Nous enrichissons dans ce travail les outils du calcul paracontrôlé afin de fournir une analyse complète de l'équation du modèle parabolique d'Anderson et du système Burgers avec un bruit multiplicatif, dans un cadre riemannien de dimension 3, dans des domaines bornés ou non. Dans ce but, nous introduisons une paire de paraproduits espace-temps agissant sur les espaces de Hölder paraboliques, qui se révèle cruciale et fournit l'un des éléments constitutifs du calcul paracontrôlé d'ordre supérieur.
We sharpen in this work the tools of paracontrolled calculus in order to provide a complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative noise, in a 3-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim in mind, we introduce a pair of intertwined space-time paraproducts on parabolic Hölder spaces, with good continuity, that happens to be pivotal and provides one of the building blocks of higher order paracontrolled calculus.
Keywords: Stochastic singular PDEs, semigroups, paraproducts, paracontrolled calculus, Parabolic Anderson Model equation, multiplicative stochastic Burgers equation
Mot clés : EDPs singulières stochastiques, semi-groupes, paraproduits, calcul paracontrôlé, modèle parabolique d'Anderson, équation de Burgers avec bruit multiplicatif
@article{ASENS_2018__51_6_1399_0, author = {Bailleul, Ismael and Bernicot, Fr\'ed\'eric and Frey, Dorothee}, title = {Space-time paraproducts for paracontrolled calculus, {3d-PAM} and multiplicative {Burgers} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1399--1456}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {6}, year = {2018}, doi = {10.24033/asens.2378}, mrnumber = {3940901}, zbl = {1430.60053}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2378/} }
TY - JOUR AU - Bailleul, Ismael AU - Bernicot, Frédéric AU - Frey, Dorothee TI - Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1399 EP - 1456 VL - 51 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2378/ DO - 10.24033/asens.2378 LA - en ID - ASENS_2018__51_6_1399_0 ER -
%0 Journal Article %A Bailleul, Ismael %A Bernicot, Frédéric %A Frey, Dorothee %T Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1399-1456 %V 51 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2378/ %R 10.24033/asens.2378 %G en %F ASENS_2018__51_6_1399_0
Bailleul, Ismael; Bernicot, Frédéric; Frey, Dorothee. Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1399-1456. doi : 10.24033/asens.2378. http://www.numdam.org/articles/10.24033/asens.2378/
Higher order paracontrolled calculus (preprint arXiv:1609.06966 ) | MR
Heat semigroup and singular PDEs, J. Funct. Anal., Volume 270 (2016), pp. 3344-3452 (ISSN: 0022-1236) | DOI | MR | Zbl
Algebra properties for Sobolev spaces—applications to semilinear PDEs on manifolds, J. Anal. Math., Volume 118 (2012), pp. 509-544 (ISSN: 0021-7670) | DOI | MR | Zbl
, Grundl. math. Wiss., 343, Springer, 2011, 523 pages (ISBN: 978-3-642-16829-1) | DOI | MR | Zbl
Sobolev algebras through heat kernel estimates, J. Éc. polytech. Math., Volume 3 (2016), pp. 99-161 (ISSN: 2429-7100) | DOI | MR | Zbl
The stochastic Burgers equation, Comm. Math. Phys., Volume 165 (1994), pp. 211-232 http://projecteuclid.org/euclid.cmp/1104271129 (ISSN: 0010-3616) | DOI | MR | Zbl
Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math., Volume 229 (2012), pp. 2449-2502 (ISSN: 0001-8708) | DOI | MR | Zbl
A -theorem in relation to a semigroup of operators and applications to new paraproducts, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 6071-6108 (ISSN: 0002-9947) | DOI | MR | Zbl
Algebraic renormalisation of regularity structures (preprint arXiv:1610.08468 ) | MR
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 30 (2013), pp. 935-958 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl
Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab., Volume 46 (2018), pp. 2621-2679 (ISSN: 0091-1798) | DOI | MR | Zbl
An analytic BPHZ theorem for regularity structures (preprint arXiv:1612.08138 ) | MR
Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math., Volume 123 (2001), pp. 283-342 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.2coulhon.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Strong solutions to the stochastic quantization equations, Ann. Probab., Volume 31 (2003), pp. 1900-1916 (ISSN: 0091-1798) | DOI | MR | Zbl
, Universitext, Springer, 2014, 251 pages (ISBN: 978-3-319-08331-5; 978-3-319-08332-2) | DOI | MR | Zbl
Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015) (ISSN: 2050-5086) | DOI | MR | Zbl
KPZ reloaded, Comm. Math. Phys., Volume 349 (2017), pp. 165-269 (ISSN: 0010-3616) | DOI | MR | Zbl
A theory of regularity structures, Invent. math., Volume 198 (2014), pp. 269-504 (ISSN: 0020-9910) | DOI | MR | Zbl
A simple construction of the continuum parabolic Anderson model on , Electron. Commun. Probab., Volume 20 (2015) (ISSN: 1083-589X) | DOI | MR | Zbl
Multiplicative stochastic heat equations on the whole space, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 1005-1054 (ISSN: 1435-9855) | DOI | MR | Zbl
A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan, Volume 67 (2015), pp. 1551-1604 (ISSN: 0025-5645) | DOI | MR | Zbl
Approximations to the stochastic Burgers equation, J. Nonlinear Sci., Volume 21 (2011), pp. 897-920 (ISSN: 0938-8974) | DOI | MR | Zbl
Rough Burgers-like equations with multiplicative noise, Probab. Theory Related Fields, Volume 155 (2013), pp. 71-126 (ISSN: 0178-8051) | DOI | MR | Zbl
Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat., Volume 24 (1986), pp. 299-337 (ISSN: 0004-2080) | DOI | MR | Zbl
Three-dimensional Navier-Stokes equations driven by space-time white noise, J. Differential Equations, Volume 259 (2015), pp. 4443-4508 (ISSN: 0022-0396) | DOI | MR | Zbl
Approximating three-dimensional Navier-Stokes equations driven by space-time white noise, Inf. Dim Anal. Quant. Prob. Rel. Top., Volume 20 (2017) ( doi:10.1142/S0219025717500205 ) | MR | Zbl
Lattice approximation to the dynamical model, Ann. Probab., Volume 46 (2018), pp. 397-455 (ISSN: 0091-1798) | DOI | MR | Zbl
Cité par Sources :