Nous montrons que le groupe fondamental local étale d'une singularité -régulière est fini. Ce théorème représente l'analogue en caractéristique des résultats obtenus par Xu et Greb-Kebekus-Peternell pour les singularités KLT. Nous montrons que le cardinal du groupe fundamental est majoré par l'inverse de la -signature de la singularité. En particulier, notre résultat principal est effectif. Pour cela, nous établissons des nouvelles formules de transformation de la -signature par rapport aux extensions étale en codimension un. Nous obtenons également un nouveau critère de pureté du lieu de branchement sur les anneauux à singularités faibles. Ceci s'applique en particulier aux anneaux dont la -signature est supérieure à 1/2.
We prove that the local étale fundamental group of a strongly -regular singularity is finite. These results are analogous to results of Xu and Greb-Kebekus-Peternell for KLT singularities in characteristic 0. Our result is effective, we show that the reciprocal of the -signature of the singularity gives a bound on the size of this fundamental group. To prove these results we develop new transformation rules for the -signature under finite étale-in-codimension-one extensions. We also obtain purity of the branch locus over rings with mild singularities (particularly if the -signature is ).
Keywords: Étale fundamental group, $F$-regular singularities, $F$-signature.
Mot clés : Groupe fondamental étale, singularités $F$-régulières, $F$-signature.
@article{ASENS_2018__51_4_993_0, author = {Carvajal-Rojas, Javier and Schwede, Karl and Tucker, Kevin}, title = {Fundamental groups of~$F$-regular singularities via $F$-signature}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {993--1016}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {4}, year = {2018}, doi = {10.24033/asens.2370}, mrnumber = {3861567}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2370/} }
TY - JOUR AU - Carvajal-Rojas, Javier AU - Schwede, Karl AU - Tucker, Kevin TI - Fundamental groups of $F$-regular singularities via $F$-signature JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 993 EP - 1016 VL - 51 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2370/ DO - 10.24033/asens.2370 LA - en ID - ASENS_2018__51_4_993_0 ER -
%0 Journal Article %A Carvajal-Rojas, Javier %A Schwede, Karl %A Tucker, Kevin %T Fundamental groups of $F$-regular singularities via $F$-signature %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 993-1016 %V 51 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2370/ %R 10.24033/asens.2370 %G en %F ASENS_2018__51_4_993_0
Carvajal-Rojas, Javier; Schwede, Karl; Tucker, Kevin. Fundamental groups of $F$-regular singularities via $F$-signature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 993-1016. doi : 10.24033/asens.2370. http://www.numdam.org/articles/10.24033/asens.2370/
, Lecture Notes in Math., 146, Springer, Berlin-New York, 1970, 185 pages | MR | Zbl
The -signature and strong -regularity, Math. Res. Lett., Volume 10 (2003), pp. 51-56 (ISSN: 1073-2780) | DOI | MR | Zbl
Coverings of the rational double points in characteristic , Complex analysis and algebraic geometry (1977), pp. 11-22 | DOI | MR | Zbl
Test ideals via algebras of -linear maps, J. Algebraic Geom., Volume 22 (2013), pp. 49-83 (ISSN: 1056-3911) | DOI | MR | Zbl
-signature of pairs and the asymptotic behavior of Frobenius splittings, Adv. Math., Volume 231 (2012), pp. 3232-3258 (ISSN: 0001-8708) | DOI | MR | Zbl
Points rationnels et groupes fondamentaux: applications de la cohomologie -adique (d'après P. Berthelot, T. Ekedahl, H. Esnault, etc.), Astérisque, Volume 294 (2004), pp. 125-146 (ISSN: 0303-1179) | Numdam | MR | Zbl
Local fundamental groups of surface singularities in characteristic , Comment. Math. Helv., Volume 68 (1993), pp. 319-332 (ISSN: 0010-2571) | DOI | MR | Zbl
Purity of the branch locus and Lefschetz theorems, Compos. math., Volume 96 (1995), pp. 173-195 (ISSN: 0010-437X) | Numdam | MR | Zbl
Reine lokale Ringe der Dimension zwei, Math. Ann., Volume 216 (1975), pp. 253-263 (ISSN: 0025-5831) | DOI | MR | Zbl
Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016), pp. 1965-2004 (ISSN: 0012-7094) | DOI | MR
On rational connectedness of globally -regular threefolds, Adv. Math., Volume 280 (2015), pp. 47-78 (ISSN: 0001-8708) | DOI | MR
, Lecture Notes in Math., 208, Springer, Berlin-New York, 1971, 133 pages | MR | Zbl
, Documents Mathématiques (Paris), 4, Soc. Math. France, Paris, 2005, 208 pages (ISBN: 2-85629-169-4) | MR
, Séminaire de Géométrie Algébrique, 1960/61, Institut des Hautes Études Scientifiques, Paris, 1963 | MR
A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math., Volume 120 (1998), pp. 981-996 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5hara.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Two theorems about maximal Cohen-Macaulay modules, Math. Ann., Volume 324 (2002), pp. 391-404 (ISSN: 0025-5831) | DOI | MR | Zbl
F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom., Volume 11 (2002), pp. 363-392 (ISSN: 1056-3911) | DOI | MR | Zbl
The F-rational signature and drops in the Hilbert-Kunz multiplicity (2009) (preprint http://www.math.lsa.umich.edu/~hochster/r-sig.pdf ) | MR
New examples of terminal and log canonical singularities (preprint arXiv:1107.2864 )
, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1995, 201 pages (ISBN: 0-691-04381-7) | DOI | MR | Zbl
On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010), pp. 641-668 (ISSN: 0025-5831) | DOI | MR | Zbl
Remark on the purity of the branch locus, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 378-380 (ISSN: 0002-9939) | DOI | MR | Zbl
, Princeton Mathematical Series, 33, Princeton Univ. Press, Princeton, N.J., 1980, 323 pages (ISBN: 0-691-08238-3) | MR | Zbl
The Hilbert-Kunz function, Math. Ann., Volume 263 (1983), pp. 43-49 (ISSN: 0025-5831) | DOI | MR | Zbl
The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. IHÉS, Volume 9 (1961), pp. 5-22 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Tata Institute of Fundamental Research Lectures on Mathematics, 40, 1967 | MR | Zbl
Remarks on a paper of Zariski on the purity of branch loci, Proc. Nat. Acad. Sci. U.S.A., Volume 44 (1958), pp. 796-799 (ISSN: 0027-8424) | DOI | MR | Zbl
The Stacks Project (2016)
-adjunction, Algebra Number Theory, Volume 3 (2009), pp. 907-950 (ISSN: 1937-0652) | DOI | MR | Zbl
Test ideals in non--Gorenstein rings, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 5925-5941 (ISSN: 0002-9947) | DOI | MR | Zbl
Frobenius split subvarieties pull back in almost all characteristics (preprint arXiv:1611.06290 ) | MR
Globally -regular and log Fano varieties, Adv. Math., Volume 224 (2010), pp. 863-894 (ISSN: 0001-8708) | DOI | MR | Zbl
On the behavior of test ideals under finite morphisms, J. Algebraic Geom., Volume 23 (2014), pp. 399-443 (ISSN: 1056-3911) | DOI | MR | Zbl
Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc., Volume 75 (1997), pp. 32-62 (ISSN: 0024-6115) | DOI | MR | Zbl
-signature exists, Invent. math., Volume 190 (2012), pp. 743-765 (ISSN: 0020-9910) | DOI | MR | Zbl
Normal -graded rings and normal cyclic covers, Manuscripta Math., Volume 76 (1992), pp. 325-340 (ISSN: 0025-2611) | DOI | MR | Zbl
Finiteness of fundamental groups, Compos. Math., Volume 153 (2017), pp. 257-273 (ISSN: 0010-437X) | DOI | MR
A new version of -tight closure, Nagoya Math. J., Volume 192 (2008), pp. 1-25 (ISSN: 0027-7630) | DOI | MR | Zbl
-regular and -pure normal graded rings, J. Pure Appl. Algebra, Volume 71 (1991), pp. 341-350 (ISSN: 0022-4049) | DOI | MR | Zbl
Hilbert-Kunz multiplicity of three-dimensional local rings, Nagoya Math. J., Volume 177 (2005), pp. 47-75 (ISSN: 0027-7630) | DOI | MR | Zbl
Finiteness of algebraic fundamental groups, Compos. Math., Volume 150 (2014), pp. 409-414 (ISSN: 0010-437X) | DOI | MR | Zbl
Observations on the -signature of local rings of characteristic , J. Algebra, Volume 299 (2006), pp. 198-218 (ISSN: 0021-8693) | DOI | MR | Zbl
On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., Volume 44 (1958), pp. 791-796 (ISSN: 0027-8424) | DOI | MR | Zbl
Cité par Sources :