; B1; : : : Ag ; Bg 2 SU2 = ŒA1; B1� : : : ŒAg ; Bg � D

Idg, which is a real algebraic variety.
Then as the action of SU2 on Hom.�1†g ; SU2/ is algebraic, it is a consequence of

geometric invariant theory that the GIT quotient Hom.�1†g ; SU2/== SU2 is a real algebraic
variety. But SU2 is a compact group, and for a compact group the GIT quotient coincides
with the geometric quotient Hom.�1†g ; SU2/= SU2.

Alternatively, this space can be described as the space of SU2-connectionsA 2 �1.†; SU2/,
such that dA C 1

2
ŒA ^ A� D 0 (flatness condition), modulo the gauge action by G D

C1.†; SU2/.
The gauge action is given by Ag D gAg�1 C g�1dg for any g 2 G.
There is a partition of M .†/ given by the set of conjugacy classes of irreducible represen-

tations M irr
.†/ and the set M ab

.†/ of conjugacy classes of abelian representations. When

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1604 R. DETCHERRY

the surface † is of genus g � 2, the algebraic variety M .†/ is smooth at Œ�� if and only if
� is an irreducible representation.

If the connectionA represents �, then the tangent space T� M .†/ atA is then given by all
1-forms ˛ 2 �1.†; SU2/, such that d˛C Œ˛ ^A� D 0, modulo gauge action by�0.†; SU2/

acting by translating ˛ by d� C ŒA; ��, for any � 2 �0.†; SU2/.
Furthermore, a natural symplectic structure on M irr

.†/ was introduced by Atiyah and
Bott [7] and then Goldman [17]. This symplectic structure depends on a choice of normal-
ization: for ˛ and ˇ 2 TA M .†/ we choose the normalization:

!A.˛; ˇ/ D
1

2�

Z
†

Tr.˛ ^ ˇ/:

A pants decomposition of † is a family of simple closed curves C D fCege2E that separate
† into a disjoint union of three-holed sphere. We write S for the set of triples .e; f; g/ 2 E3

such that Ce, Cf , and Cg bound a pair of pants in the decomposition. This data gives rise
to an Hamiltonian torus action on M .†/ by a torus of dimension jEj. Such an action is
characterized by its momentum mapping:

h C W M .†/! RE

� ! h C .�/;

where the application h C is given by its components:

hCe .�/ D
1

�
arccos.

Tr.�.Ce//
2

/

which have been shown by Goldman [17] to be Poisson commuting functions on M .†/.
The Hamiltonian flows of these Poisson commuting functions give the action:

RE ! M .†/;

.�e/e2E ! � � �:

The momentum mapping h C , and the associated Hamiltonian flows were described by Jeffrey
and Weistmann [22], and also Goldman [17]. We have the following:

T 2.1. – [22] Given a pair of pants decomposition C , the image of the momentum
mapping h C is a polytope P inside RE which consists of all .xe/e2E 2 RE such that, if
.e; f; g/ 2 S , then:

(i) jxf � xg j � xe � xf C xg ,
(ii) xe C xf C xg � 2.

Given a choice of orientation of the curves Ce, the Hamiltonian action of RE on M .†/

can actually be lifted to an action on Hom.�1.†/; SU2/ which acts on representations as
follows: we pick a point of Ce as base point of �1†. We can also assume up to conjugation
that �.Ce/ is diagonal. Any element of�1† is a product of loops intersectingCe at most once.

If the curve Ce is nonseparating, the image of such a loop  by the representation �e � � is
�./ if  has zero algebraic intersection with Ce.

If the algebraic intersection of  and Ce is one we set .�e � �/./ D U�e�./ where U�e is

the matrix

 
ei�e 0

0 e�i�e

!
.
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GEOMETRIC QUANTIZATION AND ASYMPTOTICS OF PAIRINGS IN TQFT 1605

These conventions suffice to define a representation �e � � so that the corresponding
action on Hom.�1†; SU2/ lifts the Hamiltonian action of hCe on M .†/. If the curve Ce is
separating, we have to conjugate some of these holonomies, see [17] for details.

In [22] the kernel of the action on M .†/ was computed and shown to be some explicit
lattice 2�ƒ inRE . For e 2 E let ue be the vector inRE such that all components of ue vanish,
except for the e-th component which is 1. For v D .e; f; g/ 2 S we also introduce the vector
uv D

ueCufCug
2

2 RE . Note that the same label can appear twice in v D .e; f; g/.
Then [22, prop 5.2] shows that:

ƒ D VectZf.ue/e2E ; .uv/v2Sg

and furthermore the action of T D RE=2�ƒ is free on ��1. VP /.

Now, suppose we set!P D
P
dxi^d�i on VP �T . Then!P is a symplectic form on VP �T .

Given a Lagrangian section s W P ! M .†/ of the momentum map, the map:

� W VP � T �! M .†/

.x; �/ �! �x;� D � � s.x/

maps VP � T into the open subset ��1. VP / of M .†//. It also follows from the analysis of
fibers of the map � in [22] that the subset ��1. VP / is dense in M .†/. The condition that s is
a Lagrangian section of � ensures that �.�x;� / D x and that the parametrization sends the

2-form
P
e

dxe ^ d�e on VP � T to the symplectic form ! on M .†/.

Such a parametrization is called an action-angle parametrization of ��1. VP /, the x-coor-
dinates are called action coordinates and � -coordinates are angle coordinates.

3. TQFT and geometric quantization

This section is devoted to the definition of TQFT spaces Vr .†/ associated to each level
r 2 N� and each closed oriented surface †, as well as the definition of the curve operators
acting on these spaces. We begin by a quick overview of the combinatorial framework for
TQFT of [9], then we rebuild these objects in a more analytic framework in Subsection 3.2.

3.1. TQFT spaces and curve operators

In the article [9], a skein-theoretic TQFT structure for Reshetikhin-Turaev is developed.
The TQFT Vr is introduced as a functor from a category of cobordisms to the category of
finite dimensional C-vector spaces.

More precisely, the functor Vr has the following properties:

– For † a compact closed oriented surface, Vr .†/ is a finite dimensional vector space,
with a natural Hermitian form h�; �i.

– ForM a closed compact oriented manifold,Vr .M/ D Zr .M/ is the level r Reshetikhin-
Turaev invariant of M .

– For M a manifold with boundary †, Vr .M/ is a vector in the vector space Vr .†/.
Moreover, if M D M1 [

†
M2 is the gluing of two manifolds with boundary along

their common boundary, then Vr .M/ D hVr .M1/; Vr .M2/i

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1606 R. DETCHERRY

= A +A−1

F 1. The first Kauffman relation relates three links that are identical except
in a ball where they look like the above. The other relation states that any trivial
component is identified with �A2 � A�2

– Finally, if M is a cobordism whose boundary @M D .�†1/ [ †2 is decomposed into
two parts, andL is a framed link inM , we have thatVr .M;L/ 2 End.Vr .M1/; Vr .M2//.
Moreover, the composition of cobordisms is mapped by Vr to the composition of
associated linear maps.

Curve operators, which will play a central role in this paper, appear as a special case of that
last construction:

D 3.1. – If  is a simple closed curve on a surface †, the curve operator T r is
Vr .† � Œ0; 1�;  � f

1
2
g/ 2 Vr .†/

In this section we will give a brief construction of the vector spaces Vr .†/, the curve
operators T r . For a full construction of the TQFT Vr , we refer to [9].

For M a 3-manifold and A 2 C, the Kauffman module K.M;A/ of M is the quotient
C-vector space generated by isotopy classes of framed links in M by the two Kauffman
relations (see Figure 1). For example the Kauffman module of S3 is C, and the evaluation of
a link L in S3 is the Kauffman bracket hLi of L.

If M D † � Œ0; 1� is a thickened surface, we write simply K.†;A/ for the Kauffman
module K.† � Œ0; 1�; A/. The Kauffman module K.†;A/ has an algebra structure given by
the stacking product: if L and L0 are two links in†� Œ0; 1�, by stacking L0 over L we can see
L[L0 as a link inside †� Œ0; 2� ' †� Œ0; 1� and thus as element of K.†;A/. Extending by
bilinearity, the operation we get is compatible with the Kauffman relations and givesK.†;A/
the structure of an algebra.

For any compact oriented surface †g of genus g, let Hg be a handlebody of boundary
†g . The vector spaces Vr .†g/ are obtained as quotient of the Kauffman modulesK.Hg ; �r /
where �r D �ei

�
2r . More precisely, it is the quotient of this vector space by all negligible

elements:
If L 2 K.Hg ; �r / and L0 2 K.H 0g ; �r / where Hg [ H 0g D S3 we have a pairing

hL;L0i 2 K.S3; �r / obtained by gluing. We callL a negligible element if this pairing vanishes
for all L0 2 K.H 0g ; �r /. Let Nr the space of negligible elements in K.Hg ; �r /, we then have

Vr .†g/ D K.Hg ; �r /=Nr :

Though our definition may seem like it depends on the choice of an handlebodyHg , it follows
from [9] that the dimension of Vr .†g/ is independent of this choice.

With this definition, for each simple closed curve  on†we can define a curve operator T r
onVr .†/. Indeed, stacking the curve  above a banded linkL inHg gives us a banded link [
L inHg as†� Œ0; 1� [

†g
Hg ' Hg . This operation is compatible with Kauffman relations and
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furthermore it maps negligible elements to negligible elements. Indeed, if h 2 K.Hg ; �r / is a
negligible element, for any h0 2 K.H 0g ; A/ we have hh; h0i D 0. The operator T r sends h
to  �h, stacking  over h. When we glue withH 0g , by pushing  to the other handlebody, we
see that

h � h; h0i D hh;  � h0i D 0:

So the operator T r is a well defined operator on Vr .†/.

According to [9], Vr .†/ has a natural Hermitian structure. Furthermore, given a pair
of pants decomposition by curves .Ce/e2E of †, we choose a trivalent banded graph �
embedded in † with the following properties: First the graph � has one trivalent vertex in
each pants of the decomposition. Secondly we require � to have one edge e for each curveCe
of the decomposition with the additional property that the edge e cuts Ce exactly once and
joins the vertex corresponding to the pants on each side of the curve Ce. We will call such a
graph a dual graph to the pair of pants decomposition of †.

Then [9] gave an orthonormal basis of Vr .†/ as follows: the basis .'c/ is indexed
by r-admissible colorings of the edges of �.

An r-admissible coloring of � is an application c W E ! N such that 8.e; f; g/ 2 S

– ce C cf C cg < 2r ,
– ce C cf C cg is odd,
– jce � cf j < cg < ce C cf .

Note that the conditions above differ slightly from that of [9]: we shifted all colors by one,
which will be convenient later. With this condition, we must have ce 2 f1; 2; : : : ; r � 1g for
all e 2 E. The vectors 'c are of norm 1, and are obtained as a specific combination of links
in Hg , see [16] for details. Furthermore, if c is not an r-admissible coloring, by convention,
we set 'c D 0. We will denote by Ir the set of admissible colorings. We also denote by I1
the set of c W E ! N satisfying the last two of the three conditions above.

Finally, we will use the following identity which describes the asymptotic behavior of curve
operators:

T 3.1. – [16] Let  be a simple closed curve on† and letMe D ]. \Ce/. We also
suppose that � is a planar dual graph to a pair of pants decomposition C of†. Then there exist
functions F 

k
indexed by k W E ! Z, such that

– F


k
is analytic on V D f.x; h/ 2 CE � RC = .Re.xe/ C "eMeh/ 2 VP ; 8" 2 f˙1g

E g,
where P D h C .M .†// is the image of the momentum map associated to C .

– F


k
D 0 if there exists e 2 E such that jkej > Me. In particular only a finite number

of F 
k

are non-zero.
– For any r-admissible coloring c, we have :

T r 'c D
X

kWE!Z

F


k
.
c

r
;
1

r
/'cCk :

– If, for .�; h/ 2 V and � 2 RE=ƒ, we set

� .�; �; h/ D
X

kWE!Z

F


k
.�; h/eik�
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F 2. A surface of genus 3 with a pair of pants decomposition in red, and a
planar dual graph to this decomposition in blue.

then we have the following asymptotic expansion:

� .�; �; h/ D �Tr.��;� .//C
h

2i

X
e2E

@2

@�e@�e
.�Tr.��;� .//CO.h

2/;

where ��;� is a parametrization of h�1C .
VP / by action-angle coordinates. The O.h2/ is

uniform on compact subsets of VP � RE=ƒ

Note that an action-angle coordinate as defined in Section 2.1 is unique only up to a shift
in angle coordinates. The paper [16] explains exactly what action-angle parametrization has
to be chosen, but we will not need it here.

When � is not a planar graph, these formulas are shifted by signs using relative spin
structures on .�; @�/, see [16]. In the remaining of the paper, we will always consider pants
decompositions that have a planar dual graph.

For each genus g, there is a pair of pants decomposition of †g that has a planar dual
graph. Indeed, taking the boundary of a tubular neighborhood of a planar graph of Euler
characteristic 1 � g, one gets a surface of genus g, and taking one curve for each edge of
the planar graph one gets a pair of decomposition of †g that has this planar graph as dual
graph, see Figure 2. Moreover, applying the action of the mapping class group sends a pair of
pants decomposition with a planar dual graph to another decomposition with a dual graph
that is again planar. Indeed a banded trivalent graph of Euler characteristic 1 � g is planar
if and only if its boundary has g C 1 components. So the mapping class group action gives
us many others such decompositions.

This asymptotic expansion for the matrix coefficient was first remarked and proved by
Marché and Paul in [25] in the special cases of the four-holed sphere and the one-holed torus,
while the general result for arbitrary compact oriented surface†was formulated and proven
by the author in [16]. The proof used fusion rules, the description of the Kauffman algebra
as a deformation algebra of the algebra of regular functions on M .†/ and the algebraic
properties of curve operators. The spirit of the next section is to use these formulas to view
the curve operator T r associated to a curve  on † as a Toeplitz operator with principal
symbol the trace function � .�; �/ D �Tr.��;� .//which is a function on the subset ��1. VP /
of M .†/.
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3.2. TQFT vector spaces Vr .†/ as spaces of holomorphic sections of line bundles

We want now to translate the combinatorial definition of the TQFT space of Subsec-
tion 3.1 in an analytic framework, and see the Vr .†/ as spaces of holomorphic L

2 sections
of a complex line bundle over a Kähler manifold.

Since the discovery of Witten-Reshetikhin-Turaev TQFT, it has been a popular endeavor
to link the combinatorial definition of TQFT with a definition based on geometric quanti-
zation. Given a compact Kähler manifoldM , with a prequantization line bundleL (that is a
line bundle with Chern curvature 1

i
!) and a half-form bundle, we have a sequence of vector

spaces Vr D H 0.M;Lr ˝ ı/, and any continuous function f on M gives rise to a sequence
of operators T

f
r D …rmf where…r is the orthogonal projector from L

2 sections ofLr˝ ı
to the space of holomorphic sections.

The natural geometric object to represent the combinatorial TQFT spaces is then the
moduli space M .†/ together with its Chern-Simons bundle, and a half-form bundle. The
problem is that for a general genus g, M .†/ is not smooth, and also that there is no
canonical choice of complex structure to work with. These hurdles can be solved: for each
complex structure � on †, the geometric quantization process yields TQFT spaces V �r .†/
and there is a connection on the Teichmüller space of † called the Hitchin connection,
which gives a way of identifying the various V �r .†/ arising from different complex structures
on M .†/ (see [20]). The non-smoothness of M .†/ is usually avoided by working with the
moduli space of†with a puncture and choosing appropriate holonomy around the puncture
instead of the moduli space of †.

It has been showed in [6] that the TQFT defined by the geometric approach is isomorphic
to the combinatorial one. However, the geometric approach to TQFT looses some of the
structure of the combinatorial approach: it is not clear how to geometrically define the
Hermitian structures on the vector spaces Vr .†/, or the natural basis associated to pants
decompositions, also, the identification is quite inexplicit.

As we wish to use analysis to study pairings of such basis vectors, we will take another
approach. Instead of using M .†/ to do geometric quantization procedures, we will use some
open subset of M .†/ associated to a pants decomposition of†: the set of regular points of
the momentum map associated to the pants decomposition. Then we are able to very easily
define a complex structure on this set, and to exhibit an isomorphism between Vr .†/ and a
space of holomorphic sections over this open subset.

Given a pants decomposition of †, the set ��1. VP / of regular points of the associated
momentum map is an open dense subset of M .†/ as described in Section 2.1. By action-
angle coordinates it is symplectomorphic to VP � T equipped with the symplectic form
! D

P
dti ^ d�i . This open set is a subset of M D RE � T which we will equip with a

Kähler structure.
A symplectic form onM is given by the formula ! D

P
dti ^d�i . The complex structure

on M will be induced by the map

Z W RE � T ! .C�/E=‡
.ti ; �i / ! zi D e

ti
2 Ci�i

and the usual complex structure of .C�/E .
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Here ‡ is the discrete subgroup of .C�/E generated by f"v v 2 Sg where if v D .e; f; g/,
then "v

k
D .�1/ıekCıf kCıgk , where ıij is the Kronecker symbol. In fact, .C�/E=‡ is just

isomorphic to .C�/E , but it is easier to work with these coordinates to give an expression of
the symplectic form !. Note that the symplectic form induced on .C�/E=‡ by this map is
the form i

P
dwj ^ dwj , where wj D ln.zj /, for a local determination of the logarithm.

We endow the line bundle M � C with the Hermitian form h such that h.t; �/.1/ D e�'

where ' D jjt jj2

2
D

1
2

P
ln.zizi /2. The Chern curvature of this complex line bundle is

@@' D
P
dwj ^ dwj D

1
i
!. That is, this is a prequantization bundle.

The manifold M also carries a half-form bundle ı: the bundle of n-form is trivial as the
n-form dz1

z1
^ � � � ^

dzn
zn

is well-defined globally (because the action of ‡ leaves each dzi
zi

invariant). The square root of the n-form bundle are then parametrized by H 1.M; f˙1g/.
We then choose as half-form bundle a flat bundle with holonomy �1 along the loops
.t; � C 'uv/0�'�� for v 2 S . As we will see below, this choice will allow us to identify
H 0.M;Lr ˝ ı/ with a space spanned by monomials which share the same parity conditions
as r-admissible colors.

Notice that with these definitions, we have a symplectomorphism between VP � T �
RE � T and ��1. VP / � M .†/. Furthermore, the complex line bundle L with Hermitian
connection h is constructed to have the same curvature and holonomy as the Chern-Simons
bundle and, for ı a bundle on��1. VP /with the same holonomy called the metaplectic bundle,
can also be defined, see [24].

We now want to build an isomorphism between Vr .†/ and holomorphic sections ofLr˝ı
onM . The space of holomorphic sections of Lr ˝ ı has a Hermitian scalar product induced
by the Hermitian structures on L and ı:

.s; s0/ D

Z
RE�T

ss0e�r'
!n

nŠ
D

Z
RE�T

s.t; �/s0.t; �/e�
r
2 jjt jj

2

dt1 : : : dtnd�1 : : : d�n:

Let � be the constant such that 1
�

R
RE�T e

� r2 jjt jj
2
dt1 : : : dtnd�1 : : : d�n D 1 (that is,

� D Vol.T /
�
r
2�

�n
2 , where we recall that n D jEj).

P 3.1. – For ˛ 2 I1 the formula

e˛ D
z˛

jjz˛jj
D

1
p
�
e
t �˛
2 Ci˛��e�

jj˛jj2

4r

defines a holomorphic section of Lr ˝ ı, and if we set Hr D Vectfe˛ ˛ 2 Irg, the map

ˆr W Vr .†/! Hr

'˛ 7! e˛

is a unitary isomorphism between Vr .†/ and Hr .

Proof. – Indeed the parity conditions for ˛ 2 I1 is exactly what is required for the
sections z˛ to have the correct equivariance to be sections ofLr˝ı. It is easy to see then that
the z˛ are orthogonal for the hermitian product on H 0.M;Lr ˝ ı/ and form an Hermitian
basis ofH 0.M;Lr ˝ ı/. The vector spaces Vr .†/ andHr have orthonormal basis '˛ and e˛
indexed exactly by the same label set Ir , hence ˆr is indeed a unitary isomorphism.
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We end this section with a technical result about the asymptotics of the Schwartz kernel
of the orthogonal projection …r W L2.M;Lr ˝ ı/ ! Hr . We will use this result later in
Section 5.2. If s is an L2 section of Lr ˝ ı, then …rs may be expressed as

…rs.t; �/ D
X
˛2Ir

he˛; sie˛.t; '/ D

Z
M

N.t; �; u; '/s.u; '/dud';

where N.t; �; u; '/ D e�
rjjtjj2

2

P
˛2Ir

e˛.u; '/e˛.t; �/ is the Schwartz kernel of…r . There is also

an orthogonal projection map: …0r W L2.M;Lr ˝ ı/ ! H 0.M;Lr ˝ ı/ whose Schwartz
kernel N 0 is called the Bergman kernel. The Bergman kernel is a section of the bundle
L � L�1 ˝ ı � ı�1 on M �M . The asymptotics of Bergman kernels of a compact Kähler
manifold M with prequantizing bundle are well understood. Their asymptotics have been
well described by Boutet de Monvel and Sjöstrand in [26]. In particular, the Bergman kernels
concentrate on the diagonal � D f.x; x/ x 2 M g. See also [30] for an introduction to the
asymptotics of Bergman kernels.

Here the Kähler manifold we work with is not compact but we have:

P 3.2. – The kernel N.t; �; u; '/ D e�
rjjtjj2

2

P
˛2Ir

e˛.u; '/e˛.t; �/ defined

on M �M is O.rN / for the norm of the supremum for some N and, on any compact subset K
of . VP � T /2 we have the asymptotic expansion:

N.t; �; u; '/ D

.
r

2�
/n26�4g exp

�
�
r jjt � ujj2

8
�
r jj� � 'jj2

2
C ir

�
t C u

2

�
� .� � '/

�
e
i
P
j

.�j�'j /

CO.r�1/

for the norm of the supremum on K.

Proof. – First notice that

N.t; �; u; '/ D e�
rjjtjj2

2

X
˛2Ir

e˛.u; '/e˛.t; �/ D
1

�

X
˛2Ir

e�
rjjt�˛r jj

2

4 �
rjju�˛r jj

2

4 ei˛�.��'/

is bounded uniformly by a polynomial in r as each term in the sum is bounded by 1 onM�M

and � D Vol.T /
�
r
2�

�n
2 .

Furthermore, elements of Ir are of the form ˛ D �.1; : : : ; 1/ C  where  is an element
of the lattice ƒ defined in Section 2.1. On a compact subset K of . VP � T /2, this sum is up
to O.r�1/ the same as

1

�

X
˛2ƒ

e�
rjjtC 1r �

˛
r jj
2

4 �
rjjuC 1r �

˛
r jj
2

4 ei˛�.��'/ D
1

�

X
˛2ƒ

f .r; t; u; � � ';
˛

r
/;

where f .r; t; u; �; x/ D exp.� rjjtC
1
r �xjj

2

4
�
rjjuC 1r �xjj

2

4
/eirx� .

For fixed t; u; �; ' and r we set g.x/ D f .r; t; u; �; x/, with � D � � '. The function g,
defined for any x 2 RE , is then a Schwartz function and we have by Poisson summation
formula: X

2ƒ

g.
˛

r
/ D

rn

Covol.ƒ/

X
�2Hom.RE=ƒ;R=2�Z/

Og.r�/;
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where Og is the Fourier transform Og.�/ D
R
RE g.t/e

�i�.t/dt . We compute that

Og.r�/ D

�
2�

r

�n
2

exp.�
r jju � t jj2

8
�
r jj� � �jj2

2
C ir

�
uC t

2

�
.� � �//:

As � and ' are well defined up to Hom.RE=ƒ;R=2�Z/ only, we may assume that 0 is the
closest point in Hom.RE=ƒ;R=2�Z/ to �, and we get thatX

2ƒ

g.
˛

r
/ D

rn

Covol.ƒ/
Og.0/CO.r�1/:

Finally rn

�Covol.Č/
D

�
r
2�

� 3n
2 26�4g as Vol.T / D .2�/nCovol.ƒ/ and Covol.ƒ/ D 22g�3

(see [24]) and thus we get:

N.t; �; u; '/ D
� r
2�

� 3n
2

26�4g Og.0/e
i
P
j

.�j�'j /

D .
r

2�
/n26�4g exp

�
�
r jjt � ujj2

8
�
r jj� � 'jj2

2
C ir

�
t C u

2

�
� .� � '/

�
e
i
P
j

.�j�'j /

up to O.r�1/ as claimed.

3.3. Curve operators as Toeplitz operators

The above section explained the construction of a geometric quantization model
for Vr .†/, the isomorphism ˆr sends Vr .†/ to a space of holomorphic sections on a
Kähler manifold M of line bundles Lr ˝ ı. This model is not a very natural object but it
has the advantage of being quite simple and explicit, which is what we need for our goal of
computing pairings of vectors in Vr .†/.

Having a simple model for Vr .†/, we turn to the curve operators associated to curves
on†. By conjugating a curve operator T r 2 End.Vr .†// using the isomorphismˆr between
Vr .†/ andHr , the curve operators turn into endomorphisms ofHr . We wish to understand
the curve operators as Toeplitz operators on Hr .

Usually given a compact Kähler manifold with a prequantizing bundle L and half form
bundle ı, Toeplitz operators are defined as follows: we have an orthogonal projection oper-
ator…r W L2.M;Lr ˝ ı/! H 0.M;Lr ˝ ı/ and for f WM ! R a smooth function we have
an operator mf acting on sections of Lr ˝ ı by pointwise multiplication by f . A sequence
of endomorphisms of H 0.M;Lr ˝ ı/ is then a Toeplitz operator if there exists a function
g.�; r/ with asymptotic expansion g.�; r/ D g0 C

1
r
g1 C � � � for the norm of the supremum

such that:

Tr D …rmg.�; r/CRr ;

where the term Rr is an operator of norm O.r�N / for any N .

We introduce a slightly modified definition of Toeplitz operators as we wish to work with
the open manifold M D RE � T . Let …r be the orthogonal projector L2.M;Lr ˝ ı/! Hr
where Hr is the vector space defined in the last section. Moreover for any smooth bounded
function f on M , let mf be the operator on L2.M;Lr ˝ ı/ of multiplication of a section
by f .
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D 3.2. – Let U be an open subset of RE �T and let f0; f1; f2; : : : be a sequence
of smooth functions on an open subsetU . We say that the sequenceTr of endomorphisms ofHr is
a Toeplitz operator of symbol f0C 1

r
f1C

1
r2
f2C� � � on U if for any k and any compact subset

K � U we have:

Tr D …rm�.f0C 1r f1C���C
1

rk
fk/
CRr ;

where � is some smooth function with compact support in U such that � � 1 on a neigh-
borhood of K, and Rr are operators whose norms are O.r�k�1/ for the norm of operators
.Hr ; jj � jjL2.M// ! .Hr ; jj � jjL1.K// for any compact subset K � U and are O.rN / for the
norm of operator Hr ! Hr , for some N 2 N.

Representing curve operators as Toeplitz operators is the main ingredient towards our
formula for pairings of curve operator eigenvectors. Indeed, the asymptotic behavior of
eigenvectors of Toeplitz operators is well understood, eigenvectors are expected to concen-
trate on level sets of the principal symbols.

The Theorem 3.1 will serve to identify the principal and subprincipal symbols of curve
operators: we will use it to match the asymptotic expansion of matrix coefficients of T r with
that of a Toeplitz operator of symbol f D f0 C

1
r
f1 C

1
r2
f2 C � � � . We will find that the

appropriate principal symbol is the trace function on M .†/ associated to the curve  .

Our definition of Toeplitz operators is a bit unusual in that Toeplitz operators are usually
introduced as having smooth symbol on a compact prequantized manifoldM . Here we work
on an open manifold M and the symbol we get from Theorem 3.1 might not behave well on
the boundary ofP�T , hence the need for this local definition of Toeplitz operator. The usual
computation of quasimodes of Toeplitz operators derived from microlocal calculus will still
work with this definition.

We want to compute the matrix coefficients of some Toeplitz operator of symbol f . We
will link the matrix coefficients of such a Toeplitz operator to the Fourier coefficient of its
symbol.

L 3.1. – Let ˛r be a sequence of admissible colorings such that ˛r
r
2 K where K is

a compact neighborhood of some point x in VP , and let e˛r be the corresponding basis vectors
of Hr .

Let f be a smooth function on RE with compact support. Finally, take k 2 ZE and define
� as the differential operator

P
e

@2

.@xe/2
. Then there exist differential operators .Li /i�2 on RE

such that for any n we have:

…rmf .t/eik� e˛r D
�
f .
˛r

r
/C

1

2r

�
�f .

˛r

r
/C k � 5f .

˛r

r
/ �
jjkjj2

4
f .
˛r

r
/
�

C

X
n�2

1

rn
.Lnf /.x/CO.r

�n�1/
�
e˛rCk :

Furthermore, the O.r�n�1/ are independent of the sequence ˛r such that ˛r
r
2 K.
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Proof. – It is straightforward from the definition of e˛r that f .t/eik�e˛r is orthogonal
to e˛rCl for any l ¤ k. Thus…rmf .t/eik� e˛r is colinear to e˛rCk and we only need to estimate
the coefficient

.f .t/eik�e˛r ; e˛rCk/ D
1
�

Z
M

f .t/e�
r
2 jjt jj

2

e˛r �tC
k
2 �t�

jj˛r jj
2

2r �
k�˛r
2r �

jjkjj2

4r

D
e�

k�˛r
2r �

jjkjj2

4r

�

Z
M

g.t/e�
r
2 jjt�

˛r
r jj

2

;

where we set g.t/ D f .t/e
k
2 �t .

A stationary phase lemma argument will give us an asymptotic expansion of the integral.
Indeed, letK 0 be a compact neighborhood ofK, as ˛r

r
2 K for all r , for x 2M nK 0 we have

jg.t/je�
r
2 jjt�

˛r
r jj

2
� jjgjj1e

�rd.x;K/2 . As d.K;M nK 0/ > 0, the integral of g.t/e�
r
2 jjt�

˛r
r jj

2

on M nK 0 is a O.r�k/ for every k, with constants independent of ˛r
r

.

Furthermore, we write the Taylor expansion at ˛r
r

of g on K 0 at order k:

g.t/ D g.
˛r

r
/CDg.

˛r

r
/.t �

˛r

r
/C � � � C

1

kŠ
Dkg.

˛r

r
/.t �

˛r

r
/C h.t/

with jh.t/j � Ck
.kC1/Š

.t � ˛r
r
/kC1 where Ck is the supremum of jjDkC1gjj on K 0, which is an

universal constant independent of ˛r
r

.

Integrating by part each integral
R
M
Dkg.˛r

r
/.t � ˛r

r
/e�

r
2 jjt�

˛r
r jj

2
dt , we get 0 whenever

k is odd, 1
r
�g.˛r

r
/ if k D 2 and 1

rn
Ln.g/.

˛r
r
/ when k D 2n and where .Lng/.˛rr / is a linear

combination of the degree k derivatives of g. We get the asymptotic expansion:

1

�

Z
M

g.t/e�
r
2 jjt�

˛r
r jj

2

D g.
˛r

r
/C

1

2r
�g.

˛r

r
/C

X 1

rk
Lkg.

˛r

r
/CO.r�k�1/;

where�g D
P
e2E

@2

.@xe/2
andLk are some differential operators of degree 2k. TheO.r�k�1/ is

uniform for ˛r
r
2 K.

As g.t/ D f .t/e
k
2 t , the derivatives of g can be computed in terms of the derivatives of f .

We find that there are differential operators L0n of degree less than 2n such that .Lng/.t/ D

.L0nf /.t/e
k
2 t and we have �g.t/ D

�
�f .t/C 1

2
k � rf .t/C jjkjj2

4
f .t/

�
e
k
2 t where r is the

gradient, � is the scalar product in RE and jj � jj is the Euclidian norm in RE .

Hence the matrix coefficient .f .t/eik�e˛r ; e˛rCk/ has the asymptotic expansion:

.f .t/eik�e˛r ; e˛rCk/ D f .
˛r

r
/C

1

2r

�
�f .

˛r

r
/C k � 5f .

˛r

r
/ �
jjkjj2

4
f .
˛r

r
/

�
C

X
n�2

1

rn
.L0nf /.x/CO.r

�n�1/;

where L0n are some differential operators of degree less than 2n.

The error factor O.r�n�1/ is again uniform for ˛r
r
2 K.

T 3.2. – For any simple closed curve  on †, there exist functions fk 2 C1. VP � T /
such that T r 2 End.Hr / is a Toeplitz operator on VP � T of symbol f0 C 1

r
f1 C � � � .
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Furthermore the principal symbol f0 ofT r is the trace function � .t; �/ D �Tr.�t;� .// and
the Weyl subprincipal symbol defined as f1C 1

2
�@f0 vanishes, where�@ is the Kähler Laplacian

on M .

Proof. – First we want to introduce the functions f0; f1; : : : that constitute the symbol
of T r , using Theorem 3.1 and Lemma 3.1. Let K be a compact in VP � T and let K 0 be a
compact neighborhood ofK in VP�T . We choose a function�with compact support in VP�T
which is identically 1 on K 0.

Let also ˛r be a sequence such that ˛r
r
2 K 0.

According to Theorem 3.1, to represent T r as a Toeplitz operator T frr acting onHr with
fr D f0 C

1
r
f1 C

1
r2
f2 C � � � , and f ji as the j -th Fourier coefficient of fi , we need to have:

F


k

�˛
r
;
1

r

�
D hT r '˛; '˛Cki D .T

fr
r e˛; e˛Ck/

D f k0
�˛
r

�
C
1

r

�
f k1
�˛
r

�
C
1

2

�
�f k0

�˛
r

�
C k � 5f k0

�˛
r

�
�
jjkjj2

4
f k0
�˛
r

���
CO.r�2/

using Lemma 3.1 for the second equality. Here we also used the fact that, by Theorem 3.1,
there is only a finite number of nonzero coefficients F 

k
, and thus we search f0, f1, f2; : : :

as finite sums of elementary functions f .t/eikt used in Lemma 3.1, corresponding to the
indices k such that F 

k
is not identically zero.

Gathering the equations for each Fourier coefficient and using Theorem 3.1, we get:

f0.t; �/ D
X

kWE!Z

F


k
.t; 0/eik� D �Tr.�t;� .// D �

 .t; �/

and

f1.t; �/C
X
e2E

�
1

2

@2

@t2e
C
1

2i

@2

@te@�e
C
1

8

@2

@�2e

�
f0.t; �/ D

1

2i

X
e2E

@2

@te@�e
� :

Remember that we D te
2
C i�e are local complex coordinates such that ! D i

P
dwe ^dwe,

thus the Kähler laplacian �@ on M is simply
P

@2

@we@we
D
P

@2

@t2e
C

1
4
@2

@�2e
.

Thus f1 C 1
2
�@f0 must vanish.

It is then possible to choose further coefficients fk to match the asymptotic expansion
up to O.r�kC1/ for each k, simply choosing fkC1 to cancel the residual term in 1

rkC1
in

T

r �…rm

f0C
1
r f1C���

fk

rk

.

At this state, we have introduced smooth functions f0; f1; f2; : : : such that for any K
compact subset of VP �T , anyK 0 compact neighborhood ofK and � � 1 onK 0 of compact
support, we have �

T r �…rm�.f0C 1r f1C���
1

rk
fk/

�
sr D O.r

�k�1/L1.K/

uniformly for sr 2 Vect.e˛r 2 Hr =
˛r
r
2 K 0/ of norm 1.

So we just have to control the difference of the two operators on the subspace
Vect.e˛ 2 Hr ; =

˛
r
2 P � K 0/. But there is a constant C such that 8˛ 2 P � K 0, we

have sup
K

.je˛j
2/ � Ce�rd.K;P�K

0/2 . Thus for sr 2 Vect.e˛ 2 Hr ; = ˛r 2 P � K
0/ of norm 1,

we have sup
K

jsr j < Cr
�k�1 for a constant C not depending on sr . As the operators T r send
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e˛ to a linear combination of e˛Ck with k bounded, and as the T r are bounded for the norm
of operators on Hr , we must also have sup

K

jT

r sr j < C

0r�k�1.

The quantity f1 C 1
2
�@f0 is sometimes called in the literature the Weyl-subprincipal

symbol of the Toeplitz operator T fr . A straightforward computation gives that, for T fr and
T
g
r two Toeplitz operators of principal symbols f0 and g0 and subprincipal symbols f1 and
g1, the composition T fr T

g
r has f0g0 as principal symbol and f0g1 C f1g0 C

1
2
ff; gg as

subprincipal symbol, which is the composition law that a Weyl-subprincipal symbol ought
to satisfy.

With the framework we developed in the last paragraphs, we wish to study the following
problem: take † a closed oriented surface of genus g and C D .Ce/e2E a pants decomposi-
tion of †. Such a pants decomposition gives rise to a moment application � W M .†/! P ,
to basis '˛ of Vr .†/ where ˛ are some integer points of the moment polytope P and to
isomorphisms �r W Vr .†/ �! Hr defined above, whereHr are subspaces ofH 0.M;Lr ˝ ı/.
Suppose D D .Df /f 2F is another pants decomposition and the associated basis of Vr .†/
is  ˇ . As Vr .†/ has an Hermitian product, we can form the pairings h'˛;  ˇ i and study the
limit as ˛

r
and ˇ

r
tend to some limits in RE and RF .

But the vectors  ˇ are joint eigenvectors of the curve operators T ir , and by Theorem 3.2,
we know that the operators T

i
r act as Toeplitz operators with symbol �i on

H 0. VP � T;Lr ˝ ı/. Eigenvectors of Toeplitz operators are well understood, in particular
they concentrate on level sets of the principal symbols. We will be able to give an asymp-
totic form for  ˇ as a section of Lr ˝ ı, and thus we will be able to compute the pairing
with '˛. As '˛ and  ˇ concentrate on level sets of �Ce and �Df , the formula will be a sum
of contributions coming from each intersection point of these level sets. The next section is
devoted to a result proving that generically, such level sets intersect nicely in a finite number
of points, allowing us to obtain an asymptotic formula by summing the contributions of
each of these points to the pairing in Section 5.

Such pairings have an interpretation as quantum invariants: h'˛;  ˇ i is the Reshetikhin-
Turaev invariant of the 3-manifold with links obtained by gluing the handlebodies associated
to the pants decompositions C and D, and adding in each handlebody the dual graph of
the pants decomposition colored by ˛ and ˇ respectively. A special case would be if both
coloring are trivial colorings .1; : : : ; 1/, then adding the colored trivalent graphs corresponds
to adding empty links in each handlebody; thus we would obtain the Reshetikhin-Turaev
invariants of the 3-manifold with Heegard genus g and Heegard splitting corresponding by
the pants decomposition C and D. Unfortunately our approach to calculating pairings fails
in this case, as some intersection points will be in @P � T and we lack control over what
happens on @P .

4. Intersections of Lagrangians in M .†/

We fix a pants decomposition C D .Ce/e2E , which defines an isomorphism ˆr W Vr .†/! Hr

as in Proposition 3.1. Furthermore, we denote by U the set ��1. VP / � M .†/, where � is
the moment map defined as in Subsection 2.1.
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For D D .i /i2I a pants decomposition of †, we introduce the closed subset ƒD
x

of M .†/ defined by
ƒD
x D f�; 8i 2 I; �Tr.�.i // D xig:

When x is in the interior of the moment polytope associated to the pants decomposition D,
these subsets are Lagrangian tori of M .†/: indeed, it is the pre-image of a regular value of
the Poisson commuting trace functions Tr.�.i //. The Arnold-Liouville theorem ensures it
is a torus of dimension n where dim.M .†// D 2n.

As we expect the joint eigenvectors of curve operators T ir , viewed as elements of Hr ,
to concentrate on such Lagrangians, we wish to show that they have nice properties for
generic x.

P 4.1. – For D D .i /i2I and F D .ıj /j2J any pants decompositions of †,
we have:

– For any x in an open dense subset of RI , the intersection ƒD
x \ �

�1.@P / is transverse
and ƒD

x n �
�1.@P / is connected.

– For any x; y in an open dense subset of RI �RJ , the intersectionƒD
x \ƒ

F
y is transverse.

Proof. – The proposition follows from two steps. First we can obtain the transversality
conditions as an application from a classical result in real algebraic geometry, the algebraic
Sard theorem. We will shortly introduce the notions needed to state this result, a detailed
background is found in [8].

To begin with, we define a semi-algebraic set N as a subset of some RN defined by
polynomial equations or inequations (strict or large): there are families of polynomials
P1; : : : ; Pn, Q1; : : :Qm, and R1; : : : Rl such that

N D fx 2 RN =P1.x/ D 0; : : : Pn.x/ D 0;Q1.x/ > 0; : : :Qm.x/ > 0;R1.x/ � 0; : : : Rl � 0g:

Any affine algebraic variety is a semi-algebraic set (defined by equations only). For the usual
topology on RN , an affine algebraic variety is a stratified manifold. Each of its strata are then
semi-algebraic sets.

Moreover any semi-algebraic set is also a stratified manifold. The dimension of a semi-
algebraic set is then defined to be the maximal dimension of any of its strata.

Regular maps between semi-algebraic sets still are those given by polynomial functions.
Finally, semi-algebraic sets have tangent spaces defined in the same manner as in the case of
algebraic varieties.

We can now express the algebraic Sard theorem:

T 4.1 ([8]). – Let N and M be two semi-algebraic sets. If f W N ! M is an
algebraic map, then the set Crit.f / D ff .x/ = dimTfx.TxN/ < dim.Tf .x/M/g is semi-
algebraic and has dimension < dimM .

Now we note that the intersections occurring in Proposition 4.1 are intersections of real
algebraic subvarieties inside M .†/.

L 4.1. – Y D ��1.@P / is a real subvariety of M .†/. Moreover for any D pants
decomposition of † and any x 2 RI , the set ƒD

x is a real algebraic subvariety of M .†/.
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Proof. – Indeed, given three curves Ce; Cf ; Cg 2 C that bound a pair of pants Q, the
coordinates xe; xf and xg of�.�/ satisfy three triangular identities of the type xe � xf Cxg ,
and the inequation xeCxf Cxg � 2. We have equality in one of these equations if and only
if the restriction of � to the pair of pants Q is commutative. Hence, � 2 ��1.@P / if and
only if its restriction to one of the pants is commutative, and the set Y is the reunion of the
subvarieties fTr.�.ŒCe; Cf �/ D 2g, for Ce and Cf in the same pair of pants.

The case of ƒD
x is straightforward as ƒD

x is defined as the set f� = Tr.�.Di // D xig.

Topologically, as Y is a real algebraic manifold, it is a stratified manifold. Its strata are in
turn semi-algebraic sets.

We can apply the algebraic Sard theorem to the map .fDe /e2E W M .†/! RI restricted
to any stratumZ � Y . We obtain that for x in a dense open subset of RI , the map .fDe /e2E
does not have x as a critical value on the stratum Z. This is the same as saying that ƒD

x is
transverse to the stratum Z of Y , so for generic x it is transverse to each stratum of Y . The
same applies to showing the transversality of ƒD

x and ƒF
y for generic x and y.

The only thing that remains to prove is the part about the connectedness of ƒD
x n Y . We

will need the following lemma:

L 4.2. – The real algebraic subvariety Y D ��1.@P / has codimension 2 in M .†/.

Proof. – Recall that the subvariety Y is included in the union of subvarieties

f� =Tr.�.ŒCe; Cf �// D 2g

whereCe andCf are curves of the pair of pants decomposition that bound a common pair of
pants. Thus we only have to show that subvarieties of this type have codimension at least 2.

Let  and ı two disjoint non-isotopic simple closed curves in the surface †. We show
that the subvariety fTr.�.Œ; ı�// D 2g has codimension at least 2 in M .†/. This contains
the subvariety of abelian representations, which has dimension 2g and thus codimension
greater than 2, as g � 2. Therefore we are interested in the codimension near an irreducible
representation �.

One possibility is that � 2 f� 2 M irr.†/ = �./ D ˙I g. This semi-algebraic set is of
codimension at least 3 in M .†/.

Indeed, consider the projection � W M .†/! Hom.�1†; SO3/=SO3. This map is a cover
on its image, and thus conserves dimension. The representation � is sent to a representation Q�
such that Q�./ D I in SO3. Taking Q�./ D I amounts to replace M .†/ with the moduli
space of †== , that is we smash  to a point.

We have two cases: either  is separating, we obtain the wedge of two surfaces of genus g1
and g2 with g D g1 C g2, whose fundamental space is �1†g1 � �1†g2 , and whose moduli
space has dimension 6g1 � 6 C 6g2 � 6 D 6g � 12. When the curve  is non-separating,
†== has fundamental group �1†g�1 � Z and the moduli space has dimension 6.g � 1/ �
6C 3 D 6g � 9. In either case, the codimension is greater than 3.

Thus we need only to show that fTr.�.Œ; ı�// D 2g has codimension at least 2 in the
neighborhood of points � such that �./ ¤ ˙I and �.ı/ ¤ ˙I .

We denote by F the function � ! Tr.�.Œ; ı�//. Let � an irreducible representation
in fF.�/ D 2g with �./ ¤ ˙I and �.ı/ ¤ ˙I . As we consider representation in SU2,
the function F has a local maximum at �, thus the differentialD�F vanishes. To understand
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the local structure of fF D 2g near �, we compute the 2nd differential of F . We will exhibit
a subspace of the tangent space of dimension 2 on which D2F is definite negative. This will
prove that the tangent space of fTr.�.Œ; ı�// D 2g has codimension at least 2, and hence
finish the proof of our claim.

C. – There is a pair of pants P 0 such that � is commutative on P 0 and the restriction
map M .†/! M .P 0/ is a submersion.

Indeed it is an elementary fact that the tangent space T� M .†/ is isomorphic to the
twisted cohomology group H 1.†;Ad �/ where Ad� stands for the adjoint representation
of � (see for example [24]).

Consider the exact sequence in twisted cohomology associated to the pair .†; P /:

H 1.†;Ad �/! H 1.P;Ad �/! H 2.†; P;Ad �/:

By Poincaré duality, we have H 2.†; P;Ad �/ ' H 0.† n P;Ad �/�. If † n P is connected,
�must be irreducible on†nP and thenH 0.†nP;Ad �/ D 0. When it is not the case, either
� is irreducible on each component of † n P and H 0.† n P;Ad �/ D 0, or there is another
pair of pants P 0 in the decomposition on which � is commutative and such that † n P 0 is
connected: just take one of the connected components of † nP on which � is commutative,
it is a surface with one or two boundary curves, and any decomposition of such a surface has
a nonseparating pair of pants disjoint from the boundary.

Hence, we can always assume thatH 0.†nP;Ad �/ D 0 and thus that the restriction map
is a submersion.

Now we only have to show that f�0 =F.�0/ D 2g is of codimension 2 in M .P /.

We now compute the second derivative of the restriction F jM .P /. As �./ and �.ı/

commute, up to conjugation we can assume that �./ and �.ı/ are diagonal with coefficients
.ei� ; e�i� / and .ei' ; e�i'/ respectively. We denote these diagonal matrices by U� and U'
respectively. We compute the second differential of F jM .P / on H 1.P;Ad �/, space which
is isomorphic to

H 1.P;Ad �/ D SU2 ˚ SU2=f.� � U��U
�1
� ; � � U'�U

�1
' ; � 2 SU2g:

Let us introduce the notations: j D
�
0 1
�1 0

�
and k D

�
0 i
i 0

�
.

Now the vector space V D f.�; 0/; � 2 Vect.j; k/g is a subspace of dimension 2

of H 1.P;Ad �/ (as U� and U' have the same commutant, no .�; 0/ is equivalent to .0; 0/
inH 1.P;Ad �/). We can endow it with a norm jj � jj for which .j; k/ is an orthonormal basis.

We show that D2F is definite negative on V : we have

Tr.U�e
�U'e

��U���'/ D 2 � Tr.U��U'�U���'/C 2Tr.�2/CO.jj�jj3/

D 2C Tr.�2U�2'/ � 2jj�jj2 CO.jj�jj3/

D 2C 2jj�jj2.cos.2'/ � 1/CO.jj�jj3/

D 2 � 4 sin.'/jj�jj2 CO.jj�jj3/:

As the second differential is definite negative on a subspace of dimension 2, in a neighbor-
hood of � the space f�0 =F.�0/ D 2g is of codimension at least 2.
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To finish the proof of Proposition 4.1 we deduce the connectedness ofƒD
x \Y for generic x

from the Lemma 4.2. Recall that for generic x the intersectionƒD
x \Y is transverse, thus the

intersections ofƒD
x with each fTr.�.ŒCe; Cf �// D 2g are transverse. Also, for generic x 2 Rn

we can assume that the set ƒD
x is either empty or a torus of dimension n inside M .†/. In

the former case the connectedness is trivial. In the latter case, to show that ƒD
x \ �

�1. VP / is
connected, we will only need to show thatƒD

x \Y is of codimension at least 2 inƒD
x . What we

mean by codimension at least 2, is that each stratum of this stratified variety has topological
codimension at least 2 in the torus ƒD

x . As the intersection ƒD
x \ Y is transverse, it follows

from the fact that Y is of codimension at least 2 in M .†/.

5. Pairings of eigenvectors of curve operators

5.1. Pairing in the half-form bundle

In this short preliminary section, we define various pairings for the half-form bundle ı on
Kähler manifoldM . These pairing forms will be useful to describe the asymptotic expansions
occurring in the pairing of quasimodes in Section 5.3.

We consider a general Kähler vector space E of complex dimension n with symplectic
form ! and complex structure J .

Choose two transverse Lagrangian subspaces �1 and �2 of the vector space E.

Let ƒn;0E� be the space of complex n-forms on M , of which ı is a square root. We have
maps:

�i W ƒ
n;0E� ! ƒn��i ˝ C

which consist of restricting a complex n-form on E to �i , getting an isomorphism between
complex n-forms on E and the complexification of real n-forms on �i . On the other hand
we have maps

ƒn��i ˝ C! ƒn;0E�

extending n-form on �i to complex n-form on E. These maps are well defined as the �i are
Lagrangian (thus �i

L
J�i D E), and are the inverse isomorphisms of the first couple of

maps.

Now given n-forms on �1 and �2 the wedge product creates an 2n-form on E, which we
can compare with the Liouville form !n

nŠ
. Combining with the restriction maps �i , we get the

pairing

ƒn;0E� �ƒn;0E� ! C

˛; ˇ 7! .˛; ˇ/�1;�2 D i
n.2�n/�1.˛/ ^ �2.ˇ/

!n
:

If we have a complex line ı with an isomorphism � W ı˝2 ! ƒn;0E� D C, a pairing for ı
associated to Lagrangians �1 and �2 is

.˛; ˇ/�1;�2 D

q
.˛˝2; ˇ˝2/�1;�2 :
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The determination of the square root goes as follows: recall that we also have an Hermitian
pairing

ƒn;0E� �ƒn;0E� ! C

˛; ˇ 7! .˛; ˇ/ D in.2�n/
˛ ^ ˇ

!n
:

and thus also a pairing .˛; ˇ/ D
p
.˛˝2; ˇ˝2/.

It is shown in [12] that when �2 D J�1, this pairing is the same as the pairing .˛; ˇ/�1;�2
up to a positive constant. We require the same to be true for the corresponding pairing on ı,
for general transverse �1 and �2 we extend the definition so that it depends continuously
on �1 and �2.

Suppose we consider, instead of just a Kähler vector space, a (connected) Kähler manifold
M of complex dimensionn, equipped with a half-form bundle ı. Pick a point x inM , pairings
on ıx can be defined by the above procedure. We get pairings on any ıy for y 2 M by
extending these by continuity.

5.2. Quasimodes of curve operators

Let C D .Ce/e2E and D D .Df /f 2F be two collections of curves that form pair of pants
decompositions of †. We assume that these pairs of pants decompositions have planar dual
graphs. We call Ir (resp. Jr ) the set of r-admissible colorings associated to the pair of pants
decomposition C (resp. D), .'r˛/˛2Ir and . r

ˇ
/ˇ2Jr the associated basis of Vr .†/.

We introduce the polytope P (resp. Q) that is the image of M .†/ by the momentum
mapping � W M .†/ ! RE such that �.�/ D arccos.1

2
Tr.�.Ce/// (resp. �0 such that

�0.�/ D arccos.1
2

Tr.�.Ce///.
We want to study the asymptotic behavior of pairings h'r˛r ;  

r
ˇr
i for large level r . We

impose conditions on the sequence ˛r and ˇr : firstly, we need ˛r
r

and ˇr
r

to stay in compact

subsets of VP and VQ. Indeed the representation of common eigenvectors of commuting
Toeplitz operators works well only for eigenvalues corresponding to regular values of the
principal symbols: that is, here, the interior of the polytopes. Secondly, as the eigenvectors
will concentrate on Lagrangianƒ C

�2 cos.� ˛rr /
andƒD

�2 cos.� ˇrr /
, thus we want the intersection

to be transverse. By Section 4, there is an open dense subset Wt of VP � VQ such that for any
x; y 2 Wt the Lagrangian ƒ C

�2 cos.� ˛rr /
and ƒD

�2 cos.� ˇrr /
are transverse.

So we impose the following conditions on ˛r and ˇr :

P (*). – We say that a sequence .˛r ; ˇr / 2 Ir � Jr satisfies Property (*) if there
is a compact subset K in Wt, such that .˛r

r
; ˇr
r
/ 2 K for any r .

As explained in Section 3.2, the pants decomposition C induces an isomorphismˆr from
Vr .†/ into Hr � H 0.M;Lr ˝ ı/, where M D RE � T , where T is the torus that is the fiber
of the map �. The vectors  r

ˇ
, as linear combinations of the 'r˛, can be viewed as elements

of Hr , furthermore their L2-norms are concentrated near P � T .

The curve operators T
Df
r have r

ˇ
as common eigenvectors with eigenvalues�2 cos.� f̌

r
/.

But we have given an expression of the curve operators acting on Hr as Toeplitz operators
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on U D VP � T . Call �Df the Toeplitz symbol associated to T
Df
r , that is the trace function

associated to the curve Df .

P 5.1. – LetW be a compact subset of VP and ˇr 2 Jr be a sequence such that
ˇr
r
2 W . The vectors  r

ˇr
are microlocal solutions on U of

T �
Df

r ‰r D �2 cos.
�ˇr;f

r
/‰r

meaning that they satisfy the following 2 conditions:

– (admissibility condition) For any compact subset K � U , there exist constants C and
N such that j‰r .x/j � CrN for all x 2 K.

– (quasimode condition) For any x 2 U there is a function ' with compact support
containing x, such that …r .'‰r / D ‰r CO.r

�1/

and TDfr …r .'‰r / D �2 cos.�ˇr;f
r
/‰r CO.r

�1/ uniformly on a neighborhood of x.

Such a sequence of vectors ‰r is also called a quasimode of the Toeplitz operators TDfr , for the
joint eigenvalue �2 cos.�ˇr;f

r
/.

Proof. – Indeed,  r
ˇr

is a linear combination of the vectors '˛ which are in number less

or equal than r jE j and the coefficients in the linear combination are all less or equal than 1
as  r

ˇr
is of norm 1. As h.e˛; e˛/.x/ � 1 for all ˛ and x 2 RE , the vectors  r

ˇr
satisfy the

admissibility condition.
For the quasimode condition, choose x D .t; �/ 2 U , let ' be a T invariant cutoff function

with compact support in U and identically equal to 1 on a set of the form V �T where V is a
neighborhood of x. Then up to O.r�1/, the projection …r .' 

r
ˇr
/ has the same coefficients

as  r
ˇr

on each e˛ with ˛
r
2 V , and on a small neighborhood V 0 � V of x, any other e˛ is

O.r�1/. Thus …r .' 
r
ˇr
/ D  r

ˇr
CO.r�1/ on V 0.

Finally, we know that r
ˇr

is an eigenvector of T
Df
r which onU acts as a Toeplitz operator

of symbol �Df by Theorem 3.2. As  r
ˇr

has the same coefficients on the e˛ with ˛ 2 V up

to O.r�1/, and T
Df
r has a finite number of nonzero diagonals,

T �
Df

r …r .' 
r
ˇr
/ D �2 cos.

�ˇr;f

r
/' rˇr CO.r

�1/

on V 0 � T .

The operators T
Df
r of Hr commute as they are curve operators on disjoint curves.

Quasimodes of commuting Toeplitz operators are well understood. When T1; : : : ; Tn are
commuting Toeplitz over a Kähler manifoldM of dimension 2n, with principal symbols �i ,
and E is a regular value of � W M ! Rn, the set ��1.E/ is a Lagrangian torus of M by the
Arnold-Liouville theorem.

Quasimodes associated to eigenvaluesEi concentrate on the Langrangian torusƒE , and
some Ansatz can be used to compute the asymptotic behavior of quasimodes. We will follow
the approach of [10], which describes quasimodes of such operators as so-called “Lagrangian
sections”.

LetU � U 0 be two contractible neighborhoods ofE, consisting of regular values of�. By
Arnold-Liouville theorem, ��1.U 0/ is diffeomorphic to U 0�T where T is an n-dimensional
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torus, and � acts as the projection U 0 � T ! U 0 on it. For any E 0 2 U 0, the torus ƒE 0 is
Lagrangian. We take a sequenceEr 2 U , and we are interested in quasimodes of the Toeplitz
operators T1; : : : ; Tn, that is microlocal solutions of

(1) T ri ‰r D E
r
i ‰r :

Proposition 3.5 [10] gives a formula that allows to compute quasimodes on contractible
subsets in the following way:

P 5.2. – Let E be a regular value of the momentum map � W M ! Rn and
U � U 0 be small contractible neighborhoods ofE, so that��1.U / D U �T where T is a torus.
Let V be a contractible open subset of the torus T . Then:

There is a smooth map FV W U ! L2.U 0 � V;L/ such that for any E 2 U , the section
FV .E/ is flat of norm 1 onƒE and of norm < 1 elsewhere in U 0 �V , such that FV .E/ is
holomorphic in a neighborhood ofƒE in U �V , and such that all FV .E/ forE 2 U have
the same compact support in U 0 � V .
There is a sequence of smooth map gV .�; r/ W U ! L2.U 0 � V; ı/ such that gV .E; r/ is
holomorphic in a neighborhood of ƒE , and gV .�; r/ has an asymptotic expansion
gV .�; r/ D g0V .�/ C

1
r
g1V .�/ C � � � with g0V .E/jƒE satisfying the transport equations

LXeg
0
V .E/ D 0 where Xe is the symplectic gradient of the function �e.

such that FV .Er /rg.Er ; r/ is a microlocal solution on U � V of (1)

Furthermore, the Proposition 3.6 of [10] guarantees that quasimodes are always of this
form:

P 5.3. – Let E be a regular value of � and U and V be defined as in Proposi-
tion 5.2. Suppose that  r is a microlocal solution of (1) on U �V . Then there exists a sequence
�r with �r D O.rN / for some N such that:

 r D �rFV .Er /
rg.Er ; r/CO.r

�1/:

Proof of Propositions 5.2 and 5.3. – The material in [10] and [11] is sufficient to get these two
propositions. The proof of Proposition 5.2 consists of two steps: first step is a computation
of how Toeplitz operators act on Lagrangian sections given by the Ansatz  r D F rV g.�;

1
r
/.

We follow the proof in [11] to work out this calculation. First, the projection on Hr acts on
a Lagrangian section by sending  r to

…r r .x/ D

Z
M

N.x; y/F r .y/g.y/�M .y/;

where N.x; y/ is the kernel we computed in 3.2. What differs from [11] is that we integrate
over a non-compact manifold M . However, as ŒF j � 1, jgj D O.ra/ for some a, and
N.x; y/ < Crbe�rd.x;y/

2
for some constants C and a, we can reduce this integral to

an integral over a bounded open set: let y be in a compact subset K of VP � T , and let
" < d.K; @P /. We set K" D fy = d.y;K/ < "g. We have:Z

MnK"

N.x; y/F r .y/g.y/�M .y/ D O.r
�1/;

where theO.r�1/ is uniform for y 2 K. Once we reduced to an integral over a bounded set,
the computations in [11] apply directly to show that…r r D  r CO.r

�1/ uniformly onK.
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In the same way, when we compute the action of the Toeplitz operator T r on the Lagrangian
section F rg, we can restrict everything to an integral over a bounded set. We have that:

T r  r .x/ D

Z
M

N.x; y/f .y/�.y/F
r .y/g.y/�.y/CO.r�1/;

where theO is uniform for x 2 K, where f is the symbol ofT r , and� is some cutoff function
that is identically 1 over K". Again, as N.x; y/ < Crbe�rd.x;y/

2
, the integral over M nK" is

a O.r�1/ uniformly on K, and we have

T r  r .x/ D

Z
K"

N.x; y/f .y/F
r .y/g.y/�M .y/CO.r

�1/:

We then refer to [11] for the computation of the action of a Toeplitz operator on the
Lagrangian section:

It is shown that a Toeplitz operator of principal symbol �i and vanishing subprincipal
symbol sends the Lagrangian section F rV g to a Lagrangian section

F rV .Erg0 C
1

r
.Erg1 C

1

i
LXig0/C � � � /CO.r

�1/:

These computations are again purely local, and transport directly in our setting.
Once the action of Toeplitz operators on Lagrangian sections is known, it is possible

to recursively define the sections gi to get a quasimode by solving transport equations.
Moreover the first term g0 must satisfy LXig0 D 0.

Then the proof of Proposition 5.3 in [10] consists of using Fourier integral operators to
show the microlocal equation is equivalent to an equation in a “model manifold” in which
the equation can be explicitly solved. The same arguments using the control we have on the
kernel N to localize all integrations can be used to show that the proof in [10] can also be
applied to our setting.

In general the quasimodes on such a contractible open set can be patched together to get a
quasimode onU�T if the sequenceEr satisfies some conditions called the Bohr-Sommerfeld
conditions, and then on M using functions, as quasimodes are negligible away from ƒEr .
Roughly speaking, the Bohr-Sommerfeld conditions consist in the following: as the sections
FV .Er / for different contractible V � T differ by a complex number, we need to be able to
renormalize them in a coherent way, this is possible when the holonomy ofL�ı alongƒEr is
trivial.

In our case, we do not need to study the Bohr-Sommerfeld conditions: we already know
the spectrum of T

Df
r and we have a sequence  r

ˇr
2 Hr that realizes a quasimode on

U D VP � T of the Toeplitz operators T
Df
r for Eri D �2 cos.�ˇi;r

r
/.

These quasimodes have to concentrate on the Lagrangian ƒ
Df
Er . If we chose Er in an appro-

priate open dense subset of RF , the intersection ƒ
Df
Er is connected according to Section 4.

Hence, if we coverƒ
Df
Er \U by contractible open sets V1; : : : ; Vk , we know that on each Vi ,

there are coefficients �r;i such that

 rˇr jVi D �r;iF
r
Vi
.Er /gVi .E

r ; r/CO.r�1/

as sections in L2. VP � Vi ; Lr ˝ ı/, and the coefficients �r;i differ by complex numbers of
norm 1; the sections FVi .E

r / can be patched together to give a section F of L that is flat
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of norm 1 on ƒEr , similarly the gVi .E
r ; r/ are patched together to form a section g of ı.

The sections F and g can be multivalued, however, F rg is a single-valued section of Lr � ı
which has trivial holonomy on ƒEr as Er satisfies the Bohr-Sommerfeld conditions.

Note that here we have used the fact that the intersectionU \ƒEr is connected, otherwise
we would need multiple constants �r , one for each connected component of the intersection.

Now that we know an asymptotic expression of  r
ˇr

as a Lagrangian section, we want to
calculate j�r j using the fact that  r

ˇr
is of norm 1.

P 5.4. – The vectors  ˇr for ˇr
r
2 W whereW is a compact subset of VQ, have

an asymptotic expansion as elements of Hr :

 ˇr D ur

� r
2�

�n
4

.1CO.r�1//F r .Er /g.Er /;

where

– ur is a sequence of complex number of moduli 1,
– Er is the sequence of common eigenvalues corresponding to  ˇr , given by the formula
Eri D �2 cos.� ˇr;i

r
/,

– F and g.�; r/ are the smooth maps in W ! L2.M;L/ and W ! L2.M; ı/ respectively,
with F.Er / flat of norm 1 on ƒD

Er , holomorphic in a neighborhood of this Lagrangian,
and of norm < 1 elsewhere.

And finally the sections g.Er / of ı on M are holomorphic in a neighborhood of ƒD
Er

and have an asymptotic expansion g D g0 C
1
r
g1 C � � � with g0 a smooth section of the

half-form bundle ı such that onƒD
Er we have g˝20 D

1

Vol.ƒD
Er
/
d�1 ^ � � � d�n, where the �i

are angle coordinates on ƒD
Er .

Proof. – The norm of Lagrangian sections can be computed using stationary phase
lemma: according to [10], the Lagrangian section is normalized when we normalize the
section gV by g0V .E/

˝2 D
1

Vol.ƒEr /
d�1 ^ � � � ^ d�n where �i are angle coordinates on ƒEr ,

and �r D
�
r
2�

�n
4 .

But as the difference between  r
ˇr

and the Lagrangian section is O.r�1/ uniformly only

on compact subset of U D VP � T , we need to be careful that  ˇr does not carry too much
weight over small neighborhoods of @P � T .

To compute the coefficient�r , we will introduce an operatorA� to localize our eigenvector

on VP � T . Let � be a cutoff function with compact support inside VP and identically equal
to 1 on the open set fx 2 P =d.x; @P / > "g. For " sufficiently small, this set has a non trivial
intersection with ƒD

�2 cos.�x/ for any x in a given compact subset W of VQ.
Now the operator A� 2 End.Vr .†// is defined as acting on the basis of '˛ associated to

the pants decomposition C by:

A�'˛ D �.
˛

r
/'˛:

The operator A� is diagonal on the basis '˛ which are the common eigenvectors of the
curve operators T Cer : thus we have

A� D �.
1

�
arccos.�

T
Ce
r

2
//:
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Thanks to the cutoff �, the function �. 1
�

arccos/ is C1 on P . The operator A� is therefore

a Toeplitz operator of principal symbol � D �. 1
�

arccos.�fCe
2
// and vanishing subprincipal

symbol, where fCe are the trace functions associated to the curves Ce. In [10], it is stated
that for a Lagrangian section ‰r D �r .

r
2�
/
n
4F rg concentrating on ƒEr , and for a Toeplitz

operator Tr of principal symbol � and vanishing subprincipal symbol, we have

hTr‰r ; ‰ri D .1CO.r
�1//j�r j

2 1

Vol.ƒEr /

Z
ƒEr

�d�1 ^ � � � d�n:

We can apply this for the vector  ˇr as an element ofHr and the Toeplitz operatorA� to get
an expression of hA� ˇr ;  ˇr i.

But instead of using the isomorphism from Vr .†/ to Hr corresponding to the pants
decomposition C , we also have an isomorphism corresponding to the decomposition D.
With this isomorphism,  ˇr is sent to a monomial eˇr in M 0 D RF � T 0, which is a
Lagrangian section concentrating on fˇr

r
g � T 0, furthermore, in this simple situation, the

coefficient �r is exactly . r
2�
/
n
4 . Though the operator A� does not have a simple expression

as a diagonal operator in the base of the eˇ , it is still a Toeplitz operator of principal symbol

� D �. 1
�

arccos.�fCe
2
// and vanishing subprincipal symbol in this new setting. Hence we

have:

hA� ˇr ;  ˇr i D .1CO.r
�1//.

r

2�
/
n
2

1

Vol.T 0/

Z
f
ˇr
r g�T

0

�d�1 ^ � � � d�n:

Comparing the two asymptotic expansions of hA� ˇr ;  ˇr i, as the integral of the prin-
cipal symbol of A� on ƒEr is non-vanishing, we get that the coefficient of normalization is
indeed that of the proposition.

5.3. A formula for pairings of eigenvectors

We are ready to prove our final theorem:

T 5.1. – Let C and D be two pair of pants decompositions of a closed oriented
surface †. Let ˛r and ˇr r-admissible colorings for the two pants decompositions such that
.˛r ; ˇr / satisfies Property (*), and let '˛r and ˇr be the corresponding basis vectors of Vr .†/.
Then we have the following asymptotic expansion:

h'˛r ;  ˇr i D ur

� r
2�

��n2 1r
Vol.ƒ C

E˛r
/Vol.ƒD

E 0
ˇr

/

X
z2ƒ C

E˛r
\ƒ

D

E0
ˇr

eir�.z/im.z/

j det.f�i ; �0j g/j
1
2

CO.r�
n
2�1/;

where n D 3g � 3 is half the dimension of the moduli space, ur is a sequence of complex
numbers of moduli 1,�i D �Tr.�.Ci // (resp.�0j D �Tr.�.Dj // ) are the principal symbols of

the curve operators T Cir (resp. TDjr ), the volumes of the Lagrangians are volumes for n-forms
dual to the n-vectors X1 ^ � � � ^ Xn (resp. X 01 ^ � � � ^ X

0
n) of Hamiltonian vector fields of �i

(resp.�0j ), ei�.z/ 2 U is the holonomy ofL along a loop z0;z which goes from a reference point

z0 2 ƒ
C
E˛r
\ƒ

D

E 0
ˇr

to z in ƒ C
E˛r

then back to z0 in ƒD

E 0
ˇr

and finally m.z/ 2 Z corresponds to

a Maslov index.
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Proof. – Let C and D be two pants decompositions of †, and .˛r ; ˇr / be a sequence of
admissible r-colorings (that is index of basis vectors) satisfying Property (*) of 5.2.

We consider pairings of the vectors '˛r and ˇr . The first is a common eigenvector of T Cer
with eigenvalues Ere D �2 cos.�˛r;e

r
/. The second is a common eigenvector of the T

Df
r with

common eigenvalues E 0r
f
D �2 cos.�ˇr;f

r
/.

We use the first pants decomposition as a decomposition of reference, giving us an
isomorphism ˆr between Vr .†/ and a space Hr of holomorphic sections of a complex line
bundle Lr ˝ ı, by the work done in Section 3.1. Under this isomorphism, we know that
the images of the vectors  ˇr are Lagrangian sections, concentrating on the Lagrangian
ƒ

D
E 0r , and of the form .1 C O.r�1/. r

2�
/
n
4F rg, where F section of L and g section of ı are

satisfying the conditions explained in Section 5.2. The same is true for the '˛r . (actually,
the situation is even simpler, as the isomorphism ˆr sends the vectors '˛r to the vectors e˛r
of Hr , which are exactly the expected Lagrangian sections).

As these sections concentrate respectively on ƒ C
Er and ƒD

E 0r , the only meaningful contri-
bution in the integral comes from the intersection points of these two Lagrangians. But
as ˛r and ˇr were carefully chosen to respect Property (*), the intersection of these two
Lagrangians is always transversal, in particular, consists of a finite set of points. The contri-
bution of each intersection point can be computed by means of stationary phase methods,
the computations are done in [10].

For two Lagrangian sections . r
2�
/
n
4F1g1 and . r

2�
/
n
4F2g2 concentrating on ƒ1 and ƒ2,

the first order of the contribution of an intersection point z of their Lagrangian supports is
. r
2�
/�

n
2F1.z/

rF2.z/
r .g1.z/; g2.z//Tzƒ1;Tzƒ2 .

But F1 and F2 are flat of norm 1 on ƒ1 and ƒ2. Thus, if we write .F1F2/r .z/ D eir�.z/

and pick a point z0 2 ƒ1 \ ƒ2 of reference, then ei�.z/��.z0/ is the holonomy of the line
bundle L along a loop z0;z which goes from z0 to z in ƒ1 and returns from z to z0 in ƒ2.

Furthermore, up to normalization, g˝21 .z/ and g˝22 .z/ are n-forms dual to the n-vectors
X1 ^ � � � ^ Xn.z/ and X 01 ^ � � � ^ X

0
n.z/ (where the vector fields Xi and X 0i are Hamilto-

nian vector fields of �i and �0i ). Thus the pairing .g1.z/; g2.z//Tzƒ1;Tzƒ2 is a square root
of 1

Vol.ƒ1/Vol.ƒ2/
det.f�i ; �0j g/

�1.z/.

We can introduce integers m.z/ such that

.g1.z/; g2.z//Tzƒ1;Tzƒ2 D
1p

Vol.ƒ1/Vol.ƒ2/
jdet.f�i ; �0j g/j

� 12 .z/im.z/:

Recall that g1 and g2 are sections of ı such that g˝21 and g˝22 are the complexification
of the n-forms on ƒ1 and ƒ2 given by 1

Vol.ƒ1/
ˇ1 and 1

Vol.ƒ2/
ˇ2 (where ˇ1 and ˇ2 are dual

to the Hamiltonian vector fields of the two sets of principal symbols). The pairings of these
sections have been described in 5.1, which gives a rule depending on the relative positions of
the Lagrangian ƒ1 and ƒ2 to choose the square root.

These definitions of �.z/ andm.z/ depend only on the homotopy class z0;z asL and ı are
flat onƒ1 andƒ2. Furthermore,Lr˝ı is flat and trivial onƒ1 andƒ2 as Bohr-Sommerfeld
conditions are verified, thus the asymptotic expansion does not depend on the choice of z0;z
at all.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1628 R. DETCHERRY

5.4. A geometric interpretation of the phase and index

Our Theorem 5.1 introduces two quantities: a phase �.z/ and an integer index m.z/
where z is in the intersection of the two Lagrangian ƒ1 and ƒ2 of the theorem. They are
defined using features of Kähler geometry: holonomy of a prequantizing bundle, parallel
transport in a half-form bundle, and the pairings in half-form bundle of Section 5.1. From
this description, the procedure to compute the index m.z/ seems rather intricate.

We would like a simple geometric picture to interpret both the phase �.z/ and the
index m.z/. Of course, only their variations are relevant: if we choose a reference point z0
in the intersection ƒ1 \ ƒ2, we can assume �.z0/ D 0 and m.z0/ D 0 just by changing
the moduli 1 complex number ur appearing in Theorem 5.1. The geometric picture we
have in mind should preferably involve only the symplectic geometry and not the complex
structure J on our quantizing space M , as it is the only structure inherited from the moduli
space M .†/.

An interesting case is when a loop z0;z is trivial in �1M and thus bounds a diskDz0;z . As
the prequantizing line bundle L has curvature !

i
, the holonomy of L along z0;z is the same

as eiA.Dz0;z/, where A.Dz0;z/ is the symplectic area of Dz0;z .

As for the index m.z/, observe that as D.z0; z/ is contractile, the half-form bundle ı is
trivial on it. After choosing g1.z0/ and g2.z0/ (for which there is a sign ambiguity), the value
of g1.x/ and g2.x/ is determined for any x 2 D.z0; z/ by parallel transport. View g1.z0/˝2 as
the complexification of a n-form onƒ1, then following z0;z we get a path e.x/ in the oriented
Lagrangian Grassmanian LGC.D.z0; z// of D.z0; z/, such that for x 2 z0;z , the element
g1.x/

˝2 is the complexification of a positive n-form on e.x/. The same can be done for the
return map from z to z0 in ƒ2, we get a path f . There is a canonical way to connect these
two paths to get a loop in the Lagrangian Grassmanian. Indeed, fix a Lagrangian frame L.
The set of Lagrangians L0 transverse to L is affine: any such Lagrangian is the graph of a
map A W L ! JL such that JA is symmetric, thus defines a quadratic form on L. We can
thus connect L0 to JL by a segment. This give us paths pz0 and pz from Tz0ƒ2 to JTz0ƒ1
and from JTzƒ1 to Tzƒ2. The path Je allows us to close the path pzfpz0 . We get a close
path in the oriented Lagrangian Grassmanian, the �1 class of which is exactly m.z/.

Indeed, as our index m.z/ and the class we defined depend only on the Lagrangian ƒ1
and ƒ2, we can move our Lagrangian so that at points of intersection z0 and z we have
Tƒ2 D JTƒ1. Then the pairing .�; �/Tƒ1;Tƒ2 in the half-form bundle is positively
proportional to the square root of the Hermitian pairing on n-form on Dz0;z . Thus, the
ambiguity in the square root comes from which square roots of d�1 ^ � � � ^ d�n (resp.
d� 01 ^ � � � ^ d�

0
n) the section g1 (resp. g2) represents at z0 and z. Note that, following a loop

of class 1 in �1LGC.Dz0;z/, parallel transport changes gi by a � sign. Hence the �1-class
of .Je/ � pz � f � pz0 calculates the index m.z/

The definition of the index seems to depend on the quasi-complex structure J . However,
the set of quasi-complex structures on the diskDz0;z is affine. As the index we defined depend
continuously on J , it must be constant when the quasi-complex structure J varies.

The argument to interpret geometrically the index m.z/ works only when the loop z0;z
bounds a disk in VP�T . The situation is more complicated when the loop is not trivial in VP�T
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(whose fundamental group is the same as T , that is Zn), and the interpretation of the index
is not clear in this picture, and seems to depend on our specific choice of half-form bundle.

A possible way of tackling this problem would be to show that our choice of half-form
bundle derives from the choice of a spin-structure on M .†/. The loop z0;z can be defined
as a loop in M .†/. As the fundamental group of the moduli space M .†/ is trivial (as
explained in [27]), this loop always bounds a disk in M .†/. We expect the index m.z/ to
be computable as the class of some specific loop in the Lagrangian Grassmanian of M .†/.
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