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SPACE-TIME PARAPRODUCTS
FOR PARACONTROLLED CALCULUS, 3D-PAM
AND MULTIPLICATIVE BURGERS EQUATIONS

 I BAILLEUL, F BERNICOT
 D FREY

A. – We sharpen in this work the tools of paracontrolled calculus in order to provide a
complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative
noise, in a 3-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim
in mind, we introduce a pair of intertwined space-time paraproducts on parabolic Hölder spaces, with
good continuity, that happens to be pivotal and provides one of the building blocks of higher order
paracontrolled calculus.

R. – Nous enrichissons dans ce travail les outils du calcul paracontrôlé afin de fournir une
analyse complète de l’équation du modèle parabolique d’Anderson et du système Burgers avec un
bruit multiplicatif, dans un cadre riemannien de dimension 3, dans des domaines bornés ou non. Dans
ce but, nous introduisons une paire de paraproduits espace-temps agissant sur les espaces de Hölder
paraboliques, qui se révèle cruciale et fournit l’un des éléments constitutifs du calcul paracontrôlé
d’ordre supérieur.

1. Introduction

It is probably understated to say that the work [19] of Hairer has opened a new era in
the study of stochastic singular parabolic partial differential equations. It provides a setting
where one can make sense of a product of a distribution with parabolic non-positive Hölder
regularity index, say a, with a function with non-negative regularity index, say b, even in the
case where a C b is non-positive, and where one can make sense of, and solve, a large class
of parabolic stochastic singular partial differential equations by fixed point methods. The
parabolic Anderson model equation (PAM)

(1.1) .@t C L/u D u�;
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1400 I. BAILLEUL, F. BERNICOT AND D. FREY

studied in Section 5 in a 3-dimensional unbounded background, is an example of such an
equation, as it makes sense in that setting to work with a distribution � of Hölder expo-
nent˛ � 2, for some˛ < 1

2
, while one expects the solutionu to the equation to be of parabolic

Hölder regularity ˛, making the product u� ill-defined since ˛ C .˛ � 2/ � 0.
The way out of this quandary found by Hairer has its roots in Lyons’ theory of rough

paths, which already faced the same problem. Lyons’ theory addresses the question of
making sense of, and solving, controlled differential equations

(1.2) dzt D Vi .zt / dX
i
t

in Rd say, driven by an R`-valued 1
p

-Hölder control X D
�
X1; : : : ; X`

�
, with p � 2,

and where Vi are sufficiently regular vector fields on Rd . Typical realizations of a Brownian
path are 1

p
-Hölder continuous, with p > 2, for instance. One expects a solution path to

equation (1.2) to be 1
p

-Hölder continuous as well, in which case the product Vi .zt / dX it , or

the integral
R t
0
Vi .zs/ dX

i
s , cannot be given an intrinsic meaning since 1

p
C
�
1
p
� 1

�
� 0.

Lyons’ deep insight was to realize that one can make sense of, and solve, equation (1.2) if
one assumes one is given an enriched version of the driving signal X that formally consists
ofX together with its non-existing iterated integrals. The theory of regularity structures rests
on the same philosophy, and the idea that the enriched noise should be used to give a local
description of the unknown u, in the same way as polynomials are used to define and describe
locally C k functions.

At the very same time that Hairer built his theory, Gubinelli, Imkeller and Perkowski
proposed in [17] another implementation of that philosophy building on a different notion
of local description of a distribution, using paraproducts on the torus. The machinery of
paracontrolled distributions introduced in [17] rests on a first order Taylor expansion of a
distribution that happened to be sufficient to deal with the stochastic parabolic Anderson
equation (1.1) on the 2-dimensional torus, the stochastic additive Burgers equation in one
space dimension [17], theˆ43 equation on the 3-dimensional torus [12, 28] and the stochastic
Navier-Stokes equation with additive noise [26, 27]. The KPZ equation can also be dealt with
using this setting [18]. Following Bony’s approach [9], the paraproduct used in [17] is defined
in terms of Fourier analysis and does not allow for the treatment of equations outside the
flat background of the torus or the Euclidean space, if one is ready to work with weighted
functional spaces. The geometric restriction on the background was greatly relaxed in our
previous work [3] by building paraproducts from the heat semigroup associated with the
operator L in the semilinear equation. A theory of paracontrolled distributions can then be
considered in doubling metric measure spaces where one has small time Gaussian estimates
on the heat kernel and its ‘gradient’—see [3]. This setting already offers situations where
the theory of regularity structures is not known to be working. The stochastic parabolic
Anderson model equation in a 2-dimensional doubling manifold was considered in [3] as
an example. The first order ‘Taylor expansion’ approach of paracontrolled calculus seems
however to restrict a priori its range of application, compared to the theory of regularity
structures, and it seems clear that a kind of higher order paracontrolled calculus is needed
to extend its scope. We tackle in the present work the first difficulty that shows off in this
program, which is related to the crucial use of commutator estimates between the heat
operator and a paraproduct, which is one of the three workhorses of the paracontrolled
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SPACE-TIME PARAPRODUCTS FOR PARACONTROLLED CALCULUS 1401

calculus method, together with Schauder estimates and another continuity result on some
commutator. The development of a high order paracontrolled calculus is the object of
another work [4].

Working in unbounded spaces with weighted functional spaces requires a careful treat-
ment which was not done so far. We shall illustrate the use of our machinery on two exam-
ples: The parabolic Anderson model (PAM) equation (1.1) in a possibly unbounded 3-dimen-
sional Riemannian manifold, and Burgers equation with multiplicative noise in the 3-dimen-
sional closed Riemannian manifold. Hairer and Labbé have very recently studied the (PAM)
equation in R3 from the point of view of regularity structures [21]—see also the work [22] of
Hairer and Pardoux. They had to introduce some weights$ to get a control on the growth of
quantities of interest at spatial infinity. A non-trivial part of their work consists into tracking
the time-behavior of their estimates, with respect to the time, which requires the use of time-
dependent weights. For the same reason, we also need to use weighted spaces and working
with the weights of [22, 21] happens to be convenient. Our treatment is however substantially
easier, as we do not need to travel backwards in time such as required in the analysis of the
reconstruction operator in the theory of regularity structures. As a matter of fact, our results
on the (PAM) equation give an alternative approach, and provide a non-trivial extension, of
the results of [21] to a non-flat setting, with a possibly wider range of operatorsL than can be
treated presently in the theory of regularity structures. As for Burgers equation with multi-
plicative noise, it provides a description of the random evolution of a velocity field on the
3-dimensional torus, subject to a random rough multiplicative forcing, and whose dynamics
reads

(1.3) .@t C L/uC .u � r/u DM�u;

where � is a 3-dimensional white noise with independent coordinates, and

M�u WD
�
�1u1; �2u2; �3u3

�
;

for the velocity field u D
�
u1; u2; u3

�
W M 3 ! R3. With zero noise �, this 3-dimen-

sional Burgers system plays a very important role in the theory of PDEs coming from
fluid mechanics, and later from condensed matter physics and statistical physics. It has
been proposed by Burgers in the 30’s as a simplified model of dynamics for Navier-Stokes
equations. A change of variables, called after Cole and Hopf, can be used to reduce the
deterministic quasilinear parabolic equation to the heat equation, thus allowing the deriva-
tion of exact solutions in closed form. Despite this fact, the study of Burgers system is still
very fashionable as a benchmark model that can be used to understand the basic features of
the interaction between nonlinearity and dissipation. Motivated by the will to turn Burgers
equation into a model for turbulence, stochastic variants have been the topic of numerous
recent works [8, 23, 24, 19, 17, 18], where a random forcing term is added in the equation,
mainly in one space dimension, with an additive space-time white noise—that is with a
space-time white noise instead of M�u with � space white noise. The Cole-Hopf transfor-
mation can formally be used again, and turns a solution to the 1-dimensional stochastic
Burgers equation with additive space-time noise to the heat equation with multiplicative
space-time noise, with a very singular noise, such as detailed in [18]. A similar change of
variable trick can be used for the study of the above multidimensional stochastic Burgers
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1402 I. BAILLEUL, F. BERNICOT AND D. FREY

system with multiplicative noise (1.3); we shall analyze it in Section 5.4. Also, one can
consider the study of this example as a first step to understanding the dynamics of the
3-dimensional stochastic incompressible Navier-Stokes equation, with multiplicative noise,
where the incompressibility brings the additional difficulty to deal with the Leray projector
to keep the vanishing divergence property. In any case, equation (1.3) seems not to have been
studied so far, to the best of our knowledge.

Contrary to the theory of regularity structures, whose introduction requires to set up a
whole new algebraic-analytic setting, the analytic part of paracontrolled calculus is based
only on classical ingredients, and its use in solving some singular stochastic partial differen-
tial equation involves an elementary reasoning. This machinery is described in simple terms
in Section 2, which serves as a baseline for the study of the parabolic Anderson and Burgers
equations in Section 5.

The geometric and functional settings in which we lay down our study are described in
Section 3. In short, we work on a doubling metric measure manifold .M; d; �/, equipped
with a Riemannian operator

L D �

`0X
iD1

V 2i

given by the finite sum of squares of vector fields. The heat semigroup of the operator L is
assumed to have a kernel that satisfies Gaussian pointwise bounds, together with its iterated
derivatives; precise conditions are given in the beginning of Section 3.1. Such a setting covers
a number of interesting cases. One can use the semigroup to construct in an intrinsic way
the scale of spatial Hölder spaces C ˛.M/ on M and a scale of parabolic Hölder spaces
C˛
�
Œ0; T � �M

�
in which the (PAM) and Burgers equations will eventually be solved. Some

Schauder-type regularity estimates for the heat semigroup, proved in Section 3.4, will be
instrumental for that purpose. We call resolution map of the heat semigroup the map that
associates to a distribution f the solution to the equation .@t C L/v D f , with zero initial
condition. One of our main contributions is the introduction of a pair of paraproducts
built from the heat semigroup, intertwined via the resolution map, that are used to get
exact formulas where formulas with a remainder were used previously [17, 18, 3]. These
two paraproducts share the same algebraic structure and the same analytic properties,
most importantly a cancellation property that we introduce in Section 3.2. It allows in
particular to set the stage in a more natural function space than previously done. They
consist in some sense of space-time paraproducts in the parabolic variable, whose conti-
nuity properties together with Schauder estimates allow to obtain some crucial estimates
in L1T C

˛.M/ spaces.

The technical core of the paracontrolled calculus, such as defined by Gubinelli, Imkeller
and Perkowski, is a continuity estimate for a corrector that allows to make sense of an a priori
undefined term by compensating it by another potentially undefined term with a simpler
structure, and to separate analytic from probabilistic considerations. We prove in Section 4.2
that this result holds in our general setting as well. As a result, we are able to prove the
following kind of results on the (PAM) in a 3-dimensional possibly unbounded measured
manifold .M; d; �/ that is Ahlfors regular, and working with a second order differential
operator L that satisfies some mild assumptions stated in Section 3.1. We also study the
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multiplicative Burgers equations in a bounded ambient space. In statements below, � stands
for a space white noise on .M;�/, and �" WD

�
e�"L

�
� stands for its regularization via the heat

semigroup. Full details on the mathematical objects involved in the statements will be given
along the way. The notion of solution to the (PAM) Equation (1.1) depends on a notion of
(PAM)-enhancementb� of a distribution � 2 C ˛�2.M/. To every such enhancement of � is
associated a Banach space D

�b� � of distributions within which one can make sense of the
equation and look for the solution to it—this is the space of paracontrolled distributions; see
Sections 2 and 5. We refer to Section 3.3 for the definition of the weighted spaces used below,
and to Section 3.1 for the statement of Assumptions (A) on the heat semigroup generated
byL. Assumption (B) is a statement about the, probabilistic, renormalization process needed
to make sense of some ill-defined terms; we take it for granted in the present work. It is fully
spelled out in Section 5, and hints about the problems involved in this operation are given in
Section 6.

T 1. – Let .M; d; �/ be a 3-dimensional possibly unbounded metric measure
manifold. Assume the heat semigroup satisfies Assumption (A) and that the vector fields Vi
are divergence-free. Let us further work under Assumption (B). Given ˛ 2

�
2
5
; 1
2

�
, and a

(PAM)-enhancement of a distribution � 2 C ˛�2, the parabolic Anderson model equation
on M has a unique paracontrolled solution in D

�b� �. Moreover, the space white noise � has
a natural (PAM)-enhancement, and there exists a sequence

�
�"
�
0<"�1

of deterministic and
time-independent functions such that for every finite positive time horizon T and every initial
data u0 2 C 4˛w0 .M/, the solution u" of the renormalized equation

@tu
"
C Lu" D u"

�
�" � �"

�
; u".0/ D u0

converges in probability to the solution u 2 C˛w
�
Œ0; T � �M

�
of the parabolic Anderson model

equation on M associated with the natural enhancement of �. The result holds with w D 1 and
T D1, if �.M/ is finite.

Let emphasize that uniqueness has to be understood as uniqueness of a solution in a
suitable class of paracontrolled distributions, in which the problem is formulated. Note also
that we use weighted spatial and parabolic Hölder spaces to deal with the unbounded nature
of the ambient space M . In R3, one can typically work with the weights w.x; �/ D e�.1Cjxj/

and w0.x/ D w.x; 0/ a constant—these weights were already used by Hairer and Labbé
in [21]; see Section 3.3. Hairer and Labbé [21] are able to work in the range �1

2
< ˛ � 0,

in the setting of regularity structures; we do not know how to deal with such a situation
in our setting. Note on the other hand that we described in the appendix of [3] how to
extend the paracontrolled calculus to a Sobolev setting. Together with the present work, this
allows to solve the (PAM) equation in Sobolev spacesW ˛;p for a large enough finite positive
exponent p. The above Hölder setting corresponds to working with p D1. The robustness
of our framework in terms of the operator L or the ambient geometry is useful, at least
insofar as the tools of regularity structures have not been adapted so far in a non-flat setting.
Moreover, as explained before, it is easier to deal with the time-dependent weight through the
current paracontrolled approach than via the regularity structures theory, as done in [21].

As we shall see, the computations needed to handle the (PAM) equation and multiplicative
Burgers system involve almost the same quantities. As far as the latter is concerned, we

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1404 I. BAILLEUL, F. BERNICOT AND D. FREY

can prove the following result, under the same conditions on the operator L as above, in
a bounded geometry. We identify in the renormalized equation (1.4) below a symmetric
matrix d with its associated quadratic form. We can work in such a bounded domain with
the weightw W .x; �/ 7! e�� , for a large enough positive constant �. Note here that the above
mentioned notion of enhancement b� of a distribution � 2 C ˛�2 depends on the equation
under study, which is why we called it (PAM)-enhancement above. We denote by (B0) an
assumption similar to Assumption (B), about the renormalization process of a number of
ill-defined terms that appear in the analysis of the Burgers system. We work here in the
3-dimensional torus with R3-valued fields u.

T 2. – Assume the heat semigroup satisfies Assumption (A) and that the vector
fields Vi are divergence-free. Let us further work under Assumption (B0). Given ˛ 2

�
2
5
; 1
2

�
,

and a Burgers-enhancement of � 2 C ˛�2, the multiplicative Burgers equation (1.3) onM has a
unique local in time paracontrolled solution in D

�b� �. Moreover, the space white noise � has a
natural Burgers-enhancement, and there exist sequences of time-independent and deterministic
R3-valued functions

�
�"
�
0<"�1

and .3�3/-symmetric-matrix-valued functions
�
d "
�
0<"�1

onM ,
such that if one denotes by u" the solution of the renormalized equation

(1.4) @tu
"
C Lu" C

�
u" � r

�
u" DM�"��"u

"
� d "

�
u"; u"

�
u".0/ D u0

with initial condition u0 2 C4˛, then u" converges in probability to the solution u 2 C˛ of the
multiplicative Burgers equation, locally in time.

Details on Theorems 1 and 2 can be found in Section 5. These statements are two-sided,
with the well-posedness of the paracontrolled version of the equations on the one hand, and
the link between this notion of solution and the convergence of solutions to a renormalized
regularized version of the initial equation on the other hand. Assumptions (B) and (B0) deal
with the latter side of the study. Note that after the very recent works [10, 13] of Bruned-
Hairer-Zambotti and Chandra-Hairer on renormalization within the regularity structure
approach to singular PDEs, there is no doubt anymore that this probabilistic step should
be doable in a paracontrolled setting as well, in some generality.

Notations. – Let us fix here some notations that will be used throughout the work.

– Given a metric measure space .M; d; �/, we shall denote its parabolic version
by .M ; �; �/, where the parabolic space

M WDM � R

is equipped with the parabolic metric

�
�
.x; �/; .y; �/

�
D d.x; y/C

p
j� � � j

and the parabolic measure � D � ˝ dt . Note that for .x; �/ 2 M and small radius
r > 0, the parabolic ball BM

�
.x; �/; r

�
has volume

�
�
BM

�
.x; �/; r

��
� r2 �

�
B.x; r/

�
:

We shall denote by e a generic element of the parabolic space M .
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– Given an unbounded linear operator L on L2.M/, we denote by D2.L/ its domain.
We give here the definition of a distribution, as it is understood in the present work.
The definition will always be associated with the operatorL described in Subsection 3.1
below.

Fix a point o 2 M and then define a Fréchet space S o of test functions f on M

requiring that

Na.f / WD
�1C j� j�a1�1C d.o; �/�a2@a3� .L�/a4f 

2;d�
<1;

for all tuples a D .a1; : : : ; a4/ of integers; we equip S o of the Fréchet space structure
associated with the following family of semi-norms Na. A distribution is a continuous
linear functional on S o; we write S 0o for the set of all distributions.

– Spatial Hölder spacesC  and parabolic Space-time Hölder spaces C  will be rigorously
defined in Section 3.3, and the weights $ and pa will be introduced in Section 3.4.
To deal with remainder terms in some paracontrolled expansions, we shall use the
following notation. For  2 R and c a non negative integer, we shall denote by L  Mc
an element of C $pca , and by L  M]c an element of L1T C


$pca .

– As a last bit of notation, we shall always denote by KQ the kernel of an operator Q,
and write .T for an inequality that holds up to a positive multiplicative constant that
depends only on T .

2. Paracontrolled calculus in a nutshell

The theories of regularity structures and paracontrolled calculus aim at giving a frame-
work for the study of a class of classically ill-posed stochastic parabolic partial differential
equations (PDEs), insofar as they involve illicit operations on the objects at hand. This is
typically the case in the above parabolic Anderson model and Burgers equations, where
the products u� and M�u are a priori meaningless, given the expected regularity prop-
erties of the solutions to the equations. So a regularization of the noise does not give a
family of solutions to a regularized problem that converge in any reasonable functional
space to a limit that could be defined as a solution to the original equation. To bypass
this obstacle, both the theory of regularity structures and paracontrolled calculus adopt
a point of view similar to the point of view of rough paths analysis, according to which
a good notion of solution requires the enhancement of the notion of noise into a finite
collection of objects/distributions, built by purely probabilistic means, and that a solution to
the equation should locally be entirely described in terms of these objects. This collection of
reference objects depends on the equation under study, and plays in the setting of regularity
structures the role played by polynomials in the world of C k maps, where they provide local
descriptions of a function in the form of a Taylor expansion. Something similar holds in
paracontrolled calculus. In both approaches, the use of an Ansatz for the solution space
allows to make sense of the equation and get its well-posed character by deterministic fixed
point methods, and provides as a consequence solutions that depend continuously on all the
parameters in the problem.

To be more concrete, let us take as an introduction to these theories the example of the
2-dimensional (PAM) equation, fully studied in [19, 17, 20, 3]. The space white noise � is
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1406 I. BAILLEUL, F. BERNICOT AND D. FREY

in that case .�1�/-Hölder continuous, and the intuition suggests that the solution u to the
(PAM) equation should be .1�/-Hölder continuous, as a consequence of the regularizing
effect of the heat semigroup. So at small time-space scales, u should essentially be constant,
as a first approximation. This could suggest to try a perturbative approach in which, if one
denotes by Z the solution to the equation .@t C �/Z D �, with null initial condition,
one looks for a distribution/function v WD u � Z with better regularity than the expected
regularity of u, so as to get a well-posed equation for v. Such an attempt is bound to fail as v
needs to satisfy the same equation as u. The same trick invented by Da Prato-Debbusche
in their study of the 2-dimensional stochastic quantization equation [15], also fails in the
study of 3-dimensional scalar ˆ43 equation, but a local ‘version’ of this idea is at the heart
of the theory of regularity structures, while a tilted version of that point of view is also the
starting point of paracontrolled calculus. Both make sense, with different tools, of the fact
that a solution should locally “look like” Z. Whereas ‘usual’ Taylor expansions are used in
the theory of regularity structures to compare a distribution to a linear combination of some
given model distributions constructed by purely probabilistic means, such as the a priori
undefined productZ�, the paracontrolled approach uses paraproducts as a means of making
sense of the sentence “u looks like Z at small scales,” such as given in the definition below.
For readers unfamiliar with paraproducts, recall that any distribution f can be described as
an infinite sum of smooth functions fi with the Fourier transform bfi of fi essentially equal
to the restriction of bf on a compact annulus depending on i . A product of two distributions
f and g can thus always be written formally as

fg D
X

figj D
X
i�j�2

figj C
X
ji�j j�1

figj C
X
j�i�2

figj

DW …f .g/C….f; g/C…g.f /:

(2.1)

The term …f .g/ is called the paraproduct of f and g, and the term ….f; g/ is called the
resonant term. The paraproduct is always well-defined for f and g in Hölder spaces, with
possibly negative indices ˛ and ˇ respectively, while the resonant term only makes sense
if ˛ C ˇ > 0. (The book [2] provides a gentle introduction to paraproducts and their use
in the study of some classes of PDEs.) This result of Bony on paraproducts [9] already
offers a setting that extends Schwartz operation of multiplication of a distribution by a
smooth function; it is not sufficient however for our needs, even for the (PAM) equation
in dimension 2, as u is expected there to be 1�-Hölder and � is .�1�/-Hölder in that case.
Needless to say, things are even worse in dimension 3 and for Burgers system. However, the
point is that we do not want to multiply any two distributions but rather very special pairs of
distributions. A reference distributionZ in some parabolic Hölder space C˛, defined later, is
given here.

D. – Let ˇ > 0 be given. A pair of distributions .f; g/ 2 C˛ � Cˇ is said to be
paracontrolled by Z if

.f; g/] WD f �…g.Z/ 2 C˛Cˇ :

The distribution g is called the derivative of f with respect toZ. The following elementary
remark gives credit to this choice of name. It also partly explains why we shall solve the
(PAM) equation in the way we do it here—using some kind of Cole-Hopf transform. Assume
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˛ is positive, and write .2˛/ for a function in C2˛ that may change from line to line. For a
pair .f; f / paracontrolled byZ, one can write f D eZg, for some function g in C2˛. It suffices
indeed to notice that Bony’s decomposition gives

e�Zf D …e�Z .f /C…f
�
e�Z

�
C .2˛/

D …e�Z

�
…f .Z/

�
C…f

�
…�e�Z .Z/

�
C .2˛/

D …e�Zf .Z/ �…e�Zf .Z/C .2˛/ D .2˛/:

We used in the second and third equalities two elementary results on paraproducts which
are well-known in the classical setting, and proved below in the more general setting of the
present work.

The twist offered by this definition, as far as the multiplication problem of u by � is
concerned, is the following. Take for Z the solution to the equation .@t C L/Z D �, with
null initial condition; the noise � is thus here .˛ � 2/-Hölder. From purely analytic data, the
product u� is meaningful only if ˛ C .˛ � 2/ > 0, that is ˛ > 1. For a distribution .u; u0/
controlled by Z, with ˇ D ˛ say, the formal manipulation

u� D …u.�/C…� .u/C….u; �/

D …u.�/C…� .u/C…
�
…u0.Z/; �

�
C…

�
L 2˛ M; �

�
DW …u.�/C…� .u/C C.Z; u0; �/C u0….Z; �/C…

�
L 2˛ M; �

�
;

gives a decomposition of u� where the first two terms are always well-defined, with known
regularity, and where the last term makes sense provided 2˛ C .˛ � 2/ > 0, that is ˛ > 2

3
. It

happens that the corrector

C.Z; u0; �/ WD …
�
…u0.Z/; �

�
� u0….Z; �/

can be proved to define an
�
˛ C ˛ C .˛ � 2/

�
-Hölder distribution if ˛ > 2

3
, although

the resonant term …
�
…u0.Z/; �

�
is only well-defined on its own if ˛ > 1. So we see that

the only undefined term in the decomposition of u� is the product u0….Z; �/, where the
resonant term ….Z; �/ does not make sense so far. This is where probability comes into
play, to show that one can define a random distribution ….Z; �/ as a limit in probability
of renormalized quantities of the form ….Z"; �"/ � c", where �" is a regularized noise, with
associated Z", and c" is a deterministic function, a constant in some cases. The convergence
can be proved to hold in C˛C.˛�2/, so the product u0….Z; �/ eventually makes perfect sense
if ˛C .2˛�2/ > 0, that is ˛ > 2

3
. This combination of analytic and probabilistic ingredients

shows that one can define the product u�, or more properly .u; u0/ �, for ˛ > 2
3

, which is
definitely beyond the scope of Bony’s paradigm. Once the distribution � has been enhanced
into a pair b� WD �

�;….Z; �/
�

with good analytic properties, one can define the product

.u; u0/b� as above for a generic distribution paracontrolled by Z, and reformulate a singular
PDE such as the (PAM) equation in dimension 2 as a fixed point problem in some space
of paracontrolled distribution, and solve it uniquely by a fixed point method. Note that the
very notion of product, and hence the meaning of the equation, depends on the choice of
enhancement of � intob�.

The above reasoning will not be sufficient, however, to deal with the (PAM) and multi-
plicative Burgers equations in dimension 3, for which ˛ < 1

2
, and one needs first to refor-

mulate the equation differently to make it accessible to this first order expansion calculus.
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In analogy with Lyons’ rough paths theory, and in parallel with the logical structure of the
theory of regularity structures, one may also consider developing a higher order paracon-
trolled calculus where a collection of reference functions .Z1; : : : ; Zk/, with increasing regu-
larity (for exampleZi of regularity i˛ for some ˛ > 0), are given, and used to give some sort
of Taylor expansion of a function f 2 C˛ of the form

.f; g1; : : : ; gk/
]
WD f �

�
…g1.Z1/C � � � C…gk .Zk/

�
2 Ck˛Cˇ ;

for some tuple .g1; : : : ; gk/ of C˛ functions with similar expansions at lower order. We shall
develop this framework in a forthcoming work.

3. Geometric and functional settings

We describe in this section the geometric and functional settings in which we shall
construct our space-time paraproducts in Section 4, and provide a number of tools. We shall
work in a Riemannian setting under fairly general conditions; parabolic Hölder spaces are
defined in Section 3.3 purely in terms of the semigroup generated by L. In Section 3.4 we
prove some fundamental Schauder-type regularity estimates. The cancellation properties
put forward in Section 3.2 are fundamental for proving in Section 4 some continuity results
for some iterated commutators and correctors.

3.1. Riemannian framework

Our basic setting in this work will be a complete volume doubling measured Rieman-
nian manifold .M; d; �/; all kernels mentioned in the sequel are with respect to the fixed
measure �. We are going to introduce in the sequel a number of tools to analyze singular
partial differential equations involving a parabolic operator on RC �M

L WD @t C L;

withL built from first order differential operators .Vi /iD1;:::;`0 onM , defined as operators Vi
satisfying the Leibniz rule

(3.1) Vi .fg/ D f Vi .g/C gVi .f /

for all functions f; g in the domain of L. Given a tuple I D .i1; : : : ; ik/ in f1; : : : ; `0gk , we
set jI j WD k and

VI WD Vik � � �Vi1 :

Assumption (A). – We shall assume throughout that

– the operator L is a sectorial operator in L2.M/, L is injective on L2.M/, or the
quotient space of L2.M/ by the space of constant functions if � is finite, it has
a bounded H1-calculus on L2.M/, and �L generates a holomorphic semigroup
.e�tL/t>0 on L2.M/,

– one has

L D �

`0X
iD1

V 2i

and
D.L/ � D.V 2i / WD

˚
f 2 L2; V 2i .f / 2 L

2.�/
	
;
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for some operators Vi satisfies the Leibniz rule (3.1) on D.L/,
– the heat semigroup is conservative, that is

�
e�tL

�
.1M / D 1M for every t > 0, where

1M stands for the constant function on M—or in a weak sense that L.1M / D 0,
– the semigroup has regularity estimates at any order, by which we mean that for every

tuple I , the operators
�
t
jI j
2 VI

�
e�tL and e�tL

�
t
jI j
2 VI

�
have kernels Kt .x; y/ satisfying

the Gaussian estimate

(3.2)
ˇ̌̌
Kt .x; y/

ˇ̌̌
.

1

�
�
B.x;

p
t /
� e�c d.x;y/2t

and the following regularity estimate. For d.x; z/ �
p
t

(3.3)
ˇ̌̌
Kt .x; y/ �Kt .z; y/

ˇ̌̌
.
d.x; z/
p
t

1

�
�
B.x;

p
t /
� e�c d.x;y/2t ;

for some constants which may depend on jI j.

Let us point out that the regularity property (3.3) for jI j D k can be obtained from (3.2) with
k C 1 writing the “finite-increments” formulaˇ̌

Kt .x; y/ �Kt .z; y/
ˇ̌
. d.x; z/ sup

j

sup
w2.x;z/

ˇ̌
XjKt .w; y/

ˇ̌
;

where .x; y/ stands for a geodesic joining x to z and of length d.x; z/, and .Xj / stands for a
local frame field near .x; y/, and it acts here as a first order differential on the first component
of K. As a matter of fact, it suffices for the present work to assume that the semigroup
has regularity estimates of large enough order. Observe that under Assumption (A), the
semigroup e�tL may be defined as acting on the distributions. This can be rigorously done by
duality, since for every integerN � 0, .L�/N e�tL

�

has a kernel satisfying pointwise Gaussian
estimates and so is acting on the test functions S o—we refer to [11] for more details. One can
keep in mind the following two examples.

(a) Euclidean domains. In the particular case of the Euclidean space, all of the current
work can be reformulated in terms of Fourier transform rather than in terms of the
heat semigroup; which may make some reasoning a bit more familiar but does not
really simplify anything. The case of a bounded domain with its Laplacian associated
with Neumann boundary conditions fits our framework if the boundary is sufficiently
regular. We may also consider other kind of second order operator, likeL D � div.Ar/
for some smooth enough matrix-valued map satisfying the ellipticity (or accretivity)
condition.

(b) Riemannian manifolds. Smooth closed manifolds equipped with an operator L of
Hörmander type as above, with Vi smooth, all satisfy Assumption (A). Here is a simple
setting within which one can deal with unbounded spaces. Assume M is a parallel-
izable d -dimensional manifold with a smooth global frame field V D .V1; : : : ; Vd /.
One endows M with a Riemannian structure by turning V into orthonormal frames.
The above assumption on the heat kernel holds true if M has bounded geometry, that
is if

(i) the curvature tensor and all its covariant derivatives are bounded in the frame
field V ,

(ii) Ricci curvature is bounded from below,
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(iii) and M has a positive injectivity radius;
see for instance [14] or [25]. One can include the Laplace operator in this setting by
working with its canonical lift to the orthonormal frame bundle, given by
1
2

Pd
iD1H

2
i C

1
2

P
1�j<k�d Vjk , where the Hi are the canonical horizontal vector

fields of the Levi-Civita connection, and the Vjk are the canonical vertical vector
fields on the orthonormal frame bundle, inherited from its SO.Rd /-principal bundle
structure. The bundle OM is parallelizable and satisfies Assumption (A) if the base
Riemannian manifold M satisfies the conditions (i–iii). This example shows that the
assumption that M is parallelizable is essentially done here for convenience.

3.2. Approximation operators and cancellation property

We introduce in this section a notion of approximation operators that will be the building
blocks for the definition and study of the paraproducts, commutators and correctors, used
in our analysis of singular PDEs. Some of them enjoy some kind of orthogonality, or cancel-
lation, property quantified by condition (3.10) below. This property is to be thought of as a
quantitative replacement for the property of frequency localisation of Fourier multipliers in
the Littlewood-Paley decomposition heavily used in the classical Fourier definition of para-
products; see [2]. Indicators of annuli will somehow be replaced in our setting by continuous
functions of order 1 on such annuli, with exponential decrease at 0 and1. Note that we shall
be working in a parabolic setting with mixed cancellation effects in time and space.

All computations below make sense for a choice of large enough integers b; `1 that will
definitely be fixed at the end of Section 4.1 to ensure some continuity properties for some
useful operators. Recall that generic elements of the parabolic space M D R � M are
denoted by e D .x; �/ or e0 D .y; �/, and that t stands for a scaling parameter. The following
parabolic Gaussian-like kernels . G t /0<t�1 will be used as reference kernels in this work.
For 0 < t � 1 and � � � , if d.x; y/ � 1, set

G t
�
.x; �/; .y; �/

�
WD

1

�
�
BM

�
.x; �/;

p
t
��  1C �

�
.x; �/; .y; �/

�2
t

!�`1
;

otherwise we set
G t
�
.x; �/; .y; �/

�
WD

1

�
�
BM

�
.x; �/; 1

�� �1C j� � � jt

��`1 �
1C

d.x; y/2

t

��`1
exp

�
�c

d.x; y/2

t

�
for d.x; y/ � 1, and G t � 0 if � � � . We do not emphasize the dependence of G on the
positive constant c in the notation for the ‘Gaussian’ kernel, and we shall allow ourselves to
abuse notations and write G t for two functions corresponding to two different values of that
constant. This will in particular be the case in the proof of Lemma 4. We have for instance,
for two scaling parameters s; t 2 .0; 1/, the estimate

(3.4)
Z

M

G t
�
e; e0

�
G s
�
e0; e00

�
�.de0/ . G tCs

�
e; e00

�
:

(Indeed, the space variables and the time variables are separated in the kernel G t . Then
both in space and time variables, the previous inequality comes from classical estimates for
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convolution of functions with fast decay at infinity, such as done in [3, Lemma A.5] for
example.) This somewhat unnatural definition of a Gaussian-like kernel is justified by the
fact that we shall mainly be interested in local regularity matters; the definition of G t in the
domain

˚
d.x; y/ � 1

	
is only technical and will allow us to obtain global estimates with

weights. Presently, note that a large enough choice of constant `1 ensures that we have

(3.5) sup
t2.0;1�

sup
e2M

Z
M

G t .e; e
0/ �.de0/ <1;

so any linear operator on a function space over M , with a kernel pointwise bounded by
some G t is bounded in Lp.�/ for every p 2 Œ1;1�.

D. – We shall denote throughout by G the set of families .P t /0<t�1 of linear
operators on M with kernels pointwise bounded byˇ̌̌

KP t
.e; e0/

ˇ̌̌
. G t .e; e

0/:

The letter G is chosen for ‘Gaussian’. A last bit of notation is needed before we introduce
the cancellation property for a family of operators in a parabolic setting. Given a real-valued
integrable function m on R, define its rescaled version as

mt .�/ WD
1

t
m
�
�

t

�
I

the family .mt /0<t�1 is uniformly bounded in L1.R/. We also define the “convolution”
operator m? associated with m via the formula

m?.f /.�/ WD

Z 1
0

m.� � �/f .�/d�:

Note that if m has support in RC, then the operator m? has a kernel supported on the same
set

˚
.�; �/ I � � �

	
as our Gaussian-like kernel. Moreover, we let the reader check that if

m1; m2 are two L1-functions with m2 supported on Œ0;1/, with convolution m1 �m2, then
we have �

m1 �m2
�?
D m?1 ım

?
2 :

Given an integer b � 1, we define a special family of operators on L2.M/ setting b WD .b � 1/Š
and

Q
.b/
t WD 

�1
b .tL/be�tL and � t@tP

.b/
t WD Q

.b/
t ;

with P .b/0 D Id, so P .b/t is an operator of the form pb.tL/e
�tL, for some polynomial pb of

degree .b � 1/, with value 1 in 0. Under Assumption (A), the operators P .b/t and Q.b/
t both

satisfy the Gaussian regularity estimates (3.2) at any order

(3.6)

ˇ̌̌̌
K
t
jI j
2 VIR

.x; y/

ˇ̌̌̌
_

ˇ̌̌̌
K
t
jI j
2 RVI

.x; y/

ˇ̌̌̌
.

1

�
�
B.x;

p
t /
� e�c d.x;y/2t ;

with R standing here for P .b/t or Q.b/
t .

The parameters b and `1 will be chosen large enough, and fixed throughout the paper. See
Proposition 15 and the remark after Proposition 16 for the precise choice of b and `1.
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D. – Let an integer a 2 J0; 2bK be given. The following collection of families of
operators is called the standard collection of operators with cancellation of order a, denoted
by StGCa. It is made up of all the space-time operators��

t
jJ j
2 VJ

�
.tL/

a�jJ j�2k
2 P

.c/
t ˝m

?
t

�
0<t�1

;

where k is an integer with 2kCjJ j � a, and c 2 J1; bK, andm is any smooth function supported
on
�
1
2
; 2
�

such that

(3.7)
Z
� im.�/ d� D 0;

for all 0 � i � k � 1, with the first b derivatives bounded by 1. These operators are uniformly
bounded inLp.M / for every p 2 Œ1;1�, as functions of the scaling parameter t . So a standard
collection of operators Q can be seen as a bounded map Q W t ! Qt from .0; 1� to the set
B.Lp/ of bounded linear operators on Lp.M /. We also set

StGCŒ0;2b� WD
[

0�a�2b

StGCa:

The cancellation effect of such operators is quantified in Proposition 3 below; note here
that it makes sense at an intuitive level to say thatL

a�jJ j�2k
2 encodes cancellation in the space-

variable of order a�jJ j�2k, that VJ encodes a cancellation in space of order jJ j and that the
moment condition (3.7) encodes a cancellation property in the time-variable of order k for
the convolution operatorm?t . Since we are in the parabolic scaling, a cancellation of order k

in time corresponds to a cancellation of order 2k in space, so thatVJL
a�jJ j�2k

2 P
.c/
t ˝m

?
t has a

space-time cancellation property of order a. We invite the reader to check that each operator�
t
jJ j
2 VJ

�
.tL/

a�jJ j�2k
2 P

.c/
t ˝ m

?
t in the standard collection has a kernel pointwise bounded

from above by some G t . This justifies the choice of name StGCa for this space, where St
stands for ‘standard’, G for ‘Gaussian’ and C for ‘cancellation’. The paracontrolled analysis,
that we are going to explain, is based on these specific operators. We emphasize that because
of the Gaussian kernel G t and the function m, all of these operators have a support in time
included in

f.�; �/; � � �g:

In particular, that means that we never travel backwards in time through these operators.
This fact will be very important, to deal further with the weight $ , which will depend on
time. We give one more definition before stating the cancellation property.

D. – Given an operator Q WD VI �.L/, with jI j � 1, defined by functional
calculus from some appropriate function �, we write Q� for the formal dual operator

Q� WD �.L/VI :

For I D ;, and Q D �.L/, we set Q� WD Q. For an operator Q as above we set�
Q˝m?

��
WD Q� ˝m?:

Note that the above definition is not related to any classical notion of duality, and let us
emphasize that we do not assume that L is self-adjoint in L2.�/. This notation is only used
to indicate that an operator Q, resp. Q�, can be composed on the right, resp. on the left, by
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another operator  .L/, for a suitable function  , due to the functional calculus on L. In
the setting of analysis on a finite dimensional torus, the operators Q.b/

t are given in Fourier
coordinates �, as the multiplication operators by .t j�j2/be�t j�j

2
; as this function is almost

localized in an annulus j�j � t�
1
2 , the operatorsQ.b/

s andQ.b/
t are almost orthogonal if s

t
is

either very small or very big. This is encoded in the elementary estimate

(3.8)
ˇ̌̌
K
Q
.b/
s ıQ

.b/
t
.x; y/

ˇ̌̌
.

�
ts

.s C t /2

� b
2 1

�
�
B.x;

p
s C t /

� exp
�
�c

d2.x; y/

t C s

�
:

The frequency analysis of the operators Q.b/s is not very relevant in the non-homogeneous
parabolic space M . We keep however from the preceding analysis the idea that relation (3.8)
encodes some kind of orthogonality, or cancellation effect.

P 3. – Consider Q1 2 StGCa1 and Q2 2 StGCa2 two standard collections
with cancellation, and set a WD min.a1; a2/. Then for every s; t 2 .0; 1�, the composition
Q1s ı Q2�t has a kernel pointwise bounded by

(3.9)
ˇ̌̌
K

Q1sıQ2�t
.e; e0/

ˇ̌̌
.

�
ts

.s C t /2

� a
2

G tCs.e; e
0/:

Proof. – Given

Q1s D s
j1
2 VJ1.sL/

a1�j1�2k1
2 P .c1/s ˝m1?s and Q2�t D .tL/

a2�j2�2k2
2 P

.c2/
t t

j2
2 VJ2 ˝ m2?t

a standard operator and the dual of another, we have

Q1s ı Q2�t D s
a1�2k1

2 t
a2�2k2

2 VJ1L
a1�j1�2k1Ca2�j2�2k2

2 P .c1/s P
.c2/
t VJ2 ˝

�
m1s �m

2
t

�?
:

Assume, without loss of generality, that 0 < s � t . Then the kernel of the time-convolution
operator m.1/s �m

.2/
t is given by

Km1s�m2t
.� � �/ D

Z
m1

�
� � �

s

�
m2

�
� � �

t

�
d�

st
:

Sincem1 has vanishing k1 first moments, we can perform k1 integration by parts and obtain
that ˇ̌̌

Km1s�m2t
.�; �/

ˇ̌̌
.
�s
t

�k1 Z
@�k1m1

�
� � �

s

�
@k1m2

�
� � �

t

�
d�

st
;

where we slightly abuse notations and write @�k1m1 for the k1-th primitive of m1 null at 0.
Then we getˇ̌̌

Km1s�m2t
.�; �/

ˇ̌̌
.
�s
t

�k1 Z �
1C
j� � �j

s

��`1C2 �
1C

� � �

t

��`1C2 d�
st

.
�s
t

�k1 �
1C
j� � � j

s C t

��`1
.s C t /�1:

In the space variable, the kernel of VJ1L
a1�j1�2k1Ca2�j2�2k2

2 P
.c1/
s P

.c2/
t VJ2 is bounded above

by

.s C t /
�a1C2k1�a2C2k2

2 �
�
B.x;

p
s C t /

��1
exp

�
�c
d.x; y/2

s C t

�
;
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as a consequence of the property (3.6). Altogether, this givesˇ̌̌
K

Q1sıQ2�t
.e; e0/

ˇ̌̌
.
�s
t

�k1
s
a1�2k1

2 t
a2�2k2

2 .s C t /
�a1C2k1�a2C2k2

2 G tCs.e; e
0/

.
�s
t

� a1
2

G tCs.e; e
0/

.
�s
t

� a
2

G tCs.e; e
0/;

where we used that s � t and a � a1.

D. – Let 0 � a � 2b be an integer. We define the subset GC a of G of families
of operators with the cancellation property of order a as the set of elements Q of G with the
following cancellation property. For every 0 < s; t � 1 and every standard family S 2 StGCa

0

,
with a0 2 Ja; 2bK, the operator Qt ı S �s has a kernel pointwise bounded by

(3.10)
ˇ̌̌
KQtıS �s

.e; e0/
ˇ̌̌
.

�
st

.s C t /2

� a
2

G tCs.e; e
0/:

Here are a few examples. Consider a smooth functionmwith compact support in Œ2�1; 2�,
an integer c � 1, and a tuple I of indices.

– The families
�
Q
. a2 /

t ˝m
?
t

�
0<t�1

and
�
t
jI j
2 VIP

.c/
t ˝m

?
t

�
0<t�1

belong toGC a if jI j � a;

– If
R
�km.�/ d� D 0 for all integer k D 0; : : : ; a � 1, then we can see by integration by

parts along the time-variable that
�
P
.c/
t ˝m

?
t

�
0<t�1

2 GC a.

– If
R
�km.�/ d� D 0 for all integer k D 0; : : : ; a2 with a1 C a2 D a, then the families�

Q
a1
2
t ˝m

?
t

�
0<t�1

and
�
t
jI j
2 VIP

.c/
t ˝m

?
t

�
0<t�1

, where jI j � a1, both belong toGC a.

We see on these examples that cancellation in the parabolic setting can encode some
cancellations in the space variable, the time-variable or both at a time.

We introduced above the operatorsQ.b/
t and P .b/t acting on the base manifoldM . We end

this section by introducing their parabolic counterpart. Choose arbitrarily a smooth real-
valued function ' on R, with support in

�
1
2
; 2
�
, unit integral and such that for every integer

k D 1; : : : ; b, we have Z
�k'.�/ d� D 0:

Set
P
.b/
t WD P

.b/
t ˝ '

?
t and Q.b/t WD �t@t P

.b/
t :

Denote by M� the multiplication operator in R by � . An easy computation yields that

Q.b/t D Q
.b/
t ˝ '

?
t C P

.b/
t ˝  t ;

where  .�/ WD '.�/ C �'0.�/. (For an extension of the present theory to the setting of
Sobolev spaces, such as done in the Appendix B of [3], it would be convenient to work
with ' � ' rather than '.) Note that, from its very definition, a parabolic operator Q.b/t
belongs at least to GC 2, for b � 2. Remark that if � is a time-independent distribution then
Q.b/t � D Q

.b/
t �. Note also that due to the normalization of ', then for every f 2 Lp.R/

supported on Œ0;1/ then
'?t .f / ���!

t!0
f in Lp:
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So, the operators P t tend to the identity as t goes to 0, on the set of functions f 2 Lp.M /

with time-support included in Œ0;1/, whenever p 2 Œ1;1/, and on the set of functions
f 2 C 0.M / with time-support included in Œ0;1/. The following Calderón reproducing
formula follows as a consequence. For every continuous function f 2 L1.M / with time-
support in Œ0;1/, we have

(3.11) f D

Z 1

0

Q.b/t .f /
dt

t
C P

.b/
1 .f /:

This formula will play a fundamental role for us. Noting that the measure dt
t

gives unit

mass to intervals of the form
�
2�.iC1/; 2�i

�
, and considering the operator Q.b/t as a kind of

multiplier roughly localized at frequencies of size t�
1
2 , Calderón’s formula appears as nothing

else than a continuous time analog of the Paley-Littlewood decomposition of f , with dt
t

in
the role of the counting measure.

3.3. Parabolic Hölder spaces

We define in this section space and space-time weighted Hölder spaces, with possibly nega-
tive regularity index, and give a few basic facts about them. The setting of weighted function
spaces is needed for the applications to the parabolic Anderson model and multiplicative
Burgers equations on unbounded domains studied in Section 5. The weights we use were
first introduced in [21].

Let us start recalling the following well-known facts about Hölder spaces onM , and single
out a good class of weights onM . A function w WM ! Œ1;1/ will be called a spatial weight
if one can associate to any positive constant c1 a positive constant c2 such that one has

w.x/ e�c1d.x;y/ � c2w.y/;(3.12)

for all x; y inM . Given 0 < ˛ � 1, the classical metric Hölder spaceH˛
w is defined as the set

of real-valued functions f on M with finite H˛
w -norm, defined by the formula

kf kH˛! WD
w�1f 

L1.M/
C sup
0<d.x;y/�1

ˇ̌
f .x/ � f .y/

ˇ̌
w.x/ d.x; y/˛

<1:

Distributions on M were defined in [3] using a very similar definition as in the end of
Section 1, where their parabolic counterpart is defined.

D. – For ˛ 2 .�3; 3/ and w a spatial weight, define C ˛w WD C
˛
w.M/ as the set of

distributions on M with finite C ˛w -norm, defined by the formula

kf kC˛! WD
w�1e�Lf 

L1.M/
C sup
0<t�1

t�
˛
2

w�1Q.a/
t f


L1.M/

;

and equip that space with the induced norm. The latter does not depend on the integer a > j˛j
2

,
and one can prove that the two spaces H˛

w and C ˛w coincide and have equivalent norms when
0 < ˛ < 1 see [3].
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These notions have parabolic counterparts which we now introduce. A space-time weight
is a function! W M ! Œ1;1/with!.x; �/ non-decreasing function of time, for every x 2M ,
and such that there exists two constants c1 and c2 with

!.x; �/ e�c1d.x;y/ � c2 !.y; �/;(3.13)

for all pairs of points of M of the form
�
.x; �/; .y; �/

�
. The function w� WD !.�; �/ is in

particular a spatial weight for every time � . For 0 < ˛ � 1 and a space-time weight !, the
metric parabolic Hölder space H˛

! D H˛
!.M / is defined as the set of all functions on M

with finite H˛
!-norm, defined by the formula

kf kH˛
!
WD
!�1f 

L1.M /
C sup
0<�

�
.x;�/;.y;�/

�
�1I ���

jf .x; �/ � f .y; �/j

!.x; �/ �
�
.x; �/; .y; �/

�˛ :
As in the above spatial setting, one can recast this definition in a functional setting, using the
parabolic standard operators. This requires the use of the following elementary result. Recall
that the kernels G t depend implicitly on a constant c that may take different values with no
further mention of it. We make this little abuse of notation in the proof of this statement.

L 4. – Let A be a linear operator on M with a kernel KA pointwise bounded by a
Gaussian kernel G t , for some t 2 .0; 1�. Then for every space-time weight !, we have!�1Af 

L1.M /
.
!�1f 

L1.M /
:

Proof. – Indeed, for every .x; �/ 2 M we have

1

!.x; �/

ˇ̌
.Af /.x; �/

ˇ̌
.
Z

M

G t
�
.x; �/; .y; �/

�!.y; �/
!.x; �/

ˇ̌
f .y; �/

ˇ̌
!.y; �/

�.dyd�/

.
Z

M

G t
�
.x; �/; .y; �/

�!.y; �/
!.x; �/

ˇ̌
f .y; �/

ˇ̌
!.y; �/

�.dyd�/

.
Z

M

G t
�
.x; �/; .y; �/

� ˇ̌f .y; �/ˇ̌
!.y; �/

�.dyd�/

.
!�1f 

1
;

where

– we used in the second inequality the fact that the function !.x; �/ of time is non-
decreasing, and G t is null if � � � ,

– the implicit constant in G t was changed in the right hand side of the third inequality,
and we used the growth condition (3.13) on ! as a function of its first argument here,

– we used the uniform bound (3.5) on a Gaussian integral in the last line.

Recall that distributions were introduced in the end of Section 1.

D. – For ˛ 2 .�3; 3/ and a space-time weight !, we define the parabolic Hölder
space C˛! WD C˛!.M / as the set of distributions with finite C˛!-norm, defined by

kf k C˛!
WD sup

Q2StGCk

0�k�2b

!�1 Q1.f /

L1.M /

C sup
Q2StGCk

j˛j<k�2b

sup
0<t�1

t�
˛
2

!�1 Qt .f /

L1.M /

;

equipped with the induced norm.
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The restriction ˛ 2 .�3; 3/ is irrelevant and will be sufficient for our purpose in this work;
taking b large enough we can allow regularity of as large an order as we want. Building on
Calderón’s formula (3.11), one can prove as in [3] that the two spaces H˛

! and C˛! coincide
and have equivalent norms, when 0 < ˛ < 1.

P 5. – For ˛ 2 .0; 1/ and every space-time weight !, the two spaces H˛
! and

C˛! coincide and have equivalent norms.

Proof. – We first check that H˛
! is continuously embedded into C˛! . So fix a function

f 2 H˛
! , then by Lemma 4 we easily deduce that

sup
Q2StGCk

0�k�2b

!�1 Q1.f /

L1.M /

.
!�1f 

L1.M /
:

For the high frequency part, we consider t 2 .0; 1� and Q 2 StGCk with ˛ < k � 2b. Then
Qt has at least a cancellation of order 1, hence

Qt
�
f
�
.e/ D Qt

�
f � f .e/

�
.e/

D

Z
KQt

�
e; e0

��
f .e0/ � f .e/

�
�.de0/:

Due to the kernel support of Qt , the integrated quantity is non-vanishing (and so relevant)
only for � � � , with e D .x; �/ and e0 D .y; �/. If �.e; e0/ � 1, then by definitionˇ̌

f .e0/ � f .e/
ˇ̌
� !.e/�.e; e0/˛kf kH˛

!

and if �.e0; e/ � 1, then by the property of the weight we haveˇ̌
f .e0/ � f .e/

ˇ̌
�
�
!.e/C !.e0/

�!�1f 
L1.M /

:

Hence ˇ̌
Qt .f /.e/

ˇ̌
. !.e/

�Z
��1

G t .e; e
0/�.e; e0/˛ �.de0/

C

Z
��1

G t .e; e
0/

�
1C

!.e0/

!.e/

�
�.de0/

�
kf kH˛

!

. !.e/t
˛
2 kf kH˛

!
;

uniformly in e 2 M and t 2 .0; 1/; this concludes the proof of the continuous embedding
of H˛

! into C˛! .

To prove the converse embedding, let us start by fixing a function f 2 C˛! . The low
frequency part of f is easily bounded, using Calderón’s reproducing formula!�1f 

L1.M /
.
!�1 P

.1/
1 f


L1.M /

C

Z 1

0

!�1 Q.1/t f

L1.M /

dt

t

. kf k C˛!
;

since ˛ > 0. Now fix e D .x; �/ and e0 D .y; �/ in M , with � WD �.e; e0/ � 1 and � � � . We
again decompose

f D P
.1/
1 f C

Z 1

0

Q.1/t f
dt

t
:
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For t < �2, we have ˇ̌̌
Q.1/t f .e/

ˇ̌̌
. t

˛
2 !.e/kf k C˛!

and ˇ̌̌
Q.1/t f .e

0/
ˇ̌̌
. t

˛
2 !.e0/kf k C˛!

. t
˛
2 !.e/kf k C˛!

;

where we used that the weight is increasing in time and then that d.x; y/ � � � 1 with the
property of the weight. So we may integrate over t < �2 and we haveZ �2

0

ˇ̌̌
Q.1/t f .e/ � Q.1/t f .e

0/
ˇ̌̌ dt
t

.

 Z �2

0

t
˛
2
dt

t

!
!.e/kf k C˛!

. �˛!.e/kf k C˛!
:

For the low frequency parts, Q.1/t with �2 � t � 1 or P
.1/
1 , we use thatˇ̌̌

Q.1/t f .x; �/ � Q.1/t f .x; �/
ˇ̌̌
. j� � � j

1
2

 
sup
&2.�;�/

ˇ̌̌
@� Q.1/t f .x; &/

ˇ̌̌!  
sup
&2.�;�/

ˇ̌̌
Q.1/t f .x; &/

ˇ̌̌!
. � !.x; �/ t

˛�1
2 kf k C˛!

;

where we used that � � 1 with the fact that the two collections of operators
�
t@� Q.1/t

�
0<t�1

and
�

Q.1/t
�
0<t�1

are of type StGC1, that is have cancellation of order at least 1, and that the
weight is non-decreasing in time. Similarly we can estimate the variation in space with the
assumed finite-increment representation (3.3), where one considers a local frame field .Xj /
in a neighborhood of a geodesic .x; y/ from x to y. This givesˇ̌̌

Q.1/t f .x; �/ � Q.1/t f .y; �/
ˇ̌̌
. d.x; y/ sup

z2.x;y/ Ij

ˇ̌̌
Xj Q.1/t f .z; &/

ˇ̌̌
. � !.x; �/ t

˛�1
2 kf k C˛!

:

So we get Z 1

�2

ˇ̌̌
Q.1/t f .e/ � Q.1/t f .e

0/
ˇ̌̌ dt
t

. �

�Z 1

�2
t
˛�1
2
dt

t

�
!.e/kf k C˛!

. �˛ !.e/ kf k C˛!
;

because ˛ < 1. A similar estimate for P
.1/
1 ends the proof of continuous embedding of C˛!

into H˛
! .

The next proposition introduces an intermediate space whose unweighted version was first
introduced in the setting of paracontrolled calculus in [17], and used in [3]. To fix notations,

and given a space-time weight !, we denote by
�
C
˛
2
� L

1
x

�
.!/ D

�
L1x C

˛
2
�

�
.!/ the set of

parabolic distributions such that

sup
x2M

f .x; �/
C
˛
2
!.x;�/

.RC/
<1:

Also
�
L1� C

˛
x

�
.!/ stands for the set of parabolic distributions such that

sup
�

f .�; �/
C˛!� .M/

<1:
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P 6. – Given ˛ 2 .0; 2/ and a space-time weight !, set

E ˛! WD
�
C
˛
2
� L

1
x

�
.!/ \

�
L1� C

˛
x

�
.!/:

Then E ˛! is continuously embedded into C˛! . Furthermore, if ˛ 2 .0; 1/, the spaces E ˛! ; C˛! and
H˛
! are equal, with equivalent norms.

Proof. – We first check that E ˛! is continuously embedded into C˛! , and fix for that
purpose a function f 2 E ˛! . As done in [3, Proposition 2.12], we know that for all integers
k; j with k C j

2
> ˛

2
and every space function g 2 C ˛.M/, we havet j2 VJ .tL/ke�tLg

L1.M/
. t

˛
2 kgkC˛.M/;

for any subset of indices J with jJ j D j .

So consider a generic standard family
�
t
j
2 Vj .tL/

a�j
2 �kP

.c/
t ˝m

?
t

�
0<t�1

in StGCa, with

3 � a � b, and a smooth function m with vanishing first k moments. If k D 0 we have seen
that we have !�1� t

j
2 VJ .tL/

a�j
2 P

.c/
t f .�; �/


L1.M/

. t
˛
2

f .�/
C˛!�

for every � , so !�1t j2 VJ .tL/ a�j2 P
.c/
t ˝m

?
t .f /


L1.M /

. t
˛
2 kf kL1� C˛x .!/

since m?t is a L1.R/-bounded operator as a convolution with an L1-normalized function.

If k D 1 (or k � 1), the same reasoning shows that we have!.x; �/�1m?t .f /.x; �/
L1.RC/

. t
˛
2

f .x; �/
C
˛
2
!.x;�/

.RC/
;

for every x 2M , since ˛
2
2 .0; 1/, and m encodes a cancellation at order 1 in time as it has a

vanishing first moment. Hence!�1t j2 VJ .tL/ a�j2 P
.c/
t ˝m

?
t .f /


L1.M /

. t
˛
2 kf k

C
˛
2
� L1x .!/

;

which concludes the proof of the embedding E ˛! ,! C˛! . The remainder of the statement is
elementary since C˛! D H˛

! is embedded in E ˛! .

Before turning to the definition of an intertwined pair of parabolic paraproducts, we close
this section with two other useful continuity properties involving the Hölder spaces C�! .

P 7. – Given ˛ 2 .0; 1/, a space-time weight !, some integer a � 0 and a
standard family P 2 StGCa, there exists a constant c depending only on the weight !, such
that

!.e/�1
ˇ̌̌�

P tf
�
.e/ �

�
Psf

�
.e0/

ˇ̌̌
.
�
s C t C �.e; e0/2

�˛
2 ecd.x;y/

f 
C˛!
;

uniformly in s; t 2 .0; 1� and e D .x; �/ and e0 D .y; �/ 2 M , with � � � .
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Proof. – We explain in detail the most difficult case corresponding to P 2 StGC0, so P

encodes a priori no cancellation. Then P t takes the form

P t D P
.c/
t ˝m

?
t

for some integer c � 1 and some smooth function m. There is no loss of generality in
assuming that

R
m.�/ d� is equal to 1, as P is actually an element of StGC1 if m has zero

mean—this case is treated at the end of the proof.

In this setting, since f is bounded and continuous, we have the pointwise identity

f D lim
t!0

P t .f /:

(i) Consider first the case where �.e; e0/ � 1, with e D .x; �/ and e0 D .y; �/. Decompose

!.e/�1
ˇ̌̌�

P tf
�
.e/ �

�
Psf

�
.e0/

ˇ̌̌
� !.e/�1

ˇ̌
f .e/ � f .e0/

ˇ̌
C !.e/�1

ˇ̌̌�
P tf

�
.e/ � f .e/

ˇ̌̌
C !.e/�1

ˇ̌̌�
P tf

�
.e0/ � f .e0/

ˇ̌̌
. !.e/�1

ˇ̌
f .e/ � f .e0/

ˇ̌
C
!�1 �P tf � f

� 
L1.M /

C
!�1 �Psf � f

� 
L1.M /

:

We have

!.e/�1
ˇ̌
f .e/ � f .e0/

ˇ̌
� �.e; e0/˛kf kH˛

!
. �.e; e0/˛kf k C˛!

:

For the two other terms, we use that!�1�P tf � f
�
L1.M /

�

Z t

0

!�1 u @u Puf

L1.M /

du

u
;

and note that

u@u Pu D Q
.c/
u ˝mu C P

.c/
u ˝ ku

with k.�/ D @�
�
�m.�/

�
, is actually the sum of two terms in StGC�1 since it is clear for

the first one and the function k has a vanishing first moment. It follows by definition of the
Hölder spaces with ˛ < 1, that we have!�1 �P tf � f

� 
L1.M /

.

�Z t

0

u
˛
2
du

u

�
kf k C˛!

. t
˛
2 kf k C˛!

:

A similar estimate holds by replacing t by s, which then concludes the proof in this case.

(ii) In the case where �.e; e0/ � 1, we do not use the difference and use condition (3.13)
on the weight ! to write

!.x; �/�1 � !.x; �/�1 . !.y; �/�1

and obtain as a consequence the estimate

!.e/�1
ˇ̌̌�

P tf
�
.e/ �

�
Psf

�
.e0/

ˇ̌̌
� !.e/�1

ˇ̌̌�
P tf

�
.e/
ˇ̌̌
C !.e/�1

ˇ̌̌�
Psf

�
.e0/

ˇ̌̌
�
!�1 P tf


L1.M /

C !.x; �/�1
ˇ̌̌�

P tf
�
.e0/

ˇ̌̌
.
!�1 P tf


L1.M /

C ecd.x;y/
!�1 Psf


L1.M /

;
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for some positive constant c. Since we know by Lemma 4 that P t and Ps are bounded
in L1.!/, we deduce that

!.e/�1
ˇ̌̌�

P tf
�
.e/ �

�
Psf

�
.e0/

ˇ̌̌
. ecd.x;y/

!�1f 
L1.M /

. ecd.x;y/kf k C˛!
;

since C˛! � L
1
! , given that ˛ > 0. The expected estimate follows from that point.

In the easier situation where P 2 StGCa for some integer a � 1, we can perform the
same reasoning and use in addition the fact that

lim
t!0

P t .f / D 0;

which makes the case easier since we do not have to deal with the first term f .e/�f .e0/.

With an analogous reasoning (indeed simpler) we may prove the following.

P 8. – Given ˛ 2 .�3; 0/, a space-time weight ! and a standard family
P 2 StGC0, one has

kP tf kL1.M / . t
˛
2 kf k C˛!

;

uniformly in t 2 .0; 1�.

Proof. – The proof follows the same idea as the proof of Proposition 7. Indeed, we use
the fact that since P is a standard family then

P tf D

Z 1

t

.�s@s Ps/f
ds

s
C P1f:

The key point is that .�s@s Ps/s can be split into a finite sum of families of StGC�1, which
allows us to conclude as previously.

3.4. Schauder estimates

We provide in this subsection a Schauder estimate for the heat semigroup in the scale
of weighted parabolic Hölder spaces. This quantitative regularization effect of the heat
semigroup will be instrumental in the proof of the well-posedness of the parabolic Anderson
model (PAM) and multiplicative Burgers equations studied in Section 5. Define here formally
the linear resolution operator for the heat equation by the formula

(3.14) L �1.v/� WD

Z �

0

e�.���/Lv� d�:

We fix in this section a finite positive time horizon T and consider the space

M T WDM � Œ0; T �;

equipped with its parabolic structure. Denote by L1T the corresponding function space
over Œ0; T �. We first state a Schauder estimate that was more or less proved in the unweighted
case in [17, 3]—see Lemma A.9 in [17] and Proposition 3.10 in [3].

P 9. – Given ˇ 2 .�2; 0/ and a space-time weight !, we haveL �1.v/
CˇC2!

.T kvk�
L1
T
C
ˇ
x

�
.!/
:
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We shall actually prove a refinement of this continuity estimate in the specific case where
! has a special structure motivated by the study of the (PAM) and multiplicative Burgers
equations done in Section 5. These special weights were first introduced by Hairer and Labbé
in their study of the (PAM) equation in R2 and R3, via regularity structures [20, 21]. Let
o D oref be the reference point in M fixed and used in the definition of S o at the end of
Section 1, and set

(3.15) pa.x/ WD
�
1C d.oref; x/

�a
; $.x; �/ WD e��e.1C�/

�
1Cd.oref;x/

�
;

for 0 < a < 1 and a positive constant �. (The introduction of an extra exponential factor e��

in our space-time weight $ will allow us to get around an iterative step in the forthcoming
application of the fixed point theorem used to solve the (PAM) and multiplicative Burgers
equations, as done in [20, 21].) For � � 0, we use the notation

$� W x 2M 7! $.x; �/

for the spatial weight. The space-time weight $ satisfies condition (3.13) on Œ0; T � � M ,
uniformly with respect to � > 0. The above special weights satisfy in addition the following
crucial property, already used in [20, 21]. We have

(3.16) pa.x/$.x; �/ . ��".� � �/�a�"$.x; �/;

for every non-negative real number " small enough, uniformly with respect to x 2M; � > 0
and 0 < � < � � T . The next improved Schauder-type continuity estimate shows how one
can use the above inequality for the specific weights to compensate a gain on the weight by
a loss of regularity.

P 10. – Given ˇ 2 R, a 2 .0; 1/ and " 2 Œ0; 1/ small enough such that
aC e < 1, we have the continuity estimateL �1.v/�

L1
T
C
ˇC2.1�a�"/
x

�
.$/

. ��"
v�

L1
T
C
ˇ
x

�
.$pa/

:

Moreover if �2C 2.aC "/ < ˇ < 0, then

kL �1.v/k
CˇC2�2a�2"$

. ��"
v�

L1
T
C
ˇ
x

�
.$pa/

:

Proof. – Let us check first the regularity in space. So consider an integer c � jˇ j
2
C 1 and

a parameter r 2 .0; 1�. Then for every fixed time � 2 Œ0; T � we have

Q.c/
r

�
L �1.v/�

�
D

Z �

0

Q.c/
r e�.���/Lv� d�:

By using the specific property (3.16) of the weights pa and $ , one has$�1� Q.c/
r e�.���/Lv�


L1.M/

.

�
r

r C � � �

�c $�1� Q
.c/
rC���v�


L1.M/

. ��"
�

r

r C � � �

�c
.r C � � �/

ˇ
2 .� � �/�a�"

v�Cˇpa$� :
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So by integrating and using that c is taken large enough, we see that$�1� Q.c/
r

�
L �1.v/�

�
L1.M/

. ��"
�Z �

0

�
r

r C � � �

�c
.r C � � �/

ˇ
2 .� � �/�a�" d�

� v�
L1
T
C
ˇ
x

�
.pa$/

. ��"�
ˇ
2C1�a�"

v�
L1
T
C
ˇ
x

�
.pa$/

:

This holds uniformly in r 2 .0; 1� and � 2 Œ0; T � and so one concludes the proof of the first
statement with the global inequality$�1� L �1.v/�


L1.M/

. ��"
�Z �

0

.� � �/�a�"d�

�
kvk�

L1
T
C
ˇ
x

�
.pa$/

. ��"�1�a�"kvk�
L1
T
C
ˇ
x

�
.pa$/

:

For the second statement, we note that for 0 � � < � � T we have

L �1.v/� �L �1.v/� D
�
e�.���/L � Id

�
L �1.v/� C

Z �

�

e�.��r/Lvr dr

D

Z ���

0

Q.1/
r L �1.v/�

dr

r
C

Z �

�

e�.��r/Lvr dr:

We have by the previous estimate$�1� Z ���

0

Q.1/
r L �1.v/�

dr

r


L1.M/

. ��"
�Z ���

0

r
ˇ
2C1�a�"

dr

r

�L �1.v/�CˇC2�2a�2"$�

. ��".� � �/
ˇ
2C1�a�"

v�
L1
T
C
ˇ
x

�
.$/
;

where we used that $� � $� for � � � . Moreover, since ˇ is negative, we also have$�1� Z �

�

e�.��r/Lvr dr


L1.M/

. ��"
Z �

�

�Z 1

��r

.� � r/�a�"
p�a$�1r Q.1/

s vr


L1.M/

ds

s
C

$�1r e�L
�
vr
�
L1.M/

�
dr

. ��"
Z �

�

�vrCˇpa$r .� � r/�a�" Z 1

��r

s
ˇ
2
ds

s
C .� � r/�a�"

e�L�vr�
C
ˇ
pa$r

�
dr

. ��".� � �/
ˇ
2C1�a�"

v�
L1
T
C
ˇ
x

�
.pa$/

;

where we used (3.16) and ˇ
2
C 1 � a � " > 0.

The following result comes as a consequence of the proof, combined with Lemma 4; we
single it out here for future reference.

L 11. – Let A be a linear operator on M with a kernel pointwisely bounded by G t
for some t 2 .0; 1�. Then for every aC " 2 .0; 1/, we have

kAkL1$pa .M /!L1$ .M / . ��"t�a�":

Schauder estimates can also be extended to spaces of positive regularity.
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P 12. – Given ˇ 2 .0; 2/, a 2 .0; 1/ and " 2 Œ0; 1/ small enough such that
aC e < 1, we have the continuity estimate

kL �1.v/k
CˇC2�2a�2"$

. ��"
v

Cˇ$pa
:

Proof. – This follows from Proposition 10. For v 2 Cˇ$pa �
�
L1T C

ˇ
x /.$pa

�
, it is known

that Lv 2
�
L1T C

ˇ�2
x

�
.$pa/, to which Proposition 10 can be applied since ˇ � 2 < 0.

Now use that L �1 and L commute to deduce that L.L �1v/ 2 Cˇ�2a�2"$ , hence L �1v 2�
L1T C

ˇC2�2a�2"
x

�
.$/. On the other hand, @t .L �1v/ D v � LL �1v, from which it follows

that @tL �1v 2 C
ˇ=2
T L1x , and consequently L �1v 2 C ˇ=2C1T L1x .

The constraint ˇ < 2 is not relevant. Indeed, by iteration the previous Schauder estimates
can be proved for an arbitrary exponent ˇ > 0.

4. Time-space paraproducts

We introduce in this section the machinery of paraproducts which we shall use in our
analysis of the singular PDEs of Anderson (1.1) and Burgers (1.3). In the classical setting of
analysis on the torus, the elementary definition of a paraproduct given in Section 2 in terms
of Fourier analysis should make convincing, for those who are not familiar with this tool, the
fact that …f .g/ is a kind of “modulation” of g, insofar as each mode gj of g, in its Paley-
Littlewood decomposition, is modulated by a signal which oscillates at frequencies much
smaller—the finite sum

P
0�i�j�2 fi . So it makes sense to talk of a distribution/function of

the form…f .g/ as a distribution/function that “locally looks like” g. This is exactly how we
shall use paraproducts, as a tool that can be used to provide some kind of Taylor expansion
of a distribution/function, in terms of some other ‘model’ distributions/functions. This will
be used crucially to bypass the ill-posed character of some operations involved in the (PAM)
and Burgers equations, along the line of what was written in Section 2.

Working in a geometric setting where Fourier analysis does not make sense, we shall define
our paraproduct entirely in terms of the semigroup generated by the operator L D @t C L

on the parabolic space. The definition of a paraproduct comes together with the definition
of a resonant operator ….�; �/, tailor-made to provide the decomposition

fg D …f .g/C….f; g/C…g.f /

of the product operation and with …f .g/ and ….f; g/ with good continuity properties in
terms of f and g in the scales of Hölder spaces. Such a construction was already done in
our previous work [3], where the generic form of the operator L, given by its first order
carré du champ operator, imposed some restrictions on the range of the method and allowed
only a first order machinery to be set up. The fact that we work here with an operator L in
Hörmander form will allow us to set up a higher order expansion setting. We will use this
for the description of the space in which to make sense of the two singular PDEs we want
to analyze. However, this a priori useful setting is in direct conflict with one of the main
technical tools introduced by Gubinelli, Imkeller and Perkowski in their seminal work [17].
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The case is easier to explain on the example of the (PAM) equation. A solution to that
equation is formally given as a fixed point of the map

ˆ W u 7! e��Lu0 CL �1.u�/;

for which we shall need u to be a priori controlled by Z WD L �1.�/, to make sense of the
product u�—more will actually be required, but let us stick to this simplified picture here;
so the map ˆ will eventually be defined on a space of distributions controlled by Z, such as
defined in Section 2, where it will be shown to be a contraction. At a heuristic level, for a
distribution .u; u0/ controlled by Z, the product u� will be given by a formula of the form

u� D …u.�/C .� � � /:

To analyze the term L �1.u�/ and recalling that Z WD L �1.�/, it is thus very tempting to
write

L �1
�
…u.�/

�
D …u

�
Z
�
C
�
L �1;…u

�
.�/C .� � � /

and work with the commutator
�
L �1;…u

�
. This is what was done in [17, 3] to study the

2-dimensional (PAM) equation on the torus and more general settings; and it somehow leads
to a non-natural choice of function space for the remainder f ] of a paracontrolled distribu-
tion in a space-time setting. Unfortunately, we have little information on this commutator,
except from the fact that it is a regularizing operator with a quantifiable regularizing effect—
it was first proved in [17] in their Fourier setting. This sole information happens to be insuffi-
cient to push the analysis of the (PAM) or Burgers equations far enough in a 3-dimensional
setting. As a way out of this problem, we introduce another paraproduct e…v.�/, tailor-made
to deal with that problem, and intertwined to …v.�/ via L �1, that is

L �1 ı…v D e…v ıL �1I

so e… is formally the … operator seen in a different basise… D L �1 ı… ıL :

We show in Section 4.1 that … and e… have the same analytic properties. In particular, if
f 2 L1T C

˛
x with �2 < ˛ < 0, the Schauder estimate proved in Proposition 10 shows

that e…v

�
L �1f

�
is an element of the parabolic Hölder space C˛C2. In the end, we shall be

working with an Ansatz for the solution space of the 3-dimensional (PAM) equation given
by distributions/functions of the form

u D e…u0.Z/C .� � � /:

The introduction of semigroup methods for the definition and study of paraproducts is
relatively new; we refer the reader to different recent works where such paraproducts have
been used and studied [5, 7, 1, 6, 3].

4.1. Intertwined paraproducts

We introduce in this section a pair of intertwined paraproducts that will be used to analyze
the a priori ill-posed terms in the right hand side of the parabolic Anderson model equation
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and multiplicative Burgers system in the next section. We follow here for that purpose the
semigroup approach developed in [3], based on the pointwise Calderón reproducing formula

f D

Z 1

0

Q.b/t f
dt

t
C P

.b/
1 f;

where f is a bounded and continuous function. This formula says nothing else than the fact
that

lim
t#0

P
.b/
t D Id:

(This is a direct consequence of the fact that the operator '?t tends to the identity operator,
since ' has unit integral.) We can thus write formally for two continuous and bounded
functions f; g

fg D lim
t!0

P
.b/
t

�
P
.b/
t f � P

.b/
t g

�
D �

Z 1

0

t@t

n
P
.b/
t

�
P
.b/
t f � P

.b/
t g

�o dt
t
C��1.f; g/

D

Z 1
0

�
P
.b/
t

�
Q.b/t f � P

.b/
t g

�
C P

.b/
t

�
P
.b/
t f � Q.b/t g

�
C Q.b/t

�
P
.b/
t f � P

.b/
t g

�� dt
t
C��1.f; g/;

(4.1)

where
��1.f; g/ WD P

.b/
1

�
P
.b/
1 f � P

.b/
1 g

�
stands for the “low-frequency part” of the product of f and g. This decomposition corres-
ponds to an extension of Bony’s well-known paraproduct decomposition [9] to our setting
given by a semigroup.

The integral exponent b has not been chosen so far. Choose it here even and no smaller
than 6. Using iteratively the Leibniz rule for the differentiation operators Vi or @� , generically
denoted D,

D.�1/�2 D D.�1 � �2/ � �1 �D.�2/;

we see that P
.b/
t

�
Q.b/t f � P

.b/
t g

�
can be decomposed as a finite sum of terms taking the

form
A I;J
k;`
.f; g/ WD P

.b/
t

�
t
jI j
2 CkVI@

k
�

� �
S .b=2/
t f �

�
t
jJ j
2 C`VJ @

`
�

�
P
.b/
t g

�
;

where S .b=2/
2 StGC

b
2 and the tuples I; J and integers k; ` satisfy the constraint

jI j C jJ j

2
C k C ` D

b

2
:

Denote by I b the set of all such .I; J; k; `/. We then have the identityZ 1

0

P
.b/
t

�
Q.b/t f � P

.b/
t g

� dt
t
D

X
I b

a
I;J
k;`

Z 1

0

A I;J
k;`
.f; g/

dt

t
;

for some coefficients aI;J
k;`

. Similarly, we haveZ 1

0

Q.b/t

�
P
.b/
t f � P

.b/
t g

� dt
t
D

X
I b

b
I;J
k;`

Z 1

0

B
I;J
k;` .f; g/

dt

t
;
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with B
I;J
k;` .f; g/ of the form

B
I;J
k;` .f; g/ WD S

�
b
2

�
t

�n�
t
jI j
2 CkVI@

k
�

�
P
.b/
t f

o
�

n�
t
jJ j
2 C`VJ @

`
�

�
P
.b/
t g

o�
;

for some coefficients bI;J
k;`

. So we have at the end the decomposition

fg D
X
I b

a
I;J
k;`

Z 1

0

�
A I;J
k;`
.f; g/C A I;J

k;`
.g; f /

� dt
t
C

X
I b

b
I;J
k;`

Z 1

0

B
I;J
k;` .f; g/

dt

t
;

which leads us to the following definition.

D. – Given f 2
S
s2.0;1/ C s and g 2 L1.M /, we define the paraproduct

…
.b/
g .f / by the formula

….b/
g .f / WD

Z 1

0

( X
I b I
jI j
2 Ck>

b
4

a
I;J
k;`

A I;J
k;`
.f; g/C

X
I b I
jI j
2 Ck>

b
4

b
I;J
k;`

B
I;J
k;` .f; g/

)
dt

t
;

and the resonant term ….b/.f; g/ by the formulaZ 1

0

( X
I b I
jI j
2 Ck�

b
4

a
I;J
k;`

�
A I;J
k;`
.f; g/C A I;J

k;`
.g; f /

�
C

X
I b I
jI j
2 CkD

jJ j
2 C`D

b
4

b
I;J
k;`

B
I;J
k;` .f; g/

)
dt

t
:

With these notations, Calderón’s formula becomes

fg D ….b/
g .f /C…

.b/

f
.g/C….b/.f; g/C��1.f; g/

with the “low-frequency part”

��1.f; g/ WD P
.b/
1

�
P
.b/
1 f � P

.b/
1 g

�
:

If b is chosen large enough, then all of the operators involved in paraproducts and reso-
nant term have a kernel pointwise bounded by a kernel G t at the right scaling. Moreover,

(a) the paraproduct term …
.b/
g .f / is a finite linear combination of operators of the formZ 1

0

Q1�t

�
Q2t f � P

1
t g
� dt
t

with Q1; Q2 2 StGC
b
4 and P

1
2 StGCŒ0;2b�.

(b) the resonant term ….b/.f; g/ is a finite linear combination of operators of the formZ 1

0

P
1
t

�
Q1t f � Q2t g

� dt
t

with Q1; Q2 2 StGC
b
4 and P

1
2 StGCŒ0;2b�.

Note that since the operators Q� and P
1
t are of the type Q.c/t , P

.c/
t or a P

.c/
t VI , they can

easily be composed on the left with another operator Q.d/r ; this will simplify the analysis of

the paraproduct and resonant terms in the parabolic Hölder spaces. Note also that….b/

f
.1/ D

….b/.f; 1/ D 0 and that we have the identity

…
.b/
1 .f / D f � P

.b/
1 P

.b/
1 f;
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as a consequence of our choice of the normalizing constant. Therefore the paraproduct with
the constant function 1 is equal to the identity operator, up to the strongly regularizing
operator P

.b/
1 P

.b/
1 .

One can prove the following continuity estimates in exactly the same way as in [3]. Note
first that if !1; !2 are two space-time weights, then ! WD !1!2 is also a space-time weight.

P 13. – Let !1; !2 be two space-time weights, and set ! WD !1 !2.

(a) For every ˛; ˇ 2 R and every positive regularity exponent  , we have��1.f; g/ C!
. kf k C˛!1

kgk
Cˇ!2

for every f 2 C˛!1 and g 2 Cˇ!2 .
(b) For every ˛ 2 .�3; 3/ and f 2 C˛!1 , we have….b/

g .f /


C˛!

.
!�12 g


1
kf k C˛!1

for every g 2 L1.!�12 /, and….b/
g .f /


C˛Cˇ!

. kgk
Cˇ!2
kf k C˛!1

for every g 2 Cˇ!2 with ˇ < 0 and ˛ C ˇ 2 .�3; 3/.
(c) For every ˛; ˇ 2 .�1; 3/ with ˛ C ˇ > 0, we have the continuity estimate….b/.f; g/


C˛Cˇ!

. kf k C˛!1
kgk

Cˇ!2

for every f 2 C˛!1 and g 2 Cˇ!2 .

The range .�3; 3/ for ˛ (or ˛ C ˇ) is due to the fact that all the operators involving a
cancellation used in this estimate satisfy a cancellation of order at least � C 10 > 3. We
simply write 3 in the above statement, which will be sufficient for our purpose. We proved
similar regularity estimates for the paraproduct introduced in [3], with a range for ˛ limited
to .�2; 1/. This difference reflects the fact that the class of operators L considered in [3],
characterized by the first order square of the operator field, is more general than the class of
Hörmander form operators considered in the present work, and allows only for a first order
calculus.

These regularity estimates can be refined if one uses the specific weights $ and pa$
introduced in Subsection 3.4.

P 14. – For every ˛ 2 .�3; 3/ and a; " 2 .0; 1/ with ˛ � a � " 2 .�3; 3/ and
f 2 C˛pa , we have

– for every g 2 L1$ ….b/
g .f /


C˛�a�"$

. ��"
$�1g

1
kf k C˛pa

I

– for every g 2 Cˇ$ with ˇ < 0 and ˛ C ˇ � a 2 .�3; 3/….b/
g .f /


C˛Cˇ�2.aC"/$

. ��"kgk
Cˇ$
kf k C˛pa

:
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The proof of this result is done along exactly the same lines as the proof of Proposition 13,
using as an additional ingredient the elementary Lemma 11.

We shall use the above paraproduct in our study of the parabolic Anderson model equa-
tion, and multiplicative Burgers system, to give sense to the a priori undefined products u�
and M�u of a C˛ function u on M with a C˛�2 distribution � on M , while 2˛�2 � 0. Our
higher order paracontrolled setting is developed for that purpose. As said above, and roughly
speaking, we shall solve the Anderson equation

.@� C L/u D u�

by finding a fixed point to the mapˆ.u/ D e��Lu0CL �1.u�/. We would like to set for that
purpose a setting where the product u� can be decomposed as a sum of the form

u� D

3X
iD1

….b/
ui
.Yi /C .� � � /;

for some remainder term .� � � /. We would then have

L �1.u�/ D
3X
iD1

L �1
�
….b/
ui
.Yi /

�
C .� � � /;

which we would like to write in the form

L �1.u�/ D
3X
iD1

….b/
ui

�
L �1.Yi /

�
C .� � � /;

commuting the resolution operator L �1 with the paraproduct. The commutation is not
perfect though and only holds up to a correction term involving the regularizing commutator
operator

�
L �1;…g.�/

�
, whose regularizing effect happens to be too limited for our purposes.

This motivates us to introduce the following operator.

D. – We define a modified paraproduct e….b/ settinge….b/
g .f / WD L �1

�
….b/
g

�
Lf

��
:

The next proposition shows that if one chooses the parameters `1 that appear in the
reference kernels G t , and the exponent b that appears in the definition of the paraproduct,
both large enough, then the modified paraproduct e….b/

g .�/ has the same algebraic/analytic
properties as ….b/

g .�/.

P 15. – If the ambient space M is bounded, then for a large enough choice of
constants `1 and b, the modified paraproduct e…g.f / is a finite linear combination of operators
of the form Z 1

0

Q1�t

�
Q2t f � P

1
t g
� dt
t

with Q1 2 GC
b
8�2, Q2 2 StGC

b
4 and P

1
2 StGC.

If the spaceM is unbounded, then the result still holds on the parabolic space Œ0; T ��M for
every T > 0, with implicit constants depending on T .
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The operators Q1t that appear in the decomposition of…g.f / are elements of StGCŒ0;2b�,
while the operators Q1t that appear in the decomposition of e…g.f / are mere elements

of GC
b
8�2.

Proof. – Given the structure of ….b/
g .�/ as a sum of terms of the formZ 1

0

Q1�t

�
Q2t .�/:P

1
t g
� dt
t

with P
1
2 StGC and Q1; Q2 2 StGC

b
4 , it suffices to look atZ 1

0

.t�1L �1/Q1�t

�
Q2t .t L /.�/:P

1
t g
� dt
t
:

We have P
1
2 StGCŒ0;2b�, and it is easy to check that

�
Q2t .t L /

�
0<t�1

also belongs

to StGC
b
4C2 � StGC

b
4 . Insofar as

L �1 Q1�t D
�

Q1tL
�1
��
;

we are left with proving that the family fQ1 WD �
Q1t t
�1L �1

�
0<t�1

belongs to GC
b
8�2, with

Q1 essentially given here by

Q1t D
�
t
jI j
2 CkVI@

k
�

�
P
.b/
t

with jI j
2
C k > b

4
. Note in particular that we have either jI j � b

4
or k � b

8
. We check in the

first two steps of the proof that eQ 2 G in both cases provided b is chosen big enough. The

third step is dedicated to proving that eQ1 2 GC b
4�1.

Step 1. – Assume here that jI j � b
4

. The kernel K of Q1t ı .t
�1L �1/ is given by

(4.2) K
�
.x; �/; .y; �/

�
D

Z 1
�

K
t jI j=2VIP

.b/
t e�.���/L

.x; y/.t@� /
k't .� � �/

d�

t2
:

So by the Gaussian estimates of the operator t
jI j
2 VIP

.b/
t e�.���/L at scale max.t; � � �/1=2,

and since jI j � b
4

, we deduce thatˇ̌̌̌
K
t
jI j
2 VIP

.b/
t e�.���/L

.x; y/

ˇ̌̌̌
.

�
t

t C � � �

� jI j
2

G tC��� .x; y/

.

�
t

t C � � �

� b
8�

�
2

�.B.x;
p
t //�1

�
1C

d.x; y/2

t C � � �

��`1
.

�
t

t C � � �

� b
8�

�
2�`1

�.B.x;
p
t //�1

�
1C

d.x; y/2

t

��`1
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if b is chosen large enough for b
8
�
�
2
� `1 to be non-negative. Using the smoothness of ' we

then deduce that
ˇ̌̌
K
�
.x; �/; .y; �/

�ˇ̌̌
is bounded above by

�.B.x;
p
t //�1

�
1C

d.x; y/2

t

��`1 Z 1
�

�
t

t C � � �

� b
8�

�
2�`1

�
1C

� � �

t

��`1 d�
t2

.
1

t �
�
B.x;

p
t /
� �1C d.x; y/2

t

��`1 �
1C
j� � � j

t

��`1
:

So we get the upper bound

(4.3)
ˇ̌̌
K
�
.x; �/; .y; �/

�ˇ̌̌
. �

�
BM

�
.x; �/;

p
t
���1 �

1C
d.x; y/2 C j� � � j

t

��`1
:

If d.x; y/ � 1, this is exactly the desired estimate. If d.x; y/ � 1 and one works on a finite
time interval Œ0; T �, then we keep the information that j�� � j � T and so the exponentially
decreasing term in the Gaussian kernel on the spatial variable allows us to keep in all the
previous computations an extra coefficient of the form

�.BM .x; 1//
�1e�c

d.x;y/2

1CT

which is exactly the decay required in the definition of the class G.

Step 2. – Assume now that k � b
8

. We work with the above formula for the kernel K and
use the cancellation effect in the time variable by integrating by parts in � for transporting
the cancellation from time to space variable. So starting from formula (4.2), the “boundary
term” in the integration by parts

K
t
jI j
2 VIP

.b/
t e�.���/L

.x; y/.t@� /
k�1't .� � �/

is vanishing for �!1, and equal to

K
t
jI j
2 VIP

.b/
t

.x; y/.t@� /
k�1't .� � �/

for � D � . The latter term satisfies estimate (4.3). So up to a term denoted by .X/, bounded
as desired, we see that K

�
.x; �/; .y; �/

�
is equal to

.X/C
Z 1
�

K
t
jI j
2
C1
VIP

.b/
t Le�.���/L

.x; y/.�t@�/
k�1't .� � �/

d�

t2
;

where we used that by analyticity of L in L1.M/

@�e
�.���/L

D �Le�.���/L:

Doing k integration by parts provides an identity of the form

K
�
.x; �/; .y; �/

�
D .X/C

Z 1
�

K
t
jI j
2
Ck
VIP

.b/
t Lke�.���/L

.x; y/'t .� � �/
d�

t2
;

where .X/ stands for a term with (4.3) as an upper bound. This procedure leaves us with a
kernel which has an order of cancellation at least b

8
in space; we can then repeat the analysis

of Step 1 to conclude.
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Step 3. – The proof that eQ1 actually belongs to GC
b
8�2 is very similar, with details largely

left to the reader. The above two steps make it clear that the study of eQ1 reduces to the study
of operators with a form similar to that of the elements of StGCŒ0;2b�. We have provided all
the details in Proposition 3 of how one can estimate the composition between such operators

and obtain an extra factor encoding the cancellation property. The cancellation result on eQ1
comes by combining the arguments of Proposition 3 with the two last steps.

Let us give some details for the particular case where the family Q belongs to StGCa for
some a � b

8
� 1 and commutes with L �1; this covers in particular the case where Q is built

in space only with the operatorLwith no extra Vi involved. Let us then take s; t 2 .0; 1/ and

consider the kernel of the operator eQ1tQ�s . Note first thateQ1tQ�s D �Q1t Q�s

�
ı
�
t�1L �1

�
D
t C s

t

�
Q1t Q�s

�
.t C s/�1L �1:

Since Q1 2 O
b
4 , we know that Q1t Q�s is an operator with a kernel with decay at scale .tC s/

1
2

with an extra factor
�

st
.tCs/2

� b
8

. We may also consider that

Q1tQ
�
s D

�
st

.t C s/2

� b
16

Q2tCs.t C s/
�1L �1

for some operator Q2tCs having b
8

-order of cancellation and a kernel with decay at scale
p
s C t . So by what we did in the two first steps we also obtain that Q2tCs.t C s/

�1L �1 has

a kernel with decay at scale .t C s/
1
2 , for a large enough choice of b. (Indeed, note that Q2 is

very similar to the operators studied in the two first steps: easily analyzed as a function of the
space-variable, while, as far as the time-variable is concerned, the composition of convolution
preserves the main properties needed on the functions—vanishing moments.) At the end, we
conclude that eQ1tQ�s D � st

.t C s/2

� b
16�1

Q2tCs

with Q2tCs having fast decreasing kernel at scale .s C t /
1
2 . That concludes the fact thateQ1 2 GC b

8�2.

The following continuity estimate is then a direct consequence of Proposition 15, since the
latter implies that we can reproduce the same argument as for the standard paraproduct in
Proposition 14.

P 16. – For every ˛ 2 .�3; 3/ and a; " 2 .0; 1/ with ˛ � a � " 2 .�3; 3/ and
f 2 C˛pa , we have e….b/

g .f /


C˛�a�"$

. ��"
$�1g

1
kf k C˛pa

;

for every g 2 L1$ .
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Last, note the normalization identitye…1.f / D f �L �1 P
.b/
1 P

.b/
1 .L f /

for every distribution f 2 S 0o; it reduces toe…1.f / D f � P
.b/
1 P

.b/
1 .f /

if f j�D0 D 0. (Use here the support condition on ' in the definition of P .) Let us

also point out here the strongly regularizing effect of the two operators P
.b/
1 P

.b/
1 and

L �1 P
.b/
1 P

.b/
1 L , denoted by A below, that satisfy the continuity estimate

kAk
C˛!! Cˇ!

. 1;

for any ˛; ˇ 2 .�3; 3/ and any space-time weight !.

We shall fix from now on the parameters b and `1, large enough for the above result to
hold true.

R 17. – The previous proposition is very interesting because of the following
observation: the time-space paraproducts e… are defined in terms of parabolic cancellations
and so do not differentiate the space and the time. Consequently, it is not clear if the time-
space paraproducts e…may be bounded onL1T C

˛ for some ˛ < 0 (with or without weights).
Such property would be very useful since the paracontrolled calculus (as shown later in the
study of (PAM) for instance) needs to estimate the composition of L �1 (the resolution of
heat equation) with the paraproduct. However, following the definition of the paraproduct
we have for f 2 L1T C

˛ and g 2 Cˇ

L �1….b/
g .f / D e….b/

g .L �1f /:

So, if f 2 L1T C
˛ for some ˛ 2 .�2; 0/, then Schauder estimates imply that L �1f 2 C˛C2

and we may then use the boundedness on Hölder spaces of the modified paraproduct e….b/.

In conclusion, these new space-time paraproducts seem to be very natural for the paracon-
trolled calculus. They allow us to get around a commutation between the initial paraproduct
and the resolution operator L �1 (which could be a limitation for a higher order paracon-
trolled calculus) and fit exactly in what paracontrolled calculus requires to solve singular
PDEs, modeled on the heat equation.

4.2. Commutators and correctors

We state and prove in this section two continuity estimates that will be useful in our study
of the 3-dimensional parabolic Anderson model equation and Burgers system in Section 5.

D 18. – Let us introduce the following a priori unbounded trilinear operators
on S 0o. Set

R.f; g; u/ WD ….b/
u

�
….b/
g .f /

�
�….b/

ug .f /;

and define the corrector

C.f; g; u/ WD ….b/
�e….b/

g .f /; u
�
� g….b/.f; u/:
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This corrector was introduced by Gubinelli, Imkeller and Perkowski in [17] under the
name of commutator. We prove in the remainder of this section that these operators have
good continuity properties in some weighted parabolic Hölder spaces.

P 19. – Given some space-time weights !1; !2; !3, set ! WD !1!2!3. Let
˛; ˇ;  be Hölder regularity exponents with ˛ 2 .�3; 3/, ˇ 2 .0; 1/ and  2 .�3; 0�. Then
if ı WD ˛ C ˇ C  2 .�3; 3/ with ˛ C ˇ < 3, we have

(4.4)
R.f; g; u/

Cı!
. kf k C˛!1

kgk
Cˇ!2
kuk C!3

;

for every f 2 C˛!1 , g 2 Cˇ!2 and u 2 C !3 ; so the modified commutator defines a trilinear

continuous map from C˛!1 � Cˇ!2 � C !3 to C ı! .

Proof. – Recall that ….b/
g is given by a finite sum of operators of the form

A 1
g.�/ WD

Z 1

0

Q1�t

�
Q2t .�/ P

1
t .g/

� dt
t
;

where Q1; Q2 belong at least to StGC3. We describe similarly….b/
u as a finite sum of operators

of the form

A 2
u.�/ WD

Z 1

0

Q3�t

�
Q4t .�/P

2
t .u/

� dt
t
:

Thus, we need to study a generic modified commutator

A 2
u

�
A 1
g.f /

�
� A 2

ug.f /;

and introduce for that purpose the intermediate quantity

E .f; g; u/ WD

Z 1

0

Q3�s

�
Q4s .f / � P

1
s .g/ � P

2
s .u/

� ds
s
:

Note here that due to the normalization…1 ' Id, up to some strongly regularizing operator,
there is no loss of generality in assuming that

(4.5)
Z 1

0

Q1�t Q2t
dt

t
D

Z 1

0

Q3�t Q4t
dt

t
D Id:

Step 1. Study of A 2
u

�
A 1
g.f /

�
� E .f; g; u/. – We shall use a family Q in StGCa, for

some a > jıj, to control the Hölder norm of that quantity. By definition, and using the

normalization (4.5), the quantity Qr

�
A 2
u

�
A 1
g.f /

�
� E .f; g; u/

�
is, for every r 2 .0; 1/,

equal to Z 1

0

Z 1

0

Qr Q3�s

n
Q4s Q1�t

�
Q2t .f /P

1
t .g/

�
� P

2
s .u/

o ds dt
st

�

Z 1

0

Qr Q3�s

�
Q4s .f / � P

1
s .g/ � P

2
s .u/

� ds
s

D

Z 1

0

Z 1

0

Qr Q3�s

n
Q4s Q1�t

�
Q2t .f /

�
P
1
t .g/ � P

1
s .g/

��
� P

2
s .u/

o dsdt
st

;
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where in the last line the variable of P
1
s .g/ is the one of Q3�s , and so it is frozen through the

action of Q4s Q1�t . Then using that g 2 Cˇ with ˇ 2 .0; 1/, we know by Proposition 7 that we
have, for � � � ,

!2.x; �/
�1
ˇ̌̌�

P
1
sg
�
.x; �/ �

�
P
1
t g
�
.y; �/

ˇ̌̌
.
�
s C t C �

�
.x; �/; .y; �/

�2�ˇ2
ecd.x;y/kgk

Cˇ!2
:

Note that it follows from equation (3.4) that the kernel of Q4s Q1�t is pointwise bounded
by G tCs , and allowing different constants in the definition of the Gaussian kernel G , we have

(4.6) G tCs
�
.x; �/; .y; �/

� �
s C t C d.x; y/2

�ˇ
2 ecd.x;y/ . .s C t /

ˇ
2 G tCs

�
.x; �/; .y; �/

�
:

So using Lemma 4 and the cancellation property of the operators Q at an order no less than
a (resp. 3) for Q (resp. the other collections Qi ), we deduce that!�1 Qr

�
A 2
u

�
A 1
g.f /

�
� E .f; g; u/

�
1

. kf k C˛!1
kgk

Cˇ!2
kuk C!3

Z 1

0

Z 1

0

�
sr

.s C r/2

� a
2
�

st

.s C t /2

� 3
2

t
˛
2 .s C t /

ˇ
2 s


2
ds dt

st
;

where we used that  is negative to control P
2
s .u/. The integral over t 2 .0; 1/ can be

computed since ˛ > �3 and ˛ C ˇ < 3 and we have!�1 Qr

�
A 2
u

�
A 1
g.f /

�
� E .f; g; u/

�
1

. kf k C˛!1
kgk

Cˇ!2
kuk C!3

Z 1

0

Z 1

0

�
sr

.s C r/2

� a
2

s
ı
2
ds

s

. kf k C˛!1
kgk

Cˇ!2
kuk C!3

r
ı
2 ;

uniformly in r 2 .0; 1/ because jaj > ı. That concludes the estimate for the high frequency
part. We repeat the same reasoning for the low-frequency part by replacing Qr with Q1 and
conclude that A 2

u

�
A 1
g.f /

�
� E .f; g; u/


Cı!

. kf k C˛!1
kgk

Cˇ!2
kuk C!3

:

Step 2. Study of A 2
ug � E .f; g; u/. – This term is simpler than that of Step 1 and can be

treated similarly. Note that Qr

�
A 1
g

�
A 2
u.f /

�
� E .f; g; u/

�
is equal, for every r 2 .0; 1/, toZ 1

0

Qr Q3�s

�
Q4s .f /P

2
s .ug/

� ds
s
�

Z 1

0

Qr Q3�s

�
Q4s .f / � P

1
s .g/ � P

2
s .u/

� ds
s

D

Z 1

0

Qr Q3�s

�
Q4s .f /

�
P
2
s .ug/ � P

1
s .g/ � P

2
s .u/

�� ds
s
:

Now note that since g 2 Cˇ with ˇ 2 .0; 1/, we know by Proposition 7, for � � � ,

!2.x; �/
�1
ˇ̌̌
g.x; �/ �

�
P
1
sg
�
.y; �/

ˇ̌̌
. !2.x; �/

�1
ˇ̌̌
g.x; �/ � g.y; �/

ˇ̌̌
C !2.x; �/

�1
ˇ̌̌
g.y; �/ �

�
P
1
t g
�
.y; �/

ˇ̌̌
.
�
s C t C �

�
.x; �/; .y; �/

�2�ˇ2
ecd.x;y/kgk

Cˇ!2
:
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Then the same proof as in Step 1 can be repeated.

As far as the continuity properties of the corrector

C.f; g; u/ D ….b/
�e….b/

g .f /; u
�
� g….b/.f; u/

are concerned, the next result was proved in an unweighted setting in [3, Proposition 3.6] for
a space version of the paraproduct …; elementary changes in the proof give the following
space-time weighted counterpart.

P 20. – Given space-time weights!1; !2; !3, set! WD !1 !2 !3. Let˛; ˇ;  be
Hölder regularity exponents with ˛ 2 .�3; 3/; ˇ 2 .0; 1/ and  2 .�1; 3�.

Set ı WD .˛ C ˇ/ ^ 3C  . If

0 < ˛ C ˇ C  < 1 and ˛ C  < 0;

then the corrector C is a continuous trilinear map from C˛!1 � Cˇ!2 � C !3 to C ı! .

5. Anderson and Burgers equations in a 3-dimensional background

We are now ready to start our study of the parabolic Anderson model equation

.@t C L/u D u�

and the multiplicative Burgers system

.@t C L/uC .u � V /u DM�u

in a 3-dimensional manifold, using the above tools. Here for Burgers system, we consider a
collection of three operators V WD .V1; V2; V3/, so`0 D 3 here. We shall study the (PAM)
equation in a possibly unbounded manifold, using weighted Hölder spaces, while we shall
be working in a bounded setting for the Burgers equation, as its quadratic term does not
preserve any ‘obvious’ weighted space.

5.1. Getting solutions for the (PAM) equation

Let us take the freedom to assume for the moment that the noise � in the above equations
is not necessarily as irregular as white noise. We shall fix from now on a finite positive time
horizon T . Recall the elementary result on paracontrolled distributions u with derivative u
stated in Section 2; such distributions are of the form u D e�Zv1, for some more regular
factor v1. This is indeed what happens formally for any solution to the (PAM) equation,

since u� D …u.�/, up to some smoother term, and L �1
�
…u.�/

�
D …u.L �1�/, up to some

more regular remainder. Elaborating formally on this remark leads to the introduction of the
following distributions, and the choice of representation for a solution of the (PAM) equation
adopted below in Proposition 21.

For a continuous function � in C 0pa , and 1 � i � 3, define recursively the following
reference distributions/functions

Zi WD L �1.Yi /;
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with

Y1 WD �; Y2 WD

`0X
iD1

Vi .Z1/
2; Y3 WD 2

`0X
iD1

Vi .Z1/Vi .Z2/;(5.1)

and define

.?/ WD �2

`0X
iD1

Vi .Z1/Vi .Z3/; W2 WD �

`0X
iD1

Vi .Z2/
2

as well as for j 2 f1; : : : ; `0g

W
j
2 WD

`0X
iD1

….b/
�
Vi .Z1/ ; ViL

�1.VjZ1/
�
:

Indeed in the term .?/, only the resonant parts in the products have to be defined, since the
paraproducts always make sense, so we focus on the resonant part of .?/

W1 WD �2

`0X
iD1

….b/
�
Vi .Z3/; Vi .Z1/

�
:

Defining

– the Yi ’s as elements of L1T C
˛�.5�i/=2 � L1T C

i˛�2
pa

,
– the distributions Wk as elements of L1T C

k˛�1
pa

,

– the quantities W j
2 as elements of L1T C

2˛�1
pa

,

for some 1=3 < ˛ < 1=2 and a > 0, when � is a space white noise, is the object of the renor-
malization step, which shall be done elsewhere. These conditions ensure, by Schauder esti-
mates, Proposition 9, thatZi is in the parabolic Hölder space C i˛pa . Note that assumingW1 is
an element of L1T C

2˛�1
pa

ensures that .?/ is an element of L1T C
˛�1
pa

. There is a clear corre-
spondence between the terms defined here and those appearing in Hairer and subsequent
analyses of the KPZ equation; see e.g., [16, 18, 21]. In a simplified setting where the vector
fields Vi are constant and correspond to the derivation operator in the direction of the i -th
vector of the canonical basis, the above terms correspond to

W
j
2 D .@Z1/ � @L

�1.@jZ1/; Z2 D L �1
�
.@Z1/

2
�
; W2 D .@Z2/

2;

Z3 D L �1
�
.@Z1/.@Z2/

�
; W1 D .@Z1/.@Z3/:

Set
Z WD Z1 CZ2 CZ3 DW Z1 C eZ:

P 21. – The function u is a formal solution of the (PAM) equation if and only
if the function

v WD e�Zu

is a solution of the equation

(5.2) L v D �Uv C 2

`0X
iD1

Vi .Z/Vi .v/;

with the same initial condition as u at time 0. The letter U stands here for W1 CW2 CW3 for
an explicit distribution W3 in L1T C

2˛�1.
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We explicitly single out W2 here, and not W3, even though they both belong to the same
space, becauseW2 will later have to be renormalized whileW3 will be well-defined as soon as
the other quantities Yi ; W1; : : : will be well-defined.

Proof. – Observe that

@�u D e
Z
�
@�v C v@�Z1 C v@�eZ�;

and using the Leibniz rule on Vi ’s

Lu D eZ

0@� `0X
iD1

Vi .Z/
2v � V 2i .Z/v � 2Vi .Z/Vi .v/ � V

2
i v

1A
D eZ

0@vLZ C Lv � `0X
iD1

Vi .Z/
2v � 2Vi .Z/Vi .v/

1A
D eZ

0@vLZ1 C vLeZ C Lv � v `0X
iD1

Vi .Z/
2
� 2Vi .Z/Vi .v/

1A :
Due to the definition of Yi ’s, we have some telescoping property:

L eZ � `0X
iD1

Vi .Z/
2

D L L �1.Y2 C Y3/ �

`0X
iD1

�
Vi .Z1/C Vi .Z2/C Vi .Z3/

�2
D Y2 C Y3 �

`0X
iD1

3X
j;kD1

Vi .Zj /Vi .Zk/

D W1 CW2 �

`0X
iD1

3X
j;kD2
jCk�5

Vi .Zj /Vi .Zk/:

Since we assume thatZj 2 C j˛pa , it follows that Vi .Zj / 2 L1T C
j˛�1
pa and Vi .Zk/ 2 L1T C

k˛�1
pa

.
Given that j C k � 5 and ˛ 2 .1=3; 1=2/, at least one of the two numbers .j˛ � 1/ and
.k˛ � 1/ is positive and the other not smaller than 2˛ � 1. So

U WD L eZ � `0X
iD1

Vi .Z/
2
2 W1 CW2 C L

1
T C

2˛�1;(5.3)

and the result follows.

We solve (5.2) using paracontrolled calculus instead of solving directly (PAM).

D 22. – Given 1
3
< ˇ < ˛ < 1

2
and a time-independent distribution � 2 C ˛�2pa

,

a (PAM)-enhancement of � is a tupleb� WD ��; Y2; Y3; W1; W2; .W j
2 /j

�
, with

Yk 2 L
1
T C

˛�.5�k/=2
pa
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and
W1; W2; W

j

k
2 L1T C

2˛�1
pa

:

So the space of (PAM)-enhanced distributionsb� for the (PAM) equation is here simply the
product space

C ˛�2pa
�

3Y
kD2

L1T C
˛�.5�k/=2
pa

�
�
L1T C

2˛�1
pa

�˝.`0C2/
:

5.1.1. The paracontrolled approach. – The study of singular PDEs, such as the Anderson
and Burgers equations or (5.2), is a four step process from a paracontrolled point of view.
Let us sketch it for equation (5.2) as an example.

(a) Set yourself an Ansatz for the solution space, in the form of a Banach space of paracon-
trolled distributions/functions.

Given 1
3
< ˇ < ˛ < 1

2
, we choose here to work with functions v paracontrolled by the

collection
n
L �1

�
Vi .Z1/

�o`0
iD1

, that is with v of the form

(5.4) v D

`0X
iD1

e….b/
vi

�
L �1.ViZ1/

�
C v]

for a remainder v] 2 C1C˛Cˇ$p�a
and vi 2 Cˇ$ . We refer the reader to Subsection 3.4 for

the introduction of weights pa and $ . Note that we use the e… paraproduct and not the …
paraproduct. We turn the solution space

S ˛;ˇ

�b�� WD n.vI v1; : : : ; v`0 I v]/ satisfying the above relations
o

into a Banach space by defining its norm as

(5.5)
.vI v1; : : : ; v`0 I v]/˛;ˇ WD v] C1C˛Cˇ$p�a

C

`0X
iD1

vi Cˇ$
:

(b) Recast the equation as a fixed point problem for a mapˆ from the solution space to itself.

This is where we use the continuity properties of the corrector and different paraproducts.
In the specific situations of equation (5.2), given .vI v1; : : : ; v`0 I v

]/ in the solution space
S ˛;ˇ

�b��, one sets

y D L
�
� Uv C 2

`0X
iD1

Vi .Z/Vi .v/
�

and shows that it has a decomposition .yIy1; : : : ; y`0 Iy
]/ of the form (5.4). This is where we

need all the extra information contained inb�. Then, given an initial data v0 2 C1C˛Cˇ$p�a
, the

application  W .�; x/ 7! e��L.v0/.x/, belongs to C1C˛Cˇ$p�a
and satisfies

L  D 0; �D0 D v0:

We define a continuous map ˆ from the solution space S ˛;ˇ

�b�� to itself setting

ˆ WD .vI v1; : : : ; v`0 I v
]/ 7! .y C  Iy1; : : : ; y`0 Iy

]
C /:
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(c) Prove that ˆ is a contraction of the solution space.

Recall a parameter � > 1 appears in the definition of the special weight $ . We shall see
below that the function y] satisfies the estimatey]

C1C˛Cˇ$p�a

� ��"
.vI v1; : : : ; v`0 I v]/˛;ˇ ;

for some " > 0, and that .y1; : : : ; y`0/ depends only on v and not on v1; : : : ; v`0 and v]. These
facts provide a quick proof thatˆıˆ is a contraction of the solution space S ˛;ˇ

�b��. Indeed,

given .vI v1; : : : ; v`0 I v
]/ in S ˛;ˇ

�b��, set�
z C  I z1; : : : ; z`0 I z

]
C 

�
WD ˆı2.vI v1; : : : ; v`0 I v

]/ 2 S ˛;ˇ

�b��:
We know that z]

C1C˛Cˇ$p�a

� ��"
.y C  Iy1; : : : ; y`0 Iy] C /˛;ˇ

. ��"
.vI v1; : : : ; v`0 I v]/˛;ˇ :

The paracontrolled structure (5.4) of y and Schauder estimates also give

kyk
C1Cˇ$p�a

.
y]

C1Cˇ$p�a

C

`0X
jD1

��"kyik C1C˛$

. ��"
ˆ.v; v1; : : : ; v`0 ; v]/˛;ˇ

. ��"
.v; v1; : : : ; v`0 ; v]/˛;ˇ :

So we conclude that y is controlled with a small bound. Since .z1; : : : ; z`0/ will be given
by y, we then obtain that .zI z1; : : : ; z`0 I z

]/ will be controlled in S ˛;ˇ

�b� � with small norms,
relatively to the initial .vI v1; : : : ; v`0 I v

]/, soˆıˆ will indeed be a small perturbation of the
map .vI v1; : : : ; v`0 I v

]/ 7! . I 0; : : : ; 0I /. Then it is standard that if ��" is small enough,
that is � is large enough, then we can apply the fixed point theorem toˆı2 and conclude that
it has a unique fixed point in the solution space S ˛;ˇ

�b� �; the same conclusion for ˆ follows
as a consequence.

(d) Renormalization step.

The defining relations forZi found in step (b) actually involve some terms that cannot be
defined by purely analytical means when � is a white noise, but which make perfect sense for
a regularized version �" of �. Their proper definition requires a renormalization procedure
that consists in defining them as limits in probability, in some parabolic Hölder spaces,
of suitably modified versions of their regularized versions (with �" in place of �), which
essentially amounts in the present setting to adding to them some deterministic functions
or constants. (This may be trickier in other situations as the theory of regularity structures
makes it clear.) Given the inductive construction of the Zi , this renormalization step also
needs to be done inductively. At " fixed, this addition of deterministic quantities in the
defining relations for Zi defines another map ˆ" from the solution space to itself that can
eventually be equivalent to consider a renormalized equation with noise �", with "-dependent
terms added in the equation, when compared to the initial equation. Write u" for its solution.
In the end, we get, from the continuity of fixed points of parameter-dependent uniformly
contracting maps, a statement of the form: Let ˆ stand for the map constructed by taking as
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reference distributions/functions Zi the limits, in probability, of their renormalized versions.
Then the functions u" converge in probability to the solution u of the fixed point problem of the
map ˆ.

We shall do here the first three steps of the analysis for both the Anderson and Burgers
equations, leaving the probabilistic work needed to complete the renormalization step to
another work; we shall nonetheless give in Section 6 some hints as to what is going on.

5.2. The deterministic PAM equation

Given what was said in the preceding section, the main work for solving the (PAM)
equation consists in proving the following result.

T 23. – Let 1
3
< ˛ < 1

2
be given. Choose ˇ < ˛, the positive parameter a in the

weight pa, and " > 0, such that

2˛ C ˇ > 1 and 8.aC "/ � ˛ � ˇ:

Given an enhanced distributionb�, one can extend the product operation

v 2 C1c .M/ 7! �Uv C 2

`0X
iD1

Vi .Z/Vi .v/

to the space S ˛;ˇ

�b� � into an operationbv 7! �bUbv C 2P`0
iD1 Vi .

bZ/Vi .bv/, so that setting

y WD L �1
h
� bUbv C 2 `0X

iD1

Vi .bZ/Vi .bv/i;
and yi WD 2vVi .Z3/C2Vi .v/, there exists y] 2 C1C˛Cˇ$p�a

such
�
yIy1; : : : ; y`0 Iy

]
�

is an element

of the solution space S ˛;ˇ

�b� �, and�yIy1; : : : ; y`0 Iy]�
˛;ˇ

.
�vI v1; : : : ; v`0 I v]�

˛;ˇy]
C1C˛Cˇ$p�a

. ��"
�vI v1; : : : ; v`0 I v]�

˛;ˇ
:

(5.6)

Proof. – First, we note that since v satisfies the Ansatz (5.4) and 2a < ˛ � ˇ, we know
from Schauder estimates that

v 2 C1C˛$pa
\ C1Cˇ$p�a

:

Step 1. – We first consider the part Uv where we recall that U D W1 CW2 CW3 for some
W3 2 L

1
T C

2˛�1
pa

. Using the paraproduct algorithm, one gets

W3v D …
.b/
W3
.v/C….b/

v .W3/C…
.b/.v;W3/:

By the boundedness of paraproducts, Proposition 13, and Schauder estimates, Proposi-
tion 12, we get

…
.b/
W3
.v/ 2 C2˛Cˇ$ so L �1….b/

W3
.v/ 2 C2C3ˇ$p�a

� C1C˛Cˇ$p�a

with L �1….b/
W3
.v/


C1C˛Cˇ$p�a

. ��"kvk
C1Cˇ$p�a
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since 2" C 2a < ˛ � ˇ and ˛ < 1. For the resonant part, a similar reasoning with
Proposition 13 yields

….b/.v;W3/ 2 C2˛Cˇ$ so L �1….b/.v;W / 2 C2C3ˇ$p�a

with L �1….b/.v;W /


C1C˛Cˇ$p�a

. ��"kvk
C1Cˇ$p�a

:

For the second paraproduct, we use the modified paraproduct and its boundedness, Propo-
sition 16, to have L �1….b/

v .W3/ D e….b/
v .L �1W3/, hence since L �1W3 2 C1C2˛pa

we have

L �1….b/
v .W3/ 2 C1C˛Cˇ$p�a

withL �1….b/
v .W3/


C1C˛Cˇ$p�a

. ��"kvk
C1C˛$pa

;

since 4.aC "/ � ˛ � ˇ. So we have L �1
�
W3v

�
2 C1C˛Cˇ$p�a

, with an acceptable bound.

The term W2 is an element of L1T C
2˛�1
pa

, so using the same reasoning yields that

L �1
�
W2v

�
2 C1C˛Cˇ$p�a

with an acceptable bound.

The termW1 is an element ofL1T C
˛�1
pa

, so it is really more singular than the two previous
terms. Recall its definition

W1 D �2

`0X
iD1

Vi .Z1/Vi .Z3/

with Vi .Z3/ in C˛pa , since Z3 is an element of C1C˛pa
. So W1 is in C˛�1pa

, and since v 2 C1C˛$pa
,

we have

…
.b/
W1
.v/ 2 C2˛$p2a and ….b/.W1; v/ 2 C2˛$p2a :

Using Schauder estimates one obtainsL �1….b/
W1
.v/


C1C˛Cˇ
C

L �1….b/.W1; v/


C1C˛Cˇ
. ��"kvk

C1C˛$pa
:

It remains for us to study the paraproduct term

….b/
v .W1/ D IC IIC III;

with

I WD �2
`0X
iD1

….b/
v

�
…
.b/

Vi .Z3/

�
Vi .Z1/

��
II WD �2

`0X
iD1

….b/
v

�
….b/

�
Vi .Z3/; Vi .Z1/

��
III WD �2

`0X
iD1

….b/
v

�
…
.b/

Vi .Z1/

�
Vi .Z3/

��
:

By easy considerations on paraproducts, the third term III belongs to C2˛�1$pa
and

L �1.III/ 2 C1C˛Cˇ$p�a
, with acceptable bounds, because Z3 is an element of C1C˛pa

. Moreover,

since we assume that W1 D
P`0
iD1…

.b/
�
Vi .Z3/; Vi .Z1/

�
is an element of L1T C2˛�1pa

, the
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second term II also satisfies L �1.II/ 2 C1C˛Cˇ$p�a
. Using the regularity of v 2 C1C˛$pa

� L1$pa
and Proposition 19 for the commutation property, we deduce that

I 2 �2
`0X
iD1

…
.b/

vVi .Z3/
ŒVi .Z1/�C C4˛�2$p3a

and consequently

L �1.I/ 2 �2
`0X
iD1

e….b/

vVi .Z3/
ŒL �1Vi .Z1/�C C1C˛Cˇ$p�a

;

with an acceptable bound for the remainder since 8.aC "/C 1 < 3˛ � ˇ.

At the end, we have obtained that

L �1.Uv/ 2
n
2

`0X
iD1

e….b/

vVi .Z3/
ŒL �1Vi .Z1/�C C1C˛Cˇ$p�a

o
;

which proves that L �1.Uv/ is paracontrolled by the collection
�
L �1Vi .Z1/

�
i

and the
remainder has a bound controlled by ��".

Step 2. – Let now focus on the term
P`0
iD1 Vi .Z/Vi .v/. Fix an index i and write

Vi .Z/Vi .v/ D …
.b/

Vi .v/

�
Vi .Z/

�
C…

.b/

Vi .Z/

�
Vi .v/

�
C….b/

�
Vi .Z/; Vi .v/

�
:

The second term is of regularity 2˛ � 1 and using the modified paraproduct, Schauder
estimate and the fact that we have v 2 C1C˛$pa

, we see that

L �1
h
…
.b/

Vi .Z/
.Vi .v//

i
D e….b/

Vi .Z/
.L �1Vi .v// 2 C1C˛Cˇ$p�a

:

We proceed as follows to study the resonant part. First, since ˛ > 1=3, we have

….b/.Vi .Z/; Vi .v// 2
n `0X
jD1

….b/
�
Vi .Z1/; Vie….b/

vj

�
L �1.VjZ1/

��
C C3˛�1$p2a

o
:

Consider the modified resonant part

…
.b/

i .f; g/ WD ….b/.f; Vig/

and the corresponding corrector

C i .f; g; h/ WD …
.b/

i

�e….b/
g .f /; h

�
� g…

.b/

i .f; h/:

Then since in the study of the resonant part and the commutator, we can change the local-
ization operators, so we can integrate an extra Vi operator, we get boundedness of…

.b/

i from
C˛ � Cˇ to C˛Cˇ�1 as soon as ˛ C ˇ � 1 > 0, and boundedness of the corrector C i from
C˛ � Cˇ � C  into C˛CˇC�1 as soon as ˛C ˇC  � 1 > 0, proceeding exactly in the same
way as above for….b/ andC . Using this commutator, we see that

P`0
iD1…

.b/.Vi .Z/; Vi .v// is
an element of the space

`0X
iD1

`0X
jD1

vj :…
.b/
�
Vi .Z1/; ViL

�1.VjZ1/
�
C

`0X
iD1

Ci
�
Vi .Z1/; vj ; ViL

�1.VjZ1/
�
C C2˛Cˇ�1$p2a

;
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that is an element of
`0X
jD1

vj :W
j
2 C C2˛Cˇ�1$p2a

� L1T C
2˛�1
$p2a

;

since W j
2 2 L

1
T C

2˛�1
pa

and 2˛ C ˇ > 1. In the end, we conclude that

y WD L �1

24�Uv C 2 `0X
iD1

Vi .Z/Vi .v/

35
D 2

X
i

e….b/

vVi .Z3/CVi .v/
.L �1Vi .Z1//C C1C˛Cˇ$p�a

;

as expected. Observe that Vi .Z3/ is of parabolic regularity .3˛ � 1/, so vVi .Z3/ and Vi .v/
belong to Cˇ$ .

We can then apply the contraction principle, such as explained above in Step (c) in
Section 5.1.1.

Given v0 2 C
1C˛Cˇ
$0p�a , write S

v0
˛;ˇ

�b� � for those tuples .vI v1; : : : ; v`0 I v
]/ in S ˛;ˇ

�b� � with

vj�D0
D v0. As the function  WD .x; �/ 7!

�
e��L

�
.v0/.x/ belongs to C1C˛Cˇ$p�a

and is the
solution of the equation

.@� C L/./ D 0; �D0 D v0;

we define a map ˆ from S
v0
˛;ˇ

�b� � to itself setting

ˆ.vI v1; : : : ; v`0 I v
]/ D

�
y C  I 2vV1.Z3/C 2V1.v/; : : : ; 2vV`0.Z3/C 2V`0.v/Iy

]
C 

�
;

with

y WD L �1
�
� bUbv C 2 `0X

iD1

Vi .bZ/Vi .bv/�;
and y] given by the previous theorem. Note that the map ˆ depends continuously on the
enhanced distributionb�; the next global in time well-posedness result is then a direct conse-
quence of Theorem 23.

T 24. – Let us work under Assumption (A), and let 1
3
< ˛ < 1

2
be given. Choose

ˇ < ˛, the positive parameter a in the weight pa, and " > 0, such that

2˛ C ˇ > 1 and 8.aC "/ � ˛ � ˇ:

Then, one can choose a positive parameter �, in the definition of the special weight $ , large
enough to have the following conclusion. Given v0 2 C

1C˛Cˇ
$0p�a , the map ˆ has a unique fixed

point .v; v1; : : : ; v`0 ; v
]/ in S

v0
˛;ˇ

�b� �; it depends continuously on the enhanced distributionb�,
and satisfies the identity vi D 2vVi .Z3/ C 2Vi .v/ for i D 1; : : : ; `0. This distribution is the
solution of the singular PDE

(5.7) L v D �Uv C 2

`0X
iD1

Vi .bZ/Vi .bv/
with vj�D0 D v0. The function u D eZv is then the unique solution of the (PAM) equation
with initial data v0.
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If the ambient space M is bounded, then we do not have to take care of the infinity in
the space variable, and one can prove a global (in time) result by considering the weight
$.x; �/ D e�� with a large enough parameter �.

5.3. The stochastic PAM equation

Recall the time-independent white noise over the measure space .M;�/ is the centered
Gaussian process � indexed by L2.�/, with covariance

E
�
�.f /2

�
D

Z
f 2.x/ �.dx/:

It can be proved as in [3] to have a modification with values in the spatial Hölder space

C
� �2�"
pa , for all positive constants " and a, where � is the Ahlfors dimension of .M; d; �/—its

dimension in our Riemannian setting. We take � D 3 here. We still denote this modification
by the same letter �. The study of the stochastic singular PDE of Anderson

L u D u�

can be done in the present setting. This requires a renormalization step needed to show that
the quantities „ D Yj ; Wj ; : : : can be defined as elements of suitable functional spaces, as
limits in probability of distributions of the form„" � �", where„" is given by formula (5.1)
with � D �" WD e�"L�, the regularized version of the noise via the semigroup, and�" are some
deterministic functions. This renormalization step is not done here; Section 6 gives however a
flavor of what is involved in this process in the present setting. Note that the two dimensional
setting was studied in depth in [3], with spatial paraproducts used there instead of space-time
paraproducts. We then formulate this renormalization step as an assumption in the present
work. Recall the definition of Z2; W1; W

j
2 ; W2; Y3 and Z3 given in Section 5.1.

Assumption (B) Renormalization. – Let � stand for white noise on M , and for " > 0,
denote by �" WD e�"L� its regularized version, and by „" the distributions corresponding
to „ D Y1; Z1; Y2; Z2 that one obtains by replacing � by �".

(a) There exists a family .�"1/0<"�1 of deterministic functions such that Y "2 � �"1 is
"-uniformly bounded and converging in CTC

˛�3=2
pa , for every a 2 .0; 1/ and any

˛ < 1=2.
(b) Use the upper "-exponent in„ D Z2; W1; W

j
2 ; W2; Y3; Z3 to denote the quantities that

one obtains by replacing Z1 by Z"1, and Y2 by Y "2 � �
"
1. For any ˛ < 1=2,

– the distributions Z"2; Y
"
3 ; W

j;"
2 , are "-uniformly bounded and converging

in CTC ˛�2pa
, respectively CTC ˛�1pa

and CTC 2˛�1pa
, for every a 2 .0; 1/;

– there exists deterministic functions �"2;1 and �"2;2 such that the distributions
W "
1 � �

"
2;1 andW "

2 � �
"
2;2, are "-uniformly bounded and converging inCTC 2˛�1pa

and respectively CTC 2˛�1pa
, for every a 2 .0; 1/.

This assumption about the renormalization process for the above quantities practically
means that one can renormalize the most singular quantity Y2 by substracting an "-depen-
dent deterministic function, and that once this has been done, no extra renormalization is
needed for the terms Y "3 andW j;"

2 . At the same time, the quantitiesW "
1 andW "

2 , defined in the
above non-trivial way, have to be renormalized and this operation can be done by subtracting
deterministic functions—essentially their expectation.
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WriteZ
"

and U
"

for the renormalized versions ofZ" and U ". By tracking in the proof of
Theorem 23 the changes induced by such a renormalization of Y "2 , W "

1 and W "
2 , we see that

if
�
v"I v"1; : : : ; v

"
`0
I v";]

�
satisfies Ansatz (5.4) with � D �", and setting

y" WD L �1
�
� .U

"
C �"1 � �

"
2;1 � �

"
2;2/v

"
C 2

`0X
iD1

Vi .Z
"
/Vi .v

"/
�
;

then the tuple�
y"I 2v"V1.Z

"
3/C 2V1.v

"/; : : : ; 2v"V`0.Z
"
3/C 2V`0.v

"/Iy";] C 
�

also satisfies the Ansatz. The renormalization quantity �"1 � �
"
2;1 � �

"
2;2 comes from the

definitions of U and U ", since we have after replacement of Y "2 by Y2
"
D Y "2 � �

"
1

U " D Y2
"
C Y "3 �

`0X
iD1

3X
j;kD1

Vi .Z
"
j /Vi .Z

"
k/

D Y "2 C Y
"
3 �

`0X
iD1

3X
j;kD1

Vi .Z
"
j /Vi .Z

"
k/ � �

"
1

D W "
1 CW

"
2 �

`0X
iD1

3X
j;kD2
jCk�5

Vi .Z
"
j /Vi .Z

"
k/

D W1
"
CW2

"
�

`0X
iD1

3X
j;kD2
jCk�5

Vi .Z
"
j /Vi .Z

"
k/ � �

"
1 C �

"
2;1 C �

"
2;2:

T 25. – Let us work under Assumptions (A) and (B), and let 1
3
< ˛ < 1

2
be given.

Choose ˇ < ˛, the positive parameter a in the weight pa, and " > 0, such that

2˛ C ˇ > 1 and 8.aC "/ � ˛ � ˇ:

One can choose a large enough parameter � in the definition of the special weight $ for the
following to hold. There exists a sequence of deterministic functions

�
�"j
�
0<"�1

such that if v"

stands for the solution of the renormalized equation

(5.8) L v" D
h
� .U

"
C �"1 � �

"
2;1 � �

"
2;2/v

"
C 2

`0X
iD1

Vi .Z
"
/Vi .v

"/
i

v".0/ D v0

with initial condition v0 2 C1C˛Cˇ$0p�a
, then v" converges in probability to the solution v 2 C1C˛$pa

of the Cole-Hopf transformed (PAM) Equation (5.7) constructed from the enhancement of the
noise given by Assumption (B) and Theorem 23.

By reproducing the calculations of Subsection 5.1, we observe that v" is solution of
equation (5.8) if and only if u" WD eZ

"

v" is solution of the equation

(5.9) L u" D
�
�" � �"1 C �

"
2;1 C �

"
2;2

�
u"; u".0/ D v0:
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T 26. – Let us work under Assumptions (A) and (B), and let 1
3
< ˛ < 1

2
be given.

Choose ˇ < ˛, the positive parameter a in the weight pa, and " > 0, such that

2˛ C ˇ > 1 and 8.aC "/ � ˛ � ˇ:

One can choose a large enough parameter � in the definition of the special weight $ for the
following to hold. There exists a sequence of deterministic functions

�
�"j
�
0<"�1

such that if u"

stands for the solution of the renormalized equation (5.9) with initial condition v0 2 C1C˛Cˇ$0p�a
,

then u" converges in probability to the solution u 2 C˛$p2a of the (PAM) equation constructed
from the enhancement of the noise given by Assumption (B) and Theorem 23.

This result is coherent with the result of Hairer and Labbé proved in [21]. Indeed, in [21,
equation (5.3)], the quantities involving an odd order of noises need no renormalization
terms, like us; nor does the term eW j

2 , which is of even order but involves an extra deriva-
tive Vj . We give more insights on the latter term at the end of Section 6, and explain why this
extra derivative with anti-symmetry properties implies that the potential renormalization
term is actually null, as in [21].

5.4. The multiplicative Burgers equation

We study in this last section the multiplicative Burgers system

.@t C L/uC .u � V / u DM�u

in the same 3-dimensional setting as before with three operators V WD .V1; V2; V3/ forming
an elliptic system. Here the solution u D .u1; u2; u3/ is a function with R3-values and
.u � V / u has also 3 coordinates with by definition

Œ.u � V / u�j WD

3X
iD1

uiVi .u
j /:

To study this equation, we have to make the extra assumption that the ambient spaceM is
bounded. Indeed the boundedness of the ambient space is crucial here, as using weighted
Hölder spaces, it would not be clear how to preserve the growth at infinity dictated by the
weight when dealing with the quadratic nonlinearity. In such a bounded framework, we do
not need to use spatial weights and consider instead the unweighted Hölder spaces C —or
rather we work for convenience with a weight in time

(5.10) $.x; �/ WD e�� :

We stick to the notations of the previous section. The study of Burgers’ system requires a
larger space of enhanced distributions than the study of the 3-dimensional (PAM) equation;
the additional components include those quantities that need to be renormalized to make
sense of the term .u � V / u, when � is an element of C˛�2, such as space white noise.

We first rewrite Burgers system in a more convenient form, as we did for the (PAM)
equation. For each coordinate exponent j D 1; 2; 3, we define Zj˛ ; W

j

ˇ
from �j as above.

Then consider a function u WM 7! R3 defined by

uj D eZ
j

vj
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with v W M 7! R3. Then observe that u is formally a solution of 3-dimensional Burgers
system on M if and only if v is the solution of the system

(5.11) L vj D �U j v C 2

3X
iD1

Vi .Z
j /Vi .v

j / �

3X
iD1

vieZ
i �
Viv

j
C vjViZ

j
�
:

To treat the nonlinearity, we need to introduce another a priori given element in the enhance-
ment of the noise �. Define a 3 � 3 matrix ‚ setting formally

(5.12) ‚ij D ….b/
�
Zi1; ViZ

j
1

�
:

D 27. – Given 1
3
< ˇ < ˛ < 1

2
and a time-independent distribution � 2 C ˛�2,

a (3d Burgers)-enhancement of � is a tuple b� WD �
�; Y2; Y3; W1; W2; .W

j
2 /j ; ‚

�
, with

Yk 2 L
1
T C

˛�.5�k/=2, W1; W2; W
j

k
2 L1T C

2˛�1 and ‚ 2 L1T C
2˛�1.

So the space of enhanced distributionsb� for the multiplicative Burgers system is the product
space

C ˛�2pa
�

3Y
kD2

L1T C
˛�.5�k/=2
pa

�
�
L1T C

2˛�1
pa

�5
� L1T C

2˛�1
I

we slightly abuse notations here as the first factors in the above product refer to R3-valued
distributions/functions, while the last factor has its values in R9. Given such an enhanced
distributionb�, we define the Banach solution space S ˛;ˇ

�b� � as in Section 5.1.1, replacing
the weight pa by the constant 1. Recall the constant � > 1 appears in the time weight (5.10).

T 28. – Let us work under Assumption (A), and let 1
3
< ˛ < 1

2
be given. Choose

ˇ < ˛, the positive parameter a in the weight pa, and " > 0, such that

2˛ C ˇ > 1 and 6" � ˛ � ˇ:

Given an enhanced distributionb� andbv 2 S ˛;ˇ

�b� �, the nonlinear term

ŒN.v/�j WD

3X
iD1

vieZi
�
@iv

j
C vjViZ

j
�

is well-defined and there exists some z] 2 C1C˛Cˇ$ with�
L �1ŒN.v/�; : : : I z]

�
2 S ˛;ˇ

�b� �
and

(5.13)
�L �1ŒN.v/�; : : : I z]�

˛;ˇ
. ��"

�v; v1; : : : ; v3; v]�
˛;ˇ
:

Proof. – We fix a coordinate j D 1; 2; 3 and have to study

ŒN.v/�j D

3X
iD1

vieZ
i �
Viv

j
C vjViZ

j
�
:

The first quantity is sufficiently regular by itself, and we have Zi 2 C˛, v 2 C1C˛$ so for
every i D 1; 2; 3 then

vieZ
i

Viv
j
2 C˛$
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hence
L �1

�
vieZ

i

Viv
j
�
2 C1C˛Cˇ$

with an acceptable norm (controlled by ��").

Let us now focus on the second part vieZ
i
vjViZ

j . Since v 2 C1C˛$ , it is very regular
and the problem only relies on defining the product eZiViZj . We first decompose using
paraproducts

eZ
i

ViZ
j
D …

.b/

eZ
i .ViZ

j /C…
.b/

ViZ
j .e

Zi /C….b/.eZ
i

; ViZ
j /:

The second term B ij is bounded in C2˛�1. The last resonant part is studied through a
paralinearization formula (see [3] and references there for example)

eZ
i

D …
.b/

eZ
i .Z

i /C L 2˛ M

which implies with ˛ > 1=3

Aij WD ….b/.eZ
i

; ViZ
j / D ….b/

�
…
.b/

eZ
i .Z

i /; ViZ
j
�
C L 3˛ � 1 M

D eZ
i

….b/.Zi ; ViZ
j
�
C L 3˛ � 1 M

D eZ
i

….b/.Zi1; ViZ
j
1

�
C L 3˛ � 1 M D eZ

i

‚ij C L 3˛ � 1 M;

where we have used the commutator estimates. Since we assume that ‚ is well-defined
L1T C

2˛�1, we conclude that Aij 2 L1T C
2˛�1. So we observe that

…
.b/

Aij
.vivj /C….b/.Aij ; vivj /

is well-defined in C3˛$ whose evaluation through L �1 is then bounded in C1C˛Cˇ$ with
acceptable bounds. And since L �1….b/

vivj
ŒAij � D e….b/

vivj
.L �1Aij /, this is also controlled

in C1C˛Cˇ$ by Schauder estimates and we conclude thatL �1�vivjAij �
C1C˛Cˇ$

. ��"kvk
CC˛$

:

It remains to treat the quantity with B ij (instead of Aij ). Here we only know that B ij

belongs to C2˛�1 (and not L1T C
2˛�1 as for Aij ) but we can take advantage of the fact that

B ij is a paraproduct. Indeed as before we have

…
.b/

Bij
.vivj /C….b/.B ij ; vivj /

well-controlled in C3˛$ and

L �1….b/

vivj
ŒB ij � D e….b/

vivj
.L �1B ij / D e….b/

vivj

�e….b/

ViZ
j .L

�1eZ
i

/
�

which is well-controlled in C1C˛Cˇ due to Schauder estimates, Proposition 10. In conclusion,
we have obtained that

L �1ŒN.v/�j D L �1

"
3X
iD1

vivj…
.b/

eZ
i .ViZ

j /

#
C L 1C ˛ C ˇ M

D

3X
iD1

L �1
h
…
.b/

vivj

�
…
.b/

eZ
i .ViZ

j /
�i
C L 1C ˛ C ˇ M
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D

3X
iD1

e….b/

vivj
e….b/

eZ
i .L

�1ViZ
j /C L 1C ˛ C ˇ M

D

3X
iD1

e….b/

vivj eZ
i .L

�1ViZ
j /C L 1C ˛ C ˇ M;

which exactly shows that L �1ŒN.v/�j is paracontrolled by the collection�
L �1ViZ

j
�
1�i�`0

:

C 29. – Under the assumptions of Theorem 28 on the positive parameters
˛; ˇ; a; ", and givenbu 2 S ˛;ˇ

�b� � with u 2 C˛�2a�2"$ , set v WD L �1
�bub� � .u � V /u�. Then the

tuple
�
v; u; u1; u2

�
satisfies the structure equation (5.4), with

(5.14)
�v; u; u1; u2�

˛;ˇ
. ��"

�u; u1; u2; u3�
˛;ˇ
;

where � is the constant appearing in the Definition (5.10) of the weight $ .

We summarize in the following assumption the work about renormalization of the ill-
defined terms defining the Burgers-enhancement of �.

Assumption (B0). – Assumption (B) holds and denoting by ‚" the quantity obtained by
replacing � by �" in the Definition (5.12) of ‚, then for any ˛ < 1=2, there exists some
deterministic 3 � 3 matrix-valued function d " such that ‚" � d " converges in probability
in L1T C

2˛�1.
This assumption is the final ingredient in the proof of Theorem 2.

Proof of Theorem 2. – Well-posedness of Burgers system follows as a direct consequence
of Theorem 28. Theorem 2 on the convergence of the solutions to a renormalized "-depen-
dent equation to the solution of the Burgers equation is thus obtained as a direct consequence
of this well-posedness result together with an additional renormalization step that will be
done in a forthcoming work. The 3�3matrix-valued function d " is the one renormalizing the
quantities .‚i;j /"1�i;j�3. By tracking the changes (in the proof of Theorem 28), induced by a
renormalization of‚" into‚"�d " inL1T C

2˛�1, we see that if
�
u"; u"1; u

"
2; u

"
3

�
satisfies Ansatz

(5.4) with Z"i , and setting v" WD L �1
�
.u" � V /u" � d ".u"1; u

"
1/
�
, the tuple

�
v"; u"; u"1; u

"
2

�
still

satisfies the Ansatz. We then complete the proof of Theorem 2, as done for Theorem 1.

6. A glimpse at renormalization matters

We provide in this section a flavor of the problems that are involved in proving that
Assumption (B), formulated in Section 5.3, holds true. The analysis of the 2 and 3-linear
terms is essentially complete, while the analysis of the 4-linear terms is only sketched. Hairer
uncovered in [19] the rich algebraic setting in which renormalization takes place within his
theory of regularity structures. The full treatment of this problem was given very recently
in the works [10] and [13] of Hairer and co-authors. They provide in particular a clear
understanding of which counterterms need to/can be added in the dynamics driven by a
regularized noise to get a converging limit when the regularizing parameter tends to 0.
A similar systematic treatment of renormalization matters within the setting of high order
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paracontrolled calculus [4] should be developed in a near future. We describe in this last
section how things can be understood from a pedestrian point of view on the example of the
(PAM) equation. We assume here as in Theorem 1 that the vector fields Vi are divergence-free;
this specific assumption is used to see that the terms W j

2 do not need to be renormalized.
Basic renormalization consists in removing from diverging random terms their expecta-

tion. While this operation is sufficient in a number of cases, such as the 2 and 3-dimensional
(PAM) equations, or the 1-dimensional stochastic heat equation [19, 21], more elaborate
renormalization procedures are needed in other examples, such as the (KPZ) or ˆ43 equa-
tions. Hopefully, the kind of renormalization needed here for the study of the 3-dimensional
(PAM) and Burgers equations, is essentially basic, in accordance with the work of Hairer
and Labbé [21] on the (PAM) equation in R3.

The a priori ill-defined terms are 2-linear with respect to the noise

….b/
�
ViZ1; ViZ1

�
; and ….b/

�
Vi .Z1/ ; ViL

�1.VjZ1/
�
;

3-linear
….b/

�
ViZ1; ViZ2

�
;

and 4-linear
….b/

�
ViZ1; ViZ3

�
; and ….b/

�
ViZ2; ViZ2

�
:

6.1. Renormalizing the quadratic terms

One takes advantage in the analysis of the renormalization of the quadratic terms of the
fact proved along the proof of Proposition 15 that the operator t�1 Q2tL

�1 is also a Gaussian

operator with cancellation, an element of GC
b
8�2 actually. More generally, the operators

Qt ı Vi ı L �1 are of the form
p
t Q0t , for some Gaussian operator Q0t with cancellation.

Thus the term ….b/
�
ViZ1; ViZ1

�
has the same structure as

I2 WD

Z 1

0

P t

�
Q1t � � Q2t �

�
dt I

so does the resonant term….b/.�; Z1/ analyzed in [3] in the study of the 2-dimensional (PAM)
equation. We estimate the size of Qr .I2/ in terms of r , to see whether or not it belongs to some

parabolic Hölder space. For a space white noise �, the expectation E
hˇ̌

Qr .I2/.e/
ˇ̌2i

is given

by the integral on M 2 � Œ0; 1�2 of

KQr P t1
.e; e0/KQr P t2

.e; e00/E
h

Q1t1�.e
0/Q2t1�.e

0/Q1t2�.e
00/Q2t2�.e

00/
i

(6.1)

against the measure �.de0/�.de00/dt1dt2. The expectation in (6.1) is estimated with Wick’s
formula by

E
�

Q1t1�.e
0/Q2t1�.e

0/
�
E
�

Q1t2�.e
00/Q2t2�.e

00/
�
C E

�
Q1t1�.e

0/Q1t2�.e
00/
�
E
�

Q2t2�.e
00/Q2t1�.e

0/
�

C E
�

Q1t1�.e
0/Q2t2�.e

00/
�
E
�

Q1t2�.e
00/Q2t1�.e

0/
�

. .t1t2/
�d=2

C G t1Ct2.e
0; e00/2;

where d is the homogeneous dimension of the ambient space M ; the term .t1t2/
�d=2 comes

from the first product of expectations. The quantity E
hˇ̌

Qr
�
I2
�ˇ̌2i

can thus be bounded
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above by the sum of two integrals, with dm WD �.de0/�.de00/dt1dt2 and a first integral equals
to Z

KQr P t1
.e; e0/KQr P t2

.e; e00/ G t1Ct2.e
0; e00/2dm

.
Z �

r

r C t1

�a �
r

r C t2

�a
.t1 C t2/

� �2

Z
G rCt1.x; y/ G rCt2.x; z/ G t1Ct2.y; z/ dm

.
Z �

r

r C t1

�N �
r

r C t2

�a
.t1 C t2/

�d2 .r C t1 C t2/
�d=2dt1dt2 . r2�d

for d < 4; we used the upper bound (3.4) here. We also haveZ Z
KQr P t1

.e; e0/KQr P t2
.e; e00/.t1t2/

�d=2d�.de0/�.de00/dt1dt2

.
Z �

r

r C t1

�a �
r

r C t2

�a
.t1t2/

�d2 dt1dt2

for some positive exponent a, with a relatively sharp upper bound, which happens to
be infinite in dimension 2 or larger. This is the annoying bit. Considering I2 � E

�
I2
�

instead of I2 removes precisely this diverging part in the corresponding Wick formula

for E
hˇ̌

Qr
�
I2 � EŒI2�

�ˇ̌2i
. It follows as a consequence that one has

E
hˇ̌

Qr
�
I2 � EŒI2�

�ˇ̌2i 12
. r1�

d
2 ;

which shows that the associated distribution is almost surely in C .2�d/
�

, by Kolmogorov’s
continuity criterion.

While the above reasoning shows that recentering

W
j;"
2 WD

`0X
iD1

….b/
�
Vi .Z

"
1/;
�
ViL

�1.VjZ
"
1/
��

around its expectation makes it converge in the right space, there is actually no need to renor-
malize this term, as can be expected from comparing our setting with the setting of regularity
structures for the 3-dimensional setting, investigated in Hairer and Labbé’s work [21].

One can see that point by proceeding as follows. Replace in a first step the study of the
above quantity by a similar quantity where the spacetime paraproduct ….b/ and resonant
term….b/.�; �/ are replaced by a space paraproduct�.b/ and resonant operator�.b/.�; �/ intro-
duced and studied in [3]—they are defined in the exact same way as …b , but without the
time convolution operation. Continuity properties were proved for such spatial paraproduct
in [3], and we shall use in addition an elementary comparison result between this spatial para-
product and our space-time paraproduct proved by Gubinelli, Imkeller and Perkowski in
their setting [17, Lemma 5.1]. A similar statement and proof holds with the two paraproducts
….b/ and �.b/; we state it here for convenience.

L. – Let !1; !2 be two space-time weights. If u 2 C˛!1 for ˛ 2 .0; 1/ and v 2 L1T C
ˇ
!2

for some ˇ 2 .�3; 3/ then
�.b/u .v/ �….b/

u .v/ 2 L1T C
˛Cˇ
!

with ! D !1!2.
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Setting wj;"2 WD
P`0
iD1 �

.b/
�
Vi .Z

"
1/;
�
ViL �1.VjZ

"
1/
��

and using the comparison lemma

and then the continuity estimates of each paraproduct, we see that W j;"
2 � w

j;"
2 is equal to

`0X
iD1

…
.b/

Vi .Z
"
1
/

�
ViL

�1.VjZ
"
1/
�
� �

.b/

Vi .Z
"
1
/

�
ViL

�1.VjZ
"
1/
�
C…

.b/

ViL�1.VjZ
"
1
/

�
Vi .Z

"
1/
�

� �
.b/

ViL�1.VjZ
"
1
/

�
Vi .Z

"
1/
�

2

`0X
iD1

h
…
.b/

Vi .Z
"
1
/

�
ViL

�1.VjZ
"
1/
�
� �

.b/

Vi .Z
"
1
/

�
ViL

�1.VjZ
"
1/
�i
C L1T C

2˛�1;

so it is an element of C2˛�1. So in order to estimateW j;"
2 as the suitable Hölder space we only

need to study its “spatial” counterpart wj;"2 . This can be done as follows.

As W j;"
2 , the quantity wj;"2 is quadratic as a function of the noise, however we are going

to see that its expectation is already bounded in C2˛�1, as a consequence of some symmetry
properties—this explains why wj;"2 is directly converging in C2˛�1, with no renormalization
needed along the way. The termw

j;"
2 can indeed be written as a finite sum of integrals in time

of terms of the form

Pt
�
Q1
t ViL

�1�" �Q2
t ViL

�1.VjL
�1�"/

�
.e/CPt

�
Q2
t ViL

�1�" �Q1
t ViL

�1.VjL
�1�"/

�
.e/;

where the localizing operators Pt and Qt are only in space. Using the above additional
geometric assumptions on the operator, the previous integral can be estimated, up to a
satisfying remainder term controlled in terms of t2˛, by

Pt
�
Q1
t ViL

�1�" � VjQ
2
tL
�1.ViL

�1�"/
�
.e/CPt

�
Q2
t ViL

�1�" � VjQ
1
tL
�1.ViL

�1�"/
�
.e/:

Its expectation can be seen to converge in C2˛�1 toZ
KPt .x; y/

h
KŒVjQ2tL�1.VjL�1/��Q1t ViL

�1.y; y/CKŒVjQ1tL�1.VjL�1/��Q1t ViL
�1.y; y/

i
�.dy/;

where � denotes the usual adjoint in L2.M; d�/ (in space) and where the time is fixed in the
operator L �1. By symmetry, it is equal toZ

KPt .x; y/
h
KL�1

�
ViL�1

�
QtViL�1

.y; y/
i
�.dy/;

where Qt WD Q
2;�
t VjQ

1
t C Q

1;�
t VjQ

2
t is antisymmetric. Since at time fixed, the spatial

operator L �1
� is self-adjoint, we deduce that L �1

�
ViL �1

�
QtViL �1 is antisymmetric

in space and so its kernel is vanishing on the diagonal. This shows as a consequence that
E
�
w
j;"
2

�
is bounded in the parabolic Hölder space C2˛�1.

6.2. Higher order terms

The analysis of the 3-linear term….b/
�
ViZ1; ViZ2

�
can be done exactly as for the 2-linear

term ….b/
�
ViZ1; ViZ1

�
, starting from the fact that the former has the same structure as

I3 WD

Z 1

0

P t1

�
Q1t1� � Q2t1

�
P t2

˚
Q3t2� � Q4t2�

	��
dt2dt1;
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where the Qit are Gaussian operators with cancellation. Its renormalized version I r3 is defined

by replacing Q3t2� � Q4t2� by Q3t2� � Q4t2� � E
�

Q3t2� � Q4t2�
�
. The quantity E

hˇ̌
Qr .I3/.e/

ˇ̌2i
is

thus given by an integral with respect to some kernels with some Gaussian controls and
cancellation property of the expectation of a product of six Gaussian random variables
indexed by parabolic points .e0; e00; Ne0; Ne00/�

Q1t1�
�
.e0/

�
Q1s1�

�
.e00/

�
Q3t2�

�
. Ne0/

�
Q4t2�

�
. Ne0/

�
Q3s2�

�
. Ne00/

�
Q4s2�

�
. Ne00/:

In its renormalized version, the above product
�

Q3t2�
�
. Ne0/

�
Q4t2�

�
. Ne0/ is replaced by�

Q3t2�
�
. Ne0/

�
Q4t2�

�
. Ne0/ � E

��
Q3t2�

�
. Ne0/

�
Q4t2�

�
. Ne0/

�
;

and similarly for
�

Q3s2�
�
. Ne00/

�
Q4s2�

�
. Ne00/. Using Wick formula then shows that E

hˇ̌
Qr .I

r
3 /.e/

ˇ̌2i
only involves products of expectations where no two identical parameters s; t appear inside
each expectation, meaning that we have, after some elementary computations, an estimate
of the form

E
hˇ̌

Qr .I
r
3 /.e/

ˇ̌2i
.
Z
KQr P t1

.e; e0/KQr P t2
.e; e00/.t1t2/

�d=2 G t1Ct2.e
0; e00/t1t2 dm;

with dm D �.de0/�.de00/dt1dt2, as above. For d < 4, this gives the estimate

E
hˇ̌

Qr .I
r
3 /.e/

ˇ̌2i
.
Z Z �

r

r C t1

�a �
r

r C t2

�a
.t1t2/

�d=2.r C t1 C t2/
�d=2t1t2dt1dt2

. r�3d=2C4;

on which one reads that I r3 has almost surely parabolic regularity .�3d=2 C 4/�, so no
renormalization is required. This is coherent with [21, equation (5.3)], where it is shown,
within the setting of regularity structures, that the terms that are trilinear functions of the
noise do not need to be renormalized. Everything happens here as if we were working with
a 3-linear term of the form Z 1

0

P t

�
Q1t � � Q2t � � t Q3t �

�
dt I

one can indeed make that comparison concrete.

The model quantities corresponding to the 4-linear terms are of the type

I4 WD

Z 1

0

P t

�
Q1t � � Q2t � � t Q3t � � t Q4t �

�
dt:

One can see on such terms that a basic renormalization procedure suffices to get objects
of regularity 0�, in dimension 3, such as expected. This finishes the sketch of proof that
Assumption (B) actually holds true.
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