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FUNDAMENTAL GROUPS OF F -REGULAR
SINGULARITIES VIA F -SIGNATURE

 J CARVAJAL-ROJAS, K SCHWEDE
 K TUCKER

A. – We prove that the local étale fundamental group of a strongly F -regular singularity
is finite. These results are analogous to results of Xu and Greb-Kebekus-Peternell for KLT singularities
in characteristic 0. Our result is effective, we show that the reciprocal of the F -signature of the singu-
larity gives a bound on the size of this fundamental group. To prove these results we develop new trans-
formation rules for the F -signature under finite étale-in-codimension-one extensions. We also obtain
purity of the branch locus over rings with mild singularities (particularly if the F -signature is > 1=2).

R. – Nous montrons que le groupe fondamental local étale d’une singularité F -régulière
est fini. Ce théorème représente l’analogue en caractéristique p des résultats obtenus par Xu et Greb-
Kebekus-Peternell pour les singularités KLT. Nous montrons que le cardinal du groupe fundamental
est majoré par l’inverse de la F -signature de la singularité. En particulier, notre résultat principal est
effectif. Pour cela, nous établissons des nouvelles formules de transformation de la F -signature par
rapport aux extensions étale en codimension un. Nous obtenons également un nouveau critère de
pureté du lieu de branchement sur les anneauux à singularités faibles. Ceci s’applique en particulier
aux anneaux dont la F -signature est supérieure à 1/2.

1. Introduction

In [21, Question 26] J. Kollár asked whether if .0 2 X/ is the germ of a KLT singularity,
then �1.X nf0g/ is finite. In [41] C. Xu showed that this holds for the étale local fundamental
group, in other words, for the profinite completion of �1.X n f0g/. Building on this result,
[11] proved the finiteness of the étale fundamental groups of the regular locus of KLT singu-
larities (see also [35]). Over the past few decades, we have learned that KLT singularities are
closely related to strongly F -regular singularities in characteristic p > 0, see [16, 15]. Hence
it is natural to ask whether their local étale fundamental groups are also finite. We show that

The first named author was supported in part by the NSF FRG Grant DMS #1265261/1501115. The second
named author was supported in part by the NSF FRG Grant DMS #1265261/1501115 and NSF CAREER Grant
DMS #1252860/1501102. The third named author was supported in part by NSF Grants DMS #1419448, DMS
#1602070, and a fellowship from the Sloan foundation.
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994 J. CARVAJAL-ROJAS, K. SCHWEDE AND K. TUCKER

this is indeed the case. In fact, we find an upper bound for the size of the fundamental group
in terms of a well studied invariant for measuring singularities in characteristic p > 0, the
F -signature s.R/.

T A (Theorem 5.1). – Let .R;m; k/ be a normal F -finite and strongly F -regular
strictly Henselian (1) local domain of prime characteristic p > 0, with dimension d � 2. Then
the étale fundamental group of the punctured spectrum of R, i.e., �1 WD �ét

1

�
Specı.R/

�
, is

finite. Furthermore, the order of �1 is at most 1=s.R/ and is prime to p. The same also holds
for �ét

1

�
Spec.R/ nZ

�
where Z � SpecR has codimension � 2.

Observe that unlike the characteristic zero situation, our characteristic p > 0 result is
effective. We give an explicit bound on the size of the �1. It is also worth noting that we
are working with the étale fundamental group, not the tame fundamental group. Indeed,
forR strongly F -regular, any finite Galois étale in codimension 1 local extension .R;m; k/ �
.S; n; `/ must be tame everywhere. This was already implicitly observed in [31] but we make
it precise here. Indeed, we note that p cannot divide ŒK.S/ W K.R/� if the residue fields are
equal (Corollary 2.11).

The technical tool where F -regularity is used in our proof is a transformation rule
for F -signature under finite étale-in-codimension-1-morphisms. The F -signature was intro-
duced implicitly in [32] and explicitly in [18]. Roughly speaking, it measures how many
different ways R ,! F e�R splits as e goes to infinity. Explicitly, if R has perfect residue
field and F e�R D R˚ae ˚ M as an R-module, where M has no free R-summands, then

s.R/ D lim
e!1

ae

pe dimR
. Here are three quick facts:

ı The limit s.R/ exists [37].
ı s.R/ > 0 if and only if R is strongly F -regular [1].
ı s.R/ � 1.

Note that there have been a number of transformation rules forF -signature under finite maps
in the past. However, they were generally only an inequality (that went the wrong way for our
purposes), or assumed that S is flat overR (or made other assumptions aboutR and S ). See
for instance [18, 42, 17, 37].

T B (Theorem 3.1). – Let .R;m; k/ � .S; n; `/ be a module-finite local extension
of F -finite d -dimensional normal local domains in characteristic p > 0, with corresponding
extension of fraction fields K � L. Suppose R � S is étale in codimension 1, and that R is
strongly F -regular. Then if one writes S D R˚f ˚M as a decomposition ofR-modules so that
M has no nonzero free direct summands, then f D Œ` W k� � 1 and the following equality holds:

s.S/ D
ŒL W K�

Œ` W k�
� s.R/:

Below, before Theorem D, we discuss how to still get precise transformation rules ofF -signa-
ture even when R � S is not necessarily étale in codimension 1.

By applying Theorem B in the case k D `, we see that s.S/ D ŒL W K� � s.R/. Since
s.S/ � 1, we immediately see that ŒL W K� � 1=s.R/. In other words, the reciprocal

(1) This just means it is Henselian with separably closed residue field.
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FUNDAMENTAL GROUPS OF F -REGULAR SINGULARITIES 995

of the F -signature s.R/ gives an upper bound on the generic rank of a finite local étale in
codimension 1 extension with the same residue field. Theorem A then follows. We also obtain
characteristic p > 0 corollaries similar to some of those in [11].

Because our bound on the size of the étale fundamental group is effective, we immediately
obtain a new result on purity of the branch locus.

T C (Corollary 3.3). – Suppose Y ! X is a finite dominant map of F -finite
normal integral schemes. If s.OX;P / > 1=2 for all P 2 X then the branch locus of Y ! X has
no irreducible components of codimension � 2, in other words it is a divisor.

In [5], the notion of F -signature of pairs was introduced. In Theorem 4.4, we obtain
an analogous result to Theorem B in the context of pairs. Indeed, if .R;�/ is a strongly
F -regular pair, then this can be interpreted as follows. The reciprocal of s.R;�/ gives an
upper bound on the generic rank of a finite local extension .R;m/ � .S; n/ such that
����Ram � 0 (here Ram is the ramification divisor on SpecS and � W SpecS ! SpecR is
the induced map). By taking cones, this immediately yields the following characteristic p > 0
analog of the second main result of [41]. Here note that globally F -regular varieties are an
analog of log-Fano varieties in characteristic zero [30].

T D (Corollary 4.8). – Suppose that .X;�/ is a globallyF -regular projective pair
over an algebraically closed field of characteristic p > 0. There is a number n such that every
finite separable cover � W Y ! X with ��� �Ram � 0 has generic rank ŒK.Y / W K.X/� � n.

Acknowledgements: The authors would like to thank János Kollár, Christian Liedtke,
Linquan Ma, Lance Miller, Mircea Mustat,ă, Stefan Patrikis and David Speyer for valuable
and inspiring conversations. We would like to thank Stefan Kebekus, Lance Miller, Mihai
Păun and Chenyang Xu for valuable comments on previous drafts. We would especially
like to thank David Speyer for sharing an early preprint of [33] with us and allowing us to
include Lemma 2.14 which is a special case of his result.

2. Preliminaries

C 2.1. – Throughout this paper, all rings will be assumed to be Noetherian.
They will all be characteristic p > 0 unless otherwise stated and they will all be F -finite. All
schemes will be assumed to be Noetherian and separated. If R is an integral domain, then
K.R/will denote the fraction field ofR (likewise withK.X/ ifX is an integral scheme). Given
a finite separable map of normal integral schemes f W Y ! X , we use Ram to denote the
ramification divisor on Y .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



996 J. CARVAJAL-ROJAS, K. SCHWEDE AND K. TUCKER

2.1. Maps and divisors

First we fix some notation. Given a Weil divisorD onX D SpecR, we useR.D/ to denote
�
�
X;OX .D/

�
.

D-P 2.2 (Maps and Divisors). – Suppose that R � S is a finite
inclusion of normal domains and A;B are divisors on SpecR and SpecS respectively with
� W SpecS ! SpecR the canonical map. Then any nonzero element ' 2 HomR

�
S.B/;R.A/

�
yields an effective divisor D' � .KS � B/ � ��.KR � A/. If '; '0 2 HomR

�
S.B/;R.A/

�
are

such that D' D D'0 then ' and '0 are S -unit multiples of each other.

Proof. – We first notice that

HomR

�
S.B/;R.A/

�
ŠHomR

�
S
�
B C ��.KR � A/

�
; R.KR/

�
ŠHomS

�
S
�
B C ��.KR � A/

�
; S.KS /

�
Š S

�
KS � B � �

�.KR � A/
�
:

Since ' is a section of that reflexive sheaf, it yields a divisor D' of zeroes linearly equivalent
to KS �B � ��.KR �A/ as claimed. Two sections yield the same divisor if and only if they
are S -unit multiples of each other.

L 2.3. – Suppose we have a finite inclusion of normal domains R � S � T and we
have divisors A;B;C on SpecR; SpecS; SpecT respectively and maps

ˇ W T .C /! S.B/;  W S.B/! R.A/:

Then Dıˇ D Dˇ C ��D where � W SpecT ! SpecR is the induced map.

Proof. – We work locally and assume that R is a DVR and that S and T are semi-local
Dedekind domains and hence are PIDs. Since R; S; T are all PIDs, T .C / Š T; S.B/ Š B,
R.A/ Š R. By applying these isomorphisms uniformly, we may assume that C D 0,
B D 0; A D 0. Let ˆ 2 HomR.S;R/ be an S -module generator, ‰ 2 HomS .T; S/ be a
T -module generator, and observe that ˆ ı ‰ 2 HomR.T;R/ is a T -module generator by,
for instance [28, Lemma 3.9]. Write . / D ˆ.s � /, ˇ. / D ‰.t � /. This implies that
D D divS .s/ and that Dˇ D divT .t/. We observe that  ı ˇ. / D ˆ ı‰.st � / and so

Dıˇ D divT .st/ D divT .t/C divT .s/ D Dˇ C �
�D

as desired.

2.2. F -signature

D 2.4 (F -signature, [18] [5]). – Suppose that .R;m; k/ is a d -dimensional
F -finite local ring with ˛ D ˛.R/ such that p˛ D Œk W kp�. If we write F e�R D R˚ae ˚M

where M has no free R-summands, in other words ae is the maximal rank of a free
R-summand of F e�R, then the F -signature of R, is equal to

s.R/ WD lim
e!1

ae

pe.dC˛/
:

More generally, if � � 0 is a Q-divisor on SpecR and if we let a�e denote the maximal rank
of a free R-summand of F e�R whose corresponding projection maps lie in

HomR

�
F e�R.d.p

e
� 1/�e/; R

�
� HomR.F

e
�R;R/;
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FUNDAMENTAL GROUPS OF F -REGULAR SINGULARITIES 997

then the F -signature of the pair .R;�/ is equal to

s.R;�/ WD lim
e!1

a�e

pe.dC˛/
:

The elements of HomR

�
F e�R.d.p

e � 1/�e/; R
�
� HomR.F

e
�R;R/ form what is called a

Cartier algebra since they are closed under composition, [29, 4]. Indeed in [5], F -signature
with respect to general Cartier algebras is defined and studied. Below, we discussF -signature
with respect to an object that is not quite a Cartier algebra (but which will otherwise be
convenient for us).

Consider .R;m; k/ an F -finite normal local domain with full Cartier algebra C D CR. If
� � 0 is a Q-divisor, we can form the Cartier subalgebra C� � C , with C� D

L
e�0 C�

e DL
e�0 HomR

�
F e�R

�
d.pe � 1/�e

�
; R
�
. However, it is frequently natural to consider instead

G D G bp
��c D

L
e�0 Ge D

L
e�0 HomR

�
F e�R.bp

e�c/; R
�
. This object is not generally a

Cartier algebra since given two maps

' 2 HomR

�
F e�R.bp

e�c/; R
�
D Ge; and  2 HomR

�
F f� R.bp

f�c/; R
�
D Gf

we can compose and obtain

' ı F e� W F
eCfR

�
bpf�c C pf bpe�c

�
! F e�R.bp

e�c/! R:

However, bpf�c C pf bpe�c is not always � bpeCf�c and so G is not closed under
composition.

Observe that if � � 0 satisfies b�c D 0, then we have

(2.4.1)
bpe�c � d.pe � 1/�e so that

Ge D HomR

�
F e�R.bp

e�c/; R
�
� HomR

�
F e�R.d.p

e � 1/�e/; R
�
D C�

e :

Furthermore, we have equality if .pe � 1/� is an integral Weil divisor.

S 2.5. – Suppose .R;m/ is an F -finite normal local domain of dimension d and
� � 0 is a Q-divisor on SpecR such that b�c D 0. We define Ge as above.

D 2.6. – With notation as in Setting 2.5, we set

G ns
e D f' 2 Ge j Image.'/ � mg

I G
e D fr 2 R j '.F

e
� r/ 2 m; for all ' 2 Geg:

We also define aG
e to be the maximal number of free summands of F e�R whose associated

projection homomorphisms belong to Ge.

We observe that

(2.6.1) aG
e D �R

�
Ge=G

ns
e

�
D pe˛�R

�
R=I G

e

�
by [5, Lemma 3.6], where ˛ D ˛.R/ D logp

�
Œk1=p W k�

�
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



998 J. CARVAJAL-ROJAS, K. SCHWEDE AND K. TUCKER

L 2.7. – [cf. [5, Lemma 4.17]] With notation as in Setting 2.5

lim
e!1

aG
e

pe.dC˛/
D s.R;�/:

Moreover, the same result holds even if we replace Ge by the asymptotically small perturbation
of it:

G 0e WD HomR

�
F e�R

�
bpe�c CD

�
; R
�

for any other effective Weil divisor D.

Proof. – Choose 0 ¤ c 2 R such that

.F e� c/ � C
�
e � .F

e
� c/ � Ge � C�

e � Ge:

Indeed, any c with div.c/ � d�e will work. Obviously we have that�
I G
e WR c

�
D fr 2 R j '.F e� r/ 2 m; for all ' 2 .F e� c/ � Geg:

Thus, the above inclusions .F e� c/ � Ge � C�
e � Ge induce inclusions of ideals:

I G
e � I

�
e �

�
I G
e WR c

�
:

Now simply apply Lemma 2.8 below.

For the last assertion in the statement of the lemma, we just choose a 0 ¤ c 2 R such that
div.c/ � �CD, then we are going to have .F e� c/ � Ge � G 0e � Ge, thus we argue as above,
including running Lemma 2.8.

L 2.8. – Let .R;m; k/ be an F -finite normal local domain of dimension d . Suppose
we have a pair of sequences of finite colength ideals fIege and fJege such that mŒp

e � � Ie � Je
holds for all e. Additionally assume that there is a 0 ¤ c 2 R such that Ie � Je � .Ie W c/ for
all e. Then, it follows that:

lim
e!1

1

pde
�R.Je=Ie/ D 0:

In particular,

lim
e!1

1

pde
�R.R=Je/ D lim

e!1

1

pde
�R.R=Ie/

provided that any (then both) of the limits exists.

Proof. – Consider the four term exact sequence

0! .Ie W c/=Ie ! R=Ie
�c
�! R=Ie ! R=.Ie C cR/! 0:

From this we conclude cf. [38, Page 8],

�R.Je=Ie/ � �R
�
.Ie W c/=Ie

�
D �R

�
R=.Ie C cR/

�
:

Since mŒp
e � � Ie there is a constant C such that �R

�
.R=.Ie C cR/

�
� Cpe.d�1/. The result

then follows.

We conclude this subsection with a brief recollection of strongly F -regular singularities
and globally F -regular projective varieties.

4 e SÉRIE – TOME 51 – 2018 – No 4
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D 2.9. – Suppose that .R;m/ is a normal local ring and � � 0 is a Q-divisor.
We say that .R;�/ is strongly F -regular if s.R;�/ > 0. This is equivalent by [1, 5] to the
assertion that for every 0 ¤ c 2 R, there exists some e > 0 and ' 2 C�

e with '.F e� cR/ D R.
Suppose X is a normal projective variety over an algebraically closed field and� � 0 is a

Q-divisor on X . For any ample line bundle L on X , form the section ring R D
L
i�0H

0.X;L i /

and let �R be the corresponding Q-divisor. We say that .X;�/ is globally F -regular if
.R;�R/ is strongly F -regular; this is independent of the choice of L [30].

2.3. Notes on trace

We believe the following easy lemma is well known to experts but we do not know an easy
reference.

L 2.10. – Suppose that .R;m/ � .S; n/ is a finite extension of normal local rings.
Then Tr.n/ � m.

Proof. – Choose A a divisorial discrete valuation ring with uniformizer a 2 A of K.R/
centered over V.m/ � SpecR. Let B be the normalization of A inside K.S/. Note that B is
a 1-dimensional semi-local ring with maximal ideals b1; : : : ; bl . Note that each bi \ S D n.
LetKB=A be the relative canonical divisor/ramification divisor of A � B and observe that (2)

TrB.KB=A/ � A. Now, notice that

Tr
�
a � B.KB=A/

�
� hai

by linearity of trace. We claim that
T
i bi � a � B.KB=A/. We can check this locally on B.

Indeed, localize at a bi to obtain a DVR B 0 D Bbi
with uniformizer b. Then write a D ubn

where u is a unit of B 0. We also know thatKB0=A D m div.b/ where n�1 � m (with equality
in the case of tame ramification). B 0.KB0=A/ D 1

bmB
0 and so

a � B 0.KB0=A/ D
a

bm
B 0 D bn�mB 0 � bB 0

where the last containment holds since n �m � 1. In conclusion

Tr
�\

i

bi

�
� Tr

�
a � B.KB=A/

�
� hai:

Next choose x 2 n, then x 2
T
i bi and so Tr.x/ 2 aA \R D m as claimed.

The following corollary can also be viewed as a result on purity of the branch locus. We
also believe it is well known to experts but we do not know a reference.

C 2.11. – Suppose that .R;m/ is a splinter (for instance, if it is strongly
F -regular). Then there is no finite local extension .R;m/ � .S; n/ of normal domains with
corresponding fraction fields K � L such that

(a) the residue fields R=m D S=n D k are equal,
(b) p

ˇ̌
ŒL W K�, and

(c) R � S is étale in codimension 1.

(2) This follows from the assertion that the section Tr 2 HomA.B;A/ corresponds to the ramification divisor, see
[31].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. – Suppose that there is such an extension. By item (c), we know that Tr W S ! R is
surjective, see [31, Proposition 7.4]. By Lemma 2.10 Tr.n/ � m and so we have an induced
surjective map

Tr W S=n! R=m:

But this is a k-linear map between 1-dimensional k-vector spaces by item (a), and hence an
isomorphism. Consider 1 2 R � S . We know Tr.1/ D ŒL W K� � 1 D 0 by item (b). Hence
Tr.1/ D 0 which is a contradiction.

Note in the above proof, if the condition that R is a splinter is removed, then condi-
tion ((c)) can be replaced by the condition that Tr W S ! R is surjective, and then the result
is well known to experts (with the same proof).

D 2.12. – Let R � S be a finite separable extension of normal domains.
We say that a direct R-summand M of S is a Tr-summand if M Š R and the associated

projection linear map � W S ! M
Š
�! R is such that D� � Ram, in other words,

� D Tr.s � / for some s 2 S , equivalently � 2 Tr �S inside the S -module HomS .S;R/.
This is independent of the choice of the isomorphism M Š R.

We will use the next lemma frequently.

L 2.13. – Suppose .R;m; k/ � .S; n; `/ is a separable finite extension of normal local
domains. If Tr W S ! R is surjective, then Œ` W k� is equal to the number of simultaneous
free R-summands of S whose projection maps are multiples of Tr, in other words the number
of Tr-summands. In particular if K D K.R/, L D K.S/ and Œ` W k� D ŒL W K�, then S is a free
R-module.

Proof. – Consider D D Tr �S � HomR.S;R/. Notice that h' 2 D j '.S/ � mi D Tr �S
by Lemma 2.10. By [5, Lemma 3.6], the number of free summands whose projection maps
are multiples of Tr is equal to

lengthR

�
Tr �S
Tr �n

�
D lengthR.`/ D Œ` W k�

which proves the first statement. For the second, if we have equality, then we have a surjective
map S ! R˚Œ`Wk�. But S is torsion free of generic R-rank ŒL W K� D Œ` W k�.

Let us now briefly discuss tame ramification. In the case thatK.R/ � K.S/ is Galois, the
surjectivity of the trace map Tr W S ! R has been coined cohomologically tamely ramified by
M. Kerz and A. Schmidt; see for example [19, Claim 1, Theorem 6.2]. They actually proved
in that article that this is in fact the strongest among all the notion of tameness, including the
one in [14].

What we want to observe next is that in the cases we consider in this paper, if Tr W S ! R is
surjective, then the extension of residue fields k � ` is a separable extension. This is implicit
in the proof of [19, Claim 1, Theorem 6.2] but we give a careful proof in our setting. First we
recall a very special case of a result of David Speyer. We thank David Speyer for sharing a
preliminary draft of a paper with us.
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L 2.14 ([33]). – Suppose that .R;m/ � .S; n/ is a finite local extension of F -finite
normal domains with Tr W S ! R surjective. Further suppose that 'R W F e�R ! R is an
R-linear map that extends to 'S W F e�S ! S . If m is 'R-compatible, then n is 'S -compatible.

Proof. – We give a short proof here for the convenience of the reader. We have the
commutative diagram [31, Proposition 4.1]

F e�S

F e
� Tr

��

'S // S

Tr
��

F e�R 'R

// R:

We know that 'R
�
F e� Tr.n/

�
� 'R.F

e
�m/ � m. Hence, we also have that

Tr
�
'S .F

e
� n/

�
� m:

Thus 'S .F e� n/ ( S , since Tr is onto, and hence 'S .F e� n/ � n as desired.

L 2.15. – Suppose .R;m; k/ � .S; n; `/ is a finite local extension of F -finite normal
domains that is étale in codimension 1 and such that R is strongly F -regular. Let K D K.R/

and L D K.S/. In this case k � ` is separable and Œ` W k�
ˇ̌
ŒL W K�.

Proof. – We begin with a claim.

C 2.16. – There exists a surjective map 'R W F e�R! R such that 'R.F e�m/ � m.

Proof of claim. – Choose a surjective  W F e�R ! R (which exists since R is F -split).
Then there exists a smallest j > 0 such that  .F e�m

j / � m. If j D 1, we may take ' D  ,
so assume j > 1. By hypothesis '.F e�m

j�1/ D R. Choose z 2 mj�1 with '.F e� z/ D 1. Form
the map 'R.F e� / D  

�
F e� .z � /

�
, it has the desired properties. This proves the claim.

Since R � S is étale in codimension 1, 'R extends to a map 'S by [31, Theorem 5.7].
Therefore we have the commutative diagram where the vertical maps are inclusions.

F e�R� _

��

'R // R� _

��

F e�S 'S

// S:

We notice that n is 'S -compatible by Lemma 2.14. Thus by modding out the bottom row by
the compatible ideal n and the top row by m D n \R we obtain the diagram

F e� k� _

��

'k // k � _

��

F e� ` '`

// `:

It follows from [31, Proposition 5.2] that k � ` is separable since 'k is surjective and hence
not the zero map. This proves the first result.

After completion, the second part follows from the standard claim below.
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C 2.17. – Suppose .R;m; k/ � .S; n; `/ is a finite local inclusion of complete F -finite
normal local rings with k � ` separable. Let K D K.R/ and L D K.S/. Then

Œ` W k�
ˇ̌
ŒL W K�:

Proof of claim. – Since the extension of coefficient fields is separable, we can choose k � `
a containment of coefficient fields as well. Now consider R˝k `. Obviously this maps to S .
Hence we have a factorization

R! R˝k `! S:

Now R˝k ` is a finite extension of R with unique maximal ideal m˝k `. Also, since `=k is
geometrically normal,R˝k ` is normal by [34, Tag 06DF]. It follows thatR˝k ` is a normal
local domain and a finite extension ofR with a map to S . The mapR˝k `! S is also finite
and must be injective because if it had a kernel, S would be finite over a lower dimensional
ring. HenceR˝k ` � S . Let T D K.R˝k `/. Then we haveK � T � L and ŒT W K� D Œ` W k�
(since R˝k ` is a free R-module of rank Œ` W k�). This finishes the claim.

It also finishes the proof of Lemma 2.15.

R 2.18. – It is not difficult to generalize Lemma 2.15 to the context of pairs if
R � S is not necessarily étale in codimension 1. The only places where étale in codimension
1 is used is when we extend 'R to 'S . Indeed, if one assumes that .R;�/ is stronglyF -regular
and that ��� � Ram is effective, the proof works without change. We will not need this
generalization in what follows, however.

2.4. Local fundamental groups of singularities

The study of local fundamental groups of (normal) singularities has a long history, having
early origins in the study of resolution of singularities in positive characteristic based on
the work of S. Abhyankar and others (this mostly related to fundamental groups of a curve
singularities). It also goes back for example to the work of D. Mumford [25] in which it is
proven that for the analytic germ of a normal complex surface, regularity or smoothness is
equivalent to the triviality of the local fundamental group. The same principle was general-
ized to the algebraic setting by H. Flenner in [9], see also [8, Corollary 5]. This however is
known to be false in positive characteristic by examples given by M. Artin in [3], see also [8].
Our results are focused on higher dimensions however.

By local fundamental group of a singularity here we understand and mean the étale
fundamental group of the punctured spectrum of a strictly local (3) normal domain .R;m; k/,
i.e., �ét

1

�
Specı.R/

�
, as defined in [12, Exposé V] or well in [26]. Notice that since R is a

domain, its punctured spectrum is connected, thereby it makes sense to talk about its étale
fundamental group.

As customary for normal schemes, we choose the generic point as our base point Nx, i.e.,
our base point is going to be the field extension Nx W K ,! Ksep, the or some separable closure
of K the fraction field of R.

We will need to compare étale covers of a normal connected schemeX and the étale covers
of an open connected subscheme U of it, say U D X n Z with Z � X of codimension � 2.

(3) Also called strictly Henselian, which means Henselian with separably closed residue field.
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Then we need to observe the following two Galois categories are equivalent cf. [3] for the local
case we care about: the category G of normal schemes finite over X which are étale except
possibly above Z; and the category FEt=U of étale covers of U . We clearly have a functor
G ! FEt=U given by restriction to U , that is, .f W Y ! X/ 7�! .f W f �1.U / 7�! U/, or as
more classically described in this context Y=X 7�! .Y �X U/=U . In fact, this functor gives
rise to an equivalence of Galois categories. This is nothing but a consequence of Zariski’s
Main Theorem, see for instance [23, Theorem 1.8, Chapter 1]. For if we have an étale cover
V ! U , then the composition or extension V ! U � X is a quasi-finite morphism,
hence there exists a scheme Y together with a finite morphism Y ! X such that V can be
realized as an open subscheme of Y and the quasi-finite morphism above V ! X factors
as V � Y ! X . In other words, any étale cover V ! U can be realized as the restriction of
a finite map Y ! X which is étale everywhere except possibly above the complement of U ,
that is étale on V . Let us use the terminology, any étale cover of U extends to a cover of X .

The above observation will be of great help for us inasmuch as by definition �1.U / is the
fundamental group classifying or pro-representing the Galois category FEt=U , but we use
the equivalence above to classify instead the category G . In case X D Spec.R/ with R a
singularity as above, this category is the same as the category of module-finite (semi-local)
inclusions of normal rings R � S (where the morphism are the morphism of R-algebras)
which are étale except possibly at the prime ideals lying over the closed Z (or m when U is
the punctured spectrum of R). Hence, we can work in a ring-theoretic setting.

Another advantage is obtained in the understanding of the Galois covers. Remember that
in order to compute �1 one takes the directed projective system of connected/minimal and
Galois elements R � S in G , and then considers its associated projective limit

�1 D lim
 �

AutG S:

However, since the base normal domain R is Henselian, the connected/minimal elements
of G are precisely the local domains in G ; this is precisely the equivalence between (a) and
(b) in [23, Theorem 4.2, Chapter 1]. The Galois extensions here are those R � S with finite
Galois extensions of fraction fields, moreover in that case AutG S D HomR.S;K

sep/ D

Gal.L=K/ where L is the fraction field of S .

We finish this series of remarks by pointing out that for general normal schemes there
is a particularly nice way to describe the computation of the respective étale fundamental
group. Say S is a normal and connected scheme, consequently integral, so if we choose the
base point to be a fixed separable closure of the fraction field K, we can take Xi to be the
normalization of X in Ki where the Ki are the finite Galois extension of K inside of our
fixed separable closure such that Xi is unramified over X , then

�1 D lim
 �

Gal.Ki=K/:

3. F -Signature goes up under the presence of ramification

Suppose .R;m; k/ � .S; n; `/ is a module-finite local extension of F -finite character-
istic p > 0 d -dimensional local domains with corresponding extension of fraction fields
K � L. According to [37, Corollary 4.13] if one writes S D R˚f ˚M as a decomposition
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ofR-modules so thatM has no nonzero free direct summands, then the following inequality
relating the F -signatures holds:

f � s.S/ � ŒL W K� � s.R/:

In the theorem below, we show that if the extension above is étale in codimension 1 and
if R is strongly F -regular, then equality holds. We will also observe that if ` D k, then
f D 1. So that if there is any ramification (i.e., the extension is not étale everywhere) then
the F -signature of S would be at least twice the F -signature of R.

T 3.1. – Let .R;m; k/ � .S; n; `/ be a module-finite local extension of F -finite
d -dimensional normal local domains in characteristic p > 0, with corresponding extension
of fraction fields K � L. Suppose R � S is étale in codimension 1, and that R is strongly
F -regular. Then if one writes S D R˚f ˚M as a decomposition of R-modules so that M has
no nonzero free direct summands, then f D Œ` W k� � 1 and the following equality holds:

s.S/ D
ŒL W K�

Œ` W k�
� s.R/:

Proof. – We notice that if R is strongly F -regular, so is S by [40, Theorem 2.7], so both
R and S have positive F -signature by [1]. Also see [31, Lemma 3.5, Lemma 3.6].

By [31, Proposition 4.8], it follows that the trace map Tr W S ! R generates the S -module
HomR.S;R/. Moreover, by [31, Corollary 7.7], the trace map is surjective (this following
from R being strongly F -regular). By Lemma 2.13 f D Œ` W k�.

Having the above in mind, we follow the proof of [37, Corollary 4.13], trying to improve
the estimates there by using these stronger conditions. We notice that

˛.R/ WD logp
�
Œk1=p W k�

�
D logp

�
Œ`1=p W `�

�
DW ˛.S/;

and denote by be the maximal rank of a free R-module appearing in a direct sum decompo-
sition of S1=p

e
. If one writes a decomposition S1=p

e
D S˚ae.S/ ˚ Ne as S -modules where

Ne does not admit a free direct summand as S -module, then one also gets a decomposition
of S1=p

e
as an R-module

S1=p
e

D
�
R˚f ˚M

�ae.S/
˚Ne D R

f �ae.S/ ˚M˚ae.S/ ˚Ne:

From this, one concludes that be � f � ae.S/. However, equality might not hold because
of the possibility of free R-summands coming from Ne. We will show that this cannot
happen under our stronger hypotheses. In fact, if N is any S -module with no nonzero free
direct S -summands, we will show it has no free direct R-summands as well. Indeed, by
[28, Lemma 3.9] one has that any R-linear map N ! R is going to admit a factorization

through the trace map, i.e., N ! S
Tr
�! R (for this we are making use of the condition

HomR.S;R/ D Tr �S ). Then, by virtue of the inclusion Tr.n/ � m Lemma 2.10, ifN ! R is
surjective so has to be the factor N ! S , so that any free R-summand of N would give rise
to a free S -summand.

In conclusion, we have that be D f � ae.S/. By dividing through by pe.dC˛.R// D
pe.dC˛.S// and letting e ! 1 one obtains the desired equality (this by making use of [37,
Theorem 4.11]).
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The following corollary will be one of the key ingredients to show the finiteness of the
étale fundamental group of a strongly F -regular singularity. It reflects how the F -signature
imposes strong conditions for the existence of non trivial covers of a punctured spectrum.

C 3.2. – With the same setup as in Theorem 3.1, if the inclusion is not étale
everywhere, then s.S/ � 2s.R/.

Proof. – Since in our case, Œ` W k� j ŒL W K� by Lemma 2.15, it is sufficient to show that
ŒL W K� > Œ` W k�. But if we have equality, then S is a free R-module by Lemma 2.13 and
hence R � S is étale everywhere by [2, Chapter VI, Theorem 6.8].

Now we state and prove our promised purity of the branch locus result. Compare with
[43, 27, 22, 13, 7].

C 3.3 (Purity of the branch locus for rings with mild singularities).
Suppose Y ! X is a finite dominant map of F -finite normal integral schemes. If

s.OX;P / > 1=2 for all P 2 X then the branch locus of Y ! X has no irreducible components
of codimension � 2, in other words it is a divisor.

Proof. – We work locally with X D SpecR and Y D SpecS . Let P � R be a minimal
prime of the locus whereR � S is not étale, i.e., a branch point. Suppose however the height
of P is at least 2. Localizing at P and completing, we may form

�cRP ;m; k� � Q
Si where

the Si are complete normal local domains. Since the original RP � SP is not étale, at least
one of the finite inclusions cRP � Si is not étale. Switching notation, letR D cRP and S D Si
so that we have a finite inclusion .R;m; k/ � .S; n; `/ with s.R/ > 1=2. We notice that this
extension is étale in codimension 1 but not étale. But this contradicts Corollary 3.2 and the
fact that s.S/ � 1.

R 3.4. – Kunz began using Frobenius to study singularities because he observed
that if F e�R is a free R-module, then purity of the branch locus holds for R. On the other
hand, s.R/ > 1=2 can be interpreted as saying that F e�R is more than half-free as an
R-module (at least for e � 0). In other words, the above says that if F e�R is more than half-
free as an R-module for e � 0, then purity of the branch locus holds.

We rephrase this in one more way, and point out that we can do slightly better in charac-
teristic 2.

C 3.5. – Suppose .R;m; k/ is a local F -finite strongly F -regular domain with
fraction field K D K.R/. Then b1=s.R/c is an upper bound on the size of ŒL W K�=Œ` W k�,
where L D K.S/ and .R;m; k/ � .S; n; `/ is an extension of normal local domains that is
étale in codimension 1. In the case that k is separably closed, b1=s.R/c is an upper bound on the
maximum size of ŒL W K� over any such étale-in-codimension-one extension. Returning to the
case of a general choice of k, if

(i) s.R/ > 1=2 or,
(ii) s.R/ > 1=3, p D 2 and k is separably closed,

then there is no proper finite local extension of normal domains .R;m/ � .S; n/ that is étale
in codimension 1 but not étale (N.B. this implies triviality of the respective local fundamental
group).
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Proof. – Suppose that .R;m; k/ � .S; n; `/ is a finite local extension that is étale in
codimension 1 and with g WD ŒL W K�=Œ` W k� > b1=s.R/c. Hence by Theorem 3.1, we obtain
s.S/ D g � s.R/ > 1 a contradiction. This proves the first statement. Next if k is separably
closed, then k D ` by Lemma 2.15 which proves the second. Part (i) is just a local restatement
of Corollary 3.3. For (ii), Corollary 2.11 implies that g > 2. The result follows.

E 3.6. – It is known that the F -signature of FpJx0; :::; x3K=.x20C� � �Cx
2
3/ is 2/3,

see [39, Theorem 3.1], [18, Proof of Theorem 11], [37, Proof of Proposition 4.22]. Of course,
it is well known that this complete intersection satisfies purity of the branch locus [13].

C 3.7. – Suppose that L is an ample line bundle on a globally F -regular projec-
tive variety X over an algebraically closed field k. Write R D

L
i�0H

0.X;L i /. If L D A m

for another line bundle A , with p 6 j m, then m � 1=s.R/.

Proof. – We have an inclusion R � S D
L
i�0H

0.X;A i / which, while not graded,
simply multiplies degrees by m. We notice that this inclusion is étale in codimension 1, see
for instance [30, Lemma 5.7]. Furthermore, it is easy to see that it has generic rank m. The
result follows immediately by completion (or Henselization) and Theorem 3.1.

4. Behavior of F -signature of pairs under finite morphisms

In this section we generalize the formula of Theorem 3.1 to maps which are not necessarily
étale in codimension 1. We include it in a separate section because of its much more technical
proof. We will see that in compensation, the formalism of divisors provides a way to include
the presence of codimension-1 ramification into the transformation formula, so that we can
recover the formula without pairs in the case of extensions that are étale in codimension 1.

As in the proof of Theorem 3.1, one of the main ingredients will be the capability of
factoring through the trace maps. The following two lemmas are formulated here as gener-
alization of the sort of factorization in [28, Lemma 3.9], we do it in two steps; we first add
pure ramification with Lemma 4.1 and secondly the presence of pairs with Lemma 4.2.

L 4.1. – Suppose that R � S is a finite separable extension of normal domains with
ramification divisor Ram on SpecS . Then the image of the map induced by composition

HomS

�
F e�S.Ram/; S.Ram/

�
�HomR

�
S.Ram/; R

�
! HomR.F

e
�S;R/

contains HomR

�
F e�S.Ram/; R

�
� HomR.F

e
�S;R/. In particular, any map # W F e�S ! R

which factors through a map F e�S.Ram/! R also factors through Tr W S.Ram/! R.

Proof. – We know that

HomR

�
F e�S.Ram/; R

�
Š HomR

��
F e�S.Ram/

�
˝S S;R

�
Š HomS

�
F e�S.Ram/;HomR.S;R/

�
Š HomS

�
F e�S.Ram/; S.Ram/

�
:
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Given an element ˛ 2 HomS

�
F e�S.Ram/;HomR.S;R/

�
it is identified with a map

ˇ 2 HomR

�
F e�S.Ram/; R

�
through Hom�˝ adjointness by composing with the evaluation-

at-1 map HomR.S;R/! R. In our case,

# 2 HomR

�
F e�S.Ram/; R/

yields a map  2 HomS

�
F e�S.Ram/; S.Ram/

�
such that, since Tr W S.Ram/ ! R

corresponds to the evaluation-at-1 map HomR.S;R/! R, we know that # D Tr ı .

L 4.2. – Suppose that R � S is a finite separable extension of normal domains with
� W Y WD SpecS ! X WD SpecR the corresponding morphism of schemes, and that � � 0 is
a Q-divisor on X such that ��� �Ram is effective. Then any map

# 2 HomR

�
F e�S.bp

e���c CRam/; R
�
� HomR.F

e
�S;R/

when restricted to # W F e�S ! R factors through Tr W S ! R.

Proof. – Obviously HomR

�
F e�S.bp

e���cCRam/; R
�
� HomR

�
F e�S.Ram/; R

�
and so

we can obtain a map
 2 HomS

�
F e�S.Ram/; S.Ram/

�
with # D Tr ı by Lemma 4.1.

C 4.3. –  is contained in

HomS

�
F e�S.bp

e���c CRam/; S.Ram/
�
� HomS

�
F e�S.Ram/; S.Ram/

�
:

Proof of claim. – Viewing# as a section of HomR

�
F e�S.Ram/; R

�
, we obtain a divisorD#

with

F e�S.D#/ Š HomR

�
F e�S.Ram/; R

�
Š HomS

�
F e�S.Ram/; S.Ram/

�
Š F e�S

�
.1 � pe/.KS �Ram/

�
DF e�S

�
.1 � pe/��KR

�
;

and hence D# � .1 � pe/��KR. Furthermore, by construction D# � bpe���c. We have
the composition

F e�S.Ram/

#

::

 
// S.Ram/ Tr // R:

Since in this diagram, Tr W S.Ram/! R corresponds to the zero divisor, we see that corres-
ponds to the same divisor as # by Lemma 2.3. In other words  2 HomS

�
F e�S.Ram/; S.Ram/

�
yields the divisor D � bpe���c. This just means that

 2 HomS

�
F e�S.bp

e���c CRam/; S.Ram/
�
:

This proves the claim.

By twisting and using the projection formula, we view  as an element contained
in HomS

�
F e�S.bp

e���c C .1 � pe/Ram/; S
�

and so by restriction, we obtain

 W F e�S
�
b���C .pe � 1/.��� �Ram/c

�
! S:

Further restricting to F e�S (since ��� �Ram is effective) proves the lemma.
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T 4.4. – Suppose that .R;m; k/ � .S; n; `/ is a finite separable extension of
normal local domains with ramification / relative canonical divisor Ram.

Let � W Y D SpecS ! X D SpecR be the corresponding morphism of schemes. Suppose
that �X � 0 is a Q-divisor on X such that �Y D ���X � Ram � 0. Let f be the maximal
number of direct Tr-summands of S , then

f � s.S;�Y / D ŒL W K� � s.R;�X /:

Proof. – First note that if Tr.S/ ( R, then f D 0. Furthermore, in this case, by
[31, Corollary 6.26] �.R;�X / D Tr.�.S;�Y // � Tr.S/ ( R and so .R;�X / is not
strongly F -regular and s.R;�X / D 0. Thus the equality holds. We may henceforth assume
that Tr.S/ D R so that .S;�Y / is strongly F -regular if and only if s.R;�X / is by [31,
Corollary 6.31]. Hence one side is zero if and only if the other is, and so we may assume
that s.R;�X /; s.S;�Y / > 0. Finally, again note that since Tr.S/ D R, f D Œ` W k� by
Lemma 2.13. We additionally remark that we can also assume without lost of generality that
b�Xc D 0, otherwise the equality we plan to show would become trivially 0 D 0.

Recall that by [5, Lemma 3.6] one has that

Œ` W k� D f D �R
�
S=hs 2 S j �.s/ 2 m; for all � 2 Tr �Si

�
D �R

�
Tr �S=h� 2 Tr �S j �.S/ � mi

�
:

As in subsection 2.2, write

G�X
e D HomR

�
F e�R.bp

e�Xc/; R
�
� HomR.F

e
�R;R/ D CR

e

and set I G
e D fr 2 R j '.F

e
� r/ � m; for all ' 2 G�X

e g. This set G�X
e corresponds to the

maps ' 2 CR
e which factors through a map F e�R.bp

e�Xc/ ! R via the natural inclusion
R � R.bpe�Xc/. One defines and interprets G�Y

e in the same fashion.

In order to recover an appropriate analog of [37, Theorem 4.11] we introduce

De WD HomR

�
F e�S

�
bpe���Xc CRam

�
; R
�
� HomR.F

e
�S;R/:

Let JD
e be the R-submodule of S

JD
e WD

˚
s 2 S j #.F e� s/ 2 m; for all # 2 De

	
and write

be WD �R

�
F e�
�
S=JD

e

��
D pe˛.R/�R

�
S=JD

e

�
:

The result now follows immediately from the two lemmas, Lemma 4.5 and Lemma 4.6
below.

L 4.5. – With notation as in the proof of Theorem 4.4,

lim
e!1

be

pe.dC˛.R//
D ŒL W K� � s.R;�X /:
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Proof. – The proof of this is, mutatis mutandis, the same as the proof of [37, Theorem 4.11].
Indeed, one has the following equalities,

ŒL W K� � s.R;�X / D rankR.S/ � s.R;�X / D rankR.S/ � lim
e!1

1

pde
eHK

�
I G
e IR

�
D lim
e!1

1

pde
eHK

�
I G
e IS

�
D lim
e!1

1

pde
�R
�
S=I G

e S
�
:

The second equality holds in virtue of [37, Corollary 3.7] cf. [5, Corollary 3.17] and
Lemma 2.7. The next equality follows for example from [24, Lemma 1.3]. The last equality
still follows from [37, Corollary 3.7].

It only remains to verify that

(4.5.1) lim
e!1

1

pde
�R
�
S=I G

e S
�
D lim
e!1

1

pde
�R
�
S=JD

e

�
:

For this purpose we utilize Lemma 2.8. First observe that

R
�
bpe�Xc

�
� S

�
��bpe�Xc

�
� S

�
bpe���X CRamc

�
:

For any rs 2 I G
e S and any # 2 De, write # 0.F e� / D #.F e� s /.

Then '0 WD # 0j
R
�
bpe�X c

� 2 G�X
e so that #.F e� rs/ D '

0.F e� r/ 2 m. Hence

(4.5.2) I G
e S � J

D
e :

Now let 0 ¤ b 2 R be such that divS .b/ � Ram. Then observe that for any Q-divisor D
on SpecR, divS .b/ � Ram � b��Dc � ��bDc. (4) It follows that

(4.5.3) b2S
�
bpe���Xc CRam

�
� S

�
��bpe�Xc

�
:

Next choose a free module G D R˚ŒLWK� � S and a 0 ¤ c 2 R such that cS � G. It follows
that
(4.5.4)
cS
�
��bpe�Xc

�
D
�
cS ˝R R.bp

e�Xc/
���
�
�
G ˝R R.bp

e�Xc/
���
D
�
R.bpe�Xc/

�˚ŒLWK�
where �� denotes reflexification as an R-module (or equivalently, since it can be viewed
as S2-ification, as an S -module where appropriate). Note the equalities and containments
can be checked in codimension 1 where they are obvious. Putting Equation 4.5.3 and Equa-
tion 4.5.4 together yields:

cb2S
�
bpe���Xc CRam

�
�
�
R.bpe�Xc/

�˚ŒLWK�
:

Now choose y 2 JD
e and

' 2 HomR

�
F e�R

�
bpe�Xc

�˚ŒLWK�
; R
�
� HomR.F

e
�G;R/:

(4) To see this work locally with a separable extension of DVRsR � S with uniformizers r and s such that r D usn.
Observe ifD D � divR.r/, then

b��Dc � ��D D ��f�g divR.r/C �
�bDc D nf�g divS .s/C �

�bDc

which implies that b��Dc � bnf�g divS .s/C �
�bDc and so and bnf�g divS .s/c � Ram.
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Then, viewing things at the level of the field of fractions, '.F e� cb
2 � / 2 De and so

'.F e� cb
2y/ 2 m. It follows that

I G
e S � J

D
e �

�
I G
e S W cb

2
�

where the first containment was shown in Equation 4.5.2. Now Equation 4.5.1 follows from
Lemma 2.8.

L 4.6. – With notation as in the proof of Theorem 4.4,

lim
e!1

be

pe.dC˛.R//
D f � s.S;�Y /:

Proof. – By applying the second part of Lemma 2.7, we can compute s.S;�Y / using

G 0e D G 0
�Y

e D HomR

�
F e�S.bp

e�Y c CRam/; S
�
;

with the associated splitting numbers a0e D a
G 0
e .

We are going to prove that the following equality holds: be D f � a0e. Taking limits will
then prove the lemma. We prove first that be � f � a0e. This can be verified by observing that
the composition of an element  2 G 0e with a map � 2 Tr �S gives an element # WD � ı  

in De. Indeed, D � bpe�Y c CRam and D� � Ram and so by Lemma 2.3, we see that

D# �
�
bpe�Y c CRam

�
C peRam

D

�
bpe���X � p

eRamc C peRam
�
CRam D bpe���Xc CRam:

It follows that # 2 De as claimed. We can certainly construct f �a0e distinctR-summands by
such compositions and so be � f � a0e.

Now we prove that be � f � a0e. Indeed, given any # 2 De, Lemma 4.2 provides a
factorization # D Tr ı where  belongs to HomS

�
F e�S.bp

e���Xc C Ram/; S.Ram/
�

by
Claim 4.3. However, as observed above bpe�Y cC.peC1/Ram D bpe���XcCRam, whence
 restricts by twisting by S.Ram/ to a map  W F e�S.bp

e�Y c C Ram/ ! S , which is by
definition an element of G 0e. Next note that Lemma 2.10 ensures that is surjective whenever
# is. But now, ifN � F e�S is anS -module summand ofF e�S with no freeS -summands whose
projection maps are in G 0e, then N has no free R-summands with corresponding projections
in De. The result follows.

C 4.7. – Suppose .R;m/ is a strictly Henselian F -finite normal local domain. If
� � 0 is a Q-divisor on SpecR such that .R;�/ is strongly F -regular, then b1=s.R;�/c is an
upper bound on the maximal generic rank of a finite separable local extension .R;m/ � .S; n/
so that ��� �Ram is effective where � W SpecS ! SpecR is the induced map.

Proof. – Suppose that .R;m/ � .S; n/ is a finite separable local extension such that
�S D ��� � Ram of generic rank g > b1=s.R/c. Hence g > 1=s.R;�/. But s.S;�S / D
gs.R;�/ > 1 and the result follows.
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The following should be viewed as a characteristic p > 0 analog of [41, Proposition 1].
First however, recall that if X is projective variety over k D k, � is a Q-divisor and L is
an ample line bundle, then we can form the section ring R D

L
n�0H

0.X;L n/. We have
a canonical k�-bundle map SpecR n V.R>0/ ! X . We can then pull back � from X and
obtain a unique corresponding divisor �R on SpecR. See [30, Section 5].

C 4.8. – Suppose that .X;�X / is a globally F -regular projective variety over an
algebraically closed field k. Suppose L is ample on X and that R D

L
n�0H

0.X;L n/ with
�R the corresponding divisor on R. Then 1=s.R;�R/ is an upper bound on the generic rank
of a finite separable cover � W Y ! X with Y normal such that �Y D ���X � RamY=X is
effective. In particular, if�X D 0, then 1=s.R/ is an upper bound on a finite separable étale-in-
codimension-1 cover of any open set U � X whose complement has codimension � 2 in X .

Proof. – Write S D
L
n�0H

0.Y; ��L n/ D
L
n�0H

0
�
X; .��OY / ˝ L n

�
. We have a

graded finite inclusion R � S with associated � W SpecS ! SpecR. Since .X;�X / is
globally F -regular, .R;�R/ is strongly F -regular by [30, Proposition 5.3]. Next observe that
the generic rank of ��OY over OX is the same as the generic rank of S over R since if
O˚mX � ��OY has torsion cokernel, so does the corresponding inclusion R˚m � S . Finally,
observe that RamS=R simply corresponds to RamY=X and so �S D ���R � RamS=R

corresponds to �Y and �S is effective if and only if �Y is. The corollary now follows
immediately by completion (or Henselization) and Corollary 4.7.

5. Finiteness of the fundamental group of a strongly F -regular singularity

In this section we prove our main result, namely; finiteness of the étale fundamental group
of a stronglyF -regular singularity. Let .R;m; k/ be a normalF -finite and stronglyF -regular
strictly local domain of prime characteristicp > 0. We will demonstrate finiteness of the étale
fundamental group ofU 0 � U WD Specı.R/whereU 0 is the complement of a closed subsetZ
ofX WD Spec.R/ throughm of codimension at least 2. In particular, since strongly F -regular
rings are normal, the singular locus has codimension at least 2, and we can take U 0 D Ureg

as the regular locus.

T 5.1. – Let .R;m; k/ be a normal F -finite and strongly F -regular strictly local
domain of prime characteristic p > 0, with dimension d � 2. LetZ 3 m be a closed subscheme
of X WD Spec.R/ of codimension at least 2 with complement U .Then the étale fundamental
group of U , i.e., �1 WD �ét

1

�
U; Nx

�
, is finite. Furthermore, the order of �1 is at most 1=s.R/ and

is prime to p. For example, Z D fmg and U D Specı.R/.

Proof. – First note that since R is a normal domain, U D X n Z is always connected.
Next, notice that since the trace is surjective, all the covers we consider are (cohomologically)
tamely ramified, in particular; given we have taken the hypothesis k D ksep, all the residue
field extensions in this category are trivial, see Lemma 2.15.

In this way, to show that �1 is finite one just has to show that a sequence of module-finite
local inclusions

.R;m; k/ � .S1; n1; k/ � .S2; n2; k/ � .S3; n3; k/ � � � �
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in which the consecutive inclusions .Si ; ni ; k/ � .SiC1; niC1; k/ are étale in codimension 1,
and the extensions .R;m; k/ � .Si ; ni ; k/ are all Galois, stabilizes; by this we mean that
Si D SiC1 for all i � 1. In fact, what we have is that all but finitely many consecutive
inclusions are étale everywhere, this is a direct consequence of the Corollary 3.2: because if
this is not the case, then the F -signature of the local rings Si will eventually be arbitrarily
large as i grows (since we started with s.R/ > 0), but the F -signature of any ring is well-
known to be at most 1. Hence, eventually one has equalities since in this setting étale-ness
guarantees equality (the extension will be free because it is étale, but at most 1 D Œ` W k� free
summand is allowed or possible because the extensions of residue fields are all trivial).

For the upper bound on the order of �1, just notice that in this case there will be a Galois
extension .R;m/ � .S?; n?/ representing G . This is going to dominate any other such
extension. To get such .S?; n?/, let .S; n/ be a maximal element in a chain as above (this
corresponds to a maximal element a chain of étale extensions overU ). If it does not dominate
some other extension .R;m/ � .T; o/ � Ksep which is also étale overU , then both .S;m/ and
.T; o/ can be dominated by a larger extension also étale over U . Thus we may take S? D S .

We now have �1 D AutG S? D Gal.L?=K/, the second equality holds because of the
Galois condition, thereby

#�1 D # AutG S? D ŒL? W K� �
1

s.R/
;

the inequality at the end is just given by Corollary 3.5. By Corollary 2.11, it also follows the
order of the group is prime to p.

R 5.2. – We remark we need to assume our local ring expressing the singularity is
strictly Henselian and not just Henselian since otherwise the associated fundamental group
would contain Gal.ksep=k/, which might easily be infinite, for instance; for perfect fields the
separable closure coincides with the algebraic closure. For example, this is infinite for k D Fp.
Nonetheless, under the hypothesis #Gal.ksep=k/ <1 the same result would follow.

R 5.3. – As we have observed several times before, the surjectivity of the trace
imposes strong tameness on the ramification, namely cohomological tameness. So that the
étale fundamental group we dealt with in Theorem 5.1 is actually the same as the/any tame
fundamental group. In fact, as we noticed, the order of the group is prime to p.

From the proof of Theorem 5.1 we get the following statement, which is a local and
positive characteristic analog for [11, Theorem 1.1].

S 5.4. – Let .R;m; k/ be a strongly F -regular local domain. In any chain

.R;m/ � .S1; n1/ � .S2; n2/ � .S3; n3/ � � � �

of module-finite local étale in codimension 1 inclusions of normal local domains all but finitely
many of the extensions are étale everywhere.

The following corollary is the local positive characteristic analog of [11, Theorem 1.5].
However, in our local case it follows from a general result for singularities with finite funda-
mental group. So that it is not that interesting as in the global case.
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C 5.5. – Suppose that .R;m/ is a strictly local F -finite strongly F -regular
domain. Then inside any fixed separable closure of its fraction field K, there exists a unique
largest finite local étale in codimension 1 extension .R;m/ � .S; n/ of normal domains so that
.S; n/ has no non-trivial finite local étale in codimension 1 extension .S; n/ ( .T; o/, i.e., with
trivial fundamental group.

Compare the following with [11, Theorem 1.10].

C 5.6. – Suppose .R;m/ � .S; n/ as in Corollary 5.5 with� W SpecS ! SpecR
the induced morphism. If D is a Q-Cartier Weil divisor on SpecR such that n, the index of D,
is not divisible by p, then n � 1=s.R/ and n j ŒK.S/ W K.R/�. Furthermore, ��D is Cartier
on SpecS .

Proof. – If D is Q-Cartier with index n, not divisible by p, then the cyclic cover
R � R˚R.�D/˚ � � � ˚R.�.n � 1/D/ D T is étale in codimension 1 by [40, Example 2.8].
Now, T is a domain by [36, Corollary 1.9] hence local since R is Henselian. The extension
R � T has generic rank n and the first statements follows. Note that ��D is still Q-Cartier
but it must be Cartier since otherwise we could take a cyclic cover on S which has no
non-trivial étale in codimension 1 covers.

By taking cones we also have the following.

C 5.7. – Suppose that X is a projective globally F -regular variety over an
algebraically closed field and thatZ � X is a closed subset of codimension� 2. LetU D X nZ.
Then �1 WD �ét

1

�
U/ is finite of order prime to p.

Proof. – We can bound the degree of any finite étale cover of U as before in Corol-
lary 4.8 and prove that its order is relatively prime to p. The result then follows exactly as in
Theorem 5.1.

R 5.8. – In the case that dimX � 3 and p � 11, if X is globally F -regular it
is also rationally chain connected by [10]. Hence by [6], if it is also smooth, the étale funda-
mental group is finite of order prime to p (see also [20, Theorem 4.13] and [11, Section 11.2]).
On the other hand, Corollary 5.7 can also be thought of as evidence that (smooth) globally
F -regular varieties are rationally chain connected in all dimensions.

It is natural to ask whether the characteristic p > 0 results of this paper imply the
characteristic zero results of [41] and some of the results of [11]. Unfortunately, we do
not know how to reduce local algebraic fundamental groups to characteristic p � 0 by
spreading out. However, if we had a positive answer to the following question, a number of
characteristic zero results would immediately follow.
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Q 5.9. – Suppose that .R;m/ is the local ring of a singularity in characteristic
zero. Consider a family of characteristic p > 0 reductions .Rp;mp/. Is (5)

lim sup
p!1

s.Rp/ > 0‹

Examples seem to suggest that this is the case. Of course, this is only a special case of the
following question which a number of people have already considered.

Q 5.10. – Does limp!1 s.Rp/ have a geometric interpretation, or at least some
geometric lower bounds?

Indeed, answers to this question would yield effective versions of many of the results of [41]
and [11].
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