Nous étudions la régularité des racines d'un polynôme complexe univarié dont les coefficients varient de façon lisse. Nous montrons que tout choix continu de racines d'une -courbe de polynômes unitaires de degré est localement absolument continu avec ses dérivées localement -intégrables pour tout , uniformément par rapport aux coefficients. Ce résultat est optimal : en général, les dérivées de racines d'une courbe lisse de polynômes unitaires de degré ne sont pas localement -intégrables et la variation des racines peut être localement non bornée si les coefficients sont de classe pour . Nous montrons aussi une généralisation des inégalités de Glaeser d'ordre supérieur à la Ghisi et Gobbino. Nous donnons trois applications des résultats principaux : résolution locale d'un système d'équations pseudo-différentielles, un théorème de relèvement pour les applications à valeurs dans l'espace des orbites d'une représentation d'un groupe fini et une condition suffisante pour qu'une fonction multivaluée soit de classe de Sobolev au sens d'Almgren.
We study the regularity of the roots of complex univariate polynomials whose coefficients depend smoothly on parameters. We show that any continuous choice of a root of a -curve of monic polynomials of degree is locally absolutely continuous with locally -integrable derivatives for every , uniformly with respect to the coefficients. This result is optimal: in general, the derivatives of the roots of a smooth curve of monic polynomials of degree are not locally -integrable, and the roots may have locally unbounded variation if the coefficients are only of class for . We also prove a generalization of Ghisi and Gobbino's higher order Glaeser inequalities. We give three applications of the main results: local solvability of a system of pseudo-differential equations, a lifting theorem for mappings into orbit spaces of finite group representations, and a sufficient condition for multi-valued functions to be of Sobolev class in the sense of Almgren.
DOI : 10.24033/asens.2376
Keywords: Perturbation of complex polynomials, absolute continuity of roots, optimal regularity of the roots among Sobolev spaces $W^{1,p}$, higher order Glaeser inequalities
Mot clés : Perturbations des polynômes complexes, continuité absolue des racines, régularité optimale des racines dans les espaces de Sobolev $W^{1,p}$, inégalités de Glaeser d'ordre supérieur
@article{ASENS_2018__51_5_1343_0, author = {Parusi\'nski, Adam and Rainer, Armin}, title = {Optimal {Sobolev} regularity of roots of polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1343--1387}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {5}, year = {2018}, doi = {10.24033/asens.2376}, mrnumber = {3942042}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2376/} }
TY - JOUR AU - Parusiński, Adam AU - Rainer, Armin TI - Optimal Sobolev regularity of roots of polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1343 EP - 1387 VL - 51 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2376/ DO - 10.24033/asens.2376 LA - en ID - ASENS_2018__51_5_1343_0 ER -
%0 Journal Article %A Parusiński, Adam %A Rainer, Armin %T Optimal Sobolev regularity of roots of polynomials %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1343-1387 %V 51 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2376/ %R 10.24033/asens.2376 %G en %F ASENS_2018__51_5_1343_0
Parusiński, Adam; Rainer, Armin. Optimal Sobolev regularity of roots of polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 5, pp. 1343-1387. doi : 10.24033/asens.2376. http://www.numdam.org/articles/10.24033/asens.2376/
Lifting smooth curves over invariants for representations of compact Lie groups, Transform. Groups, Volume 5 (2000), pp. 103-110 (ISSN: 1083-4362) | DOI | MR | Zbl
Choosing roots of polynomials smoothly, Israel J. Math., Volume 105 (1998), pp. 203-233 (ISSN: 0021-2172) | DOI | MR | Zbl
, World Scientific Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000, 955 pages (ISBN: 981-02-4108-9) | MR | Zbl
Nonnegative functions as squares or sums of squares, J. Funct. Anal., Volume 232 (2006), pp. 137-147 (ISSN: 0022-1236) | DOI | MR | Zbl
Nodal sets of smooth functions with finite vanishing order and -sweepouts, Calc. Var., Volume 57 (2018), 140 pages | DOI | MR
, Phase space analysis of partial differential equations (Progr. Nonlinear Differential Equations Appl.), Volume 69, Birkha̋user Boston, Boston, MA, 2006, pp. 45-53 | DOI | MR | Zbl
On square roots of class of nonnegative functions of one variable, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 9 (2010), pp. 635-644 (ISSN: 0391-173X) | Numdam | MR | Zbl
Arc-analytic functions, Invent. math., Volume 101 (1990), pp. 411-424 (ISSN: 0020-9910) | DOI | MR | Zbl
Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh., Volume 20 (1979), p. 493-501, 690 ; English translation: Siberian Math. J. 20 (1980), 347–352 (ISSN: 0037-4474) | MR | Zbl
Division par un polynôme hyperbolique, Canad. J. Math., Volume 56 (2004), pp. 1121-1144 (ISSN: 0008-414X) | DOI | MR | Zbl
Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 10 (1983), pp. 291-312 (ISSN: 0391-173X) | Numdam | MR | Zbl
Une procedure de Calderón-Zygmund pour le problème de la racine -ième, Ann. Mat. Pura Appl., Volume 182 (2003), pp. 231-246 (ISSN: 0373-3114) | DOI | MR | Zbl
On the regularity of the roots of hyperbolic polynomials, Israel J. Math., Volume 191 (2012), pp. 923-944 (ISSN: 0021-2172) | DOI | MR | Zbl
-valued functions revisited, Mem. Amer. Math. Soc., Volume 211 (2011) (ISBN: 978-0-8218-4914-9, ISSN: 0065-9266) | DOI | MR | Zbl
Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Volume 1 (1998), pp. 169-185 (ISSN: 0392-4041) | MR | Zbl
Higher order Glaeser inequalities and optimal regularity of roots of real functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 12 (2013), pp. 1001-1021 (ISSN: 0391-173X) | Numdam | MR | Zbl
Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble), Volume 13 (1963), pp. 203-210 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Graduate Texts in Math., 249, Springer, New York, 2008, 489 pages (ISBN: 978-0-387-09431-1) | MR | Zbl
On the symmetrization of the principal symbol of hyperbolic equations, Comm. Partial Differential Equations, Volume 14 (1989), pp. 1617-1634 (ISSN: 0360-5302) | DOI | MR
, Grundl. math. Wiss., 132, Springer, Berlin-New York, 1976 | MR | Zbl
Choosing roots of polynomials smoothly. II, Israel J. Math., Volume 139 (2004), pp. 183-188 (ISSN: 0021-2172) | DOI | MR | Zbl
Lifting smooth curves over invariants for representations of compact Lie groups. II, J. Lie Theory, Volume 15 (2005), pp. 227-234 (ISSN: 0949-5932) | MR | Zbl
Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory, Volume 16 (2006), pp. 579-600 (ISSN: 0949-5932) | MR | Zbl
Lifting mappings over invariants of finite groups, Acta Math. Univ. Comenian. (N.S.), Volume 77 (2008), pp. 93-122 (ISSN: 0862-9544) | MR | Zbl
Addendum to: “Lifting smooth curves over invariants for representations of compact Lie groups, III” J. Lie Theory 16 (2006), No. 3, 579–600. [MR2248147], J. Lie Theory, Volume 22 (2012), pp. 245-249 (ISSN: 0949-5932) | MR | Zbl
A generalization of Puiseux's theorem and lifting curves over invariants, Rev. Mat. Complut., Volume 25 (2012), pp. 139-155 (ISSN: 1139-1138) | DOI | MR | Zbl
, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967, 106 pages | MR | Zbl
Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ., Volume 21 (1985), pp. 115-118 (ISSN: 0286-3251) | MR
Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc., Volume 251 (1979), pp. 187-218 (ISSN: 0002-9947) | DOI | MR | Zbl
A new proof of Bronshtein's theorem, J. Hyperbolic Differ. Equ., Volume 12 (2015), pp. 671-688 (ISSN: 0219-8916) | DOI | MR
Lifting differentiable curves from orbit spaces, Transform. Groups, Volume 21 (2016), pp. 153-179 (ISSN: 1083-4362) | DOI | MR
Regularity of roots of polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 16 (2016), pp. 481-517 (ISSN: 0391-173X) | MR
Perturbation of complex polynomials and normal operators, Math. Nachr., Volume 282 (2009), pp. 1623-1636 (ISSN: 0025-584X) | DOI | MR | Zbl
Quasianalytic multiparameter perturbation of polynomials and normal matrices, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 4945-4977 (ISSN: 0002-9947) | DOI | MR | Zbl
Smooth roots of hyperbolic polynomials with definable coefficients, Israel J. Math., Volume 184 (2011), pp. 157-182 (ISSN: 0021-2172) | DOI | MR | Zbl
Lifting quasianalytic mappings over invariants, Canad. J. Math., Volume 64 (2012), pp. 409-428 (ISSN: 0008-414X) | DOI | MR | Zbl
Perturbation theory for normal operators, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 5545-5577 (ISSN: 0002-9947) | DOI | MR | Zbl
Differentiable roots, eigenvalues, and eigenvectors, Israel J. Math., Volume 201 (2014), pp. 99-122 (ISSN: 0021-2172) | DOI | MR | Zbl
, London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002, 742 pages (ISBN: 0-19-853493-0) | MR | Zbl
Local and semi-global solvability for systems of non-principal type, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1115-1141 (ISSN: 0360-5302) | DOI | MR | Zbl
On the absolute continuity of the roots of some algebraic equations, Ann. Univ. Ferrara Sez. VII (N.S.), Volume 45 (1999), pp. 327-337 (ISSN: 0430-3202) | DOI | MR | Zbl
, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl
On the lemma of Colombini, Jannelli and Spagnolo, Memoirs of the Faculty of Engineering, Osaka City University, Volume 41 (2000), pp. 111-115
Note on the Bronshtein theorem concerning hyperbolic polynomials, Sci. Math. Jpn., Volume 63 (2006), pp. 247-285 (ISSN: 1346-0862) | MR | Zbl
Remarks on hyperbolic polynomials, Tsukuba J. Math., Volume 10 (1986), pp. 17-28 (ISSN: 0387-4982) | DOI | MR | Zbl
Cité par Sources :