On the p-adic cohomology of the Lubin-Tate tower
[Sur la cohomologie p-adique de la tour de Lubin-Tate]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 811-863.

Nous prouvons un résultat de finitude pour la cohomologie p-adique de la tour de Lubin-Tate. Pour tout n1 et corps p-adique F, cela fournit un functor canonique à partir de représentations p-adiques admissibles de GL n(F) vers des représentations p-adiques admissibles de GalF×D×, où GalF est le groupe de Galois absolu de F, et D/F est l'algèbre à division centrale d'invariant 1/n.

De plus, nous vérifions une compatibilité locale-globale pour cette correspondance, et une compatibilité avec le patching de Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.

We prove a finiteness result for the p-adic cohomology of the Lubin-Tate tower. For any n1 and p-adic field F, this provides a canonical functor from admissible p-adic representations of  GL n(F) towards admissible p-adic representations of GalF×D×, where GalF is the absolute Galois group of F, and D/F is the central division algebra of invariant 1/n.

Moreover, we verify a local-global-compatibility statement for this correspondence, and compatibility with the patching construction of Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.

DOI : 10.24033/asens.2367
Classification : 14G22, 11S37, 11F80, 11F85.
Keywords: Lubin-Tate tower, $p$-adic cohomology, Langlands correspondence, patching, local-global compatibility, Shimura curves.
Mot clés : Tour de Lubin-Tate, cohomologie $p$-adique, correspondance de Langlands, patching, compatibilité local-global, courbes de Shimura.
@article{ASENS_2018__51_4_811_0,
     author = {Scholze, Peter},
     title = {On the $p$-adic cohomology  of the {Lubin-Tate} tower},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {811--863},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {4},
     year = {2018},
     doi = {10.24033/asens.2367},
     mrnumber = {3861564},
     zbl = {1419.14031},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2367/}
}
TY  - JOUR
AU  - Scholze, Peter
TI  - On the $p$-adic cohomology  of the Lubin-Tate tower
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 811
EP  - 863
VL  - 51
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2367/
DO  - 10.24033/asens.2367
LA  - en
ID  - ASENS_2018__51_4_811_0
ER  - 
%0 Journal Article
%A Scholze, Peter
%T On the $p$-adic cohomology  of the Lubin-Tate tower
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 811-863
%V 51
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2367/
%R 10.24033/asens.2367
%G en
%F ASENS_2018__51_4_811_0
Scholze, Peter. On the $p$-adic cohomology  of the Lubin-Tate tower. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 811-863. doi : 10.24033/asens.2367. http://www.numdam.org/articles/10.24033/asens.2367/

Berkovich, V. G. Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS, Volume 78 (1993), pp. 5-161 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Berkovich, V. G. Vanishing cycles for formal schemes, Invent. math., Volume 115 (1994), pp. 539-571 (ISSN: 0020-9910) | DOI | MR | Zbl

Bushnell, C. J.; Henniart, G., Grundl. math. Wiss., 335, Springer, Berlin, 2006, 347 pages (ISBN: 978-3-540-31486-8; 3-540-31486-5) | DOI | MR | Zbl

Breuil, C.; Paškūnas, V. Memoirs of the American Mathematical Society, Mem. Amer. Math. Soc., 216, 2012 (ISBN: 978-0-8218-5227-9, ISSN: 0065-9266) | DOI | MR | Zbl

Breuil, C. The emerging p-adic Langlands programme, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 203-230 | MR | Zbl

Boutot, J.-F.; Zink, T. The p-adic uniformization of Shimura curves (2000) ( https://www.math.uni-bielefeld.de/~zink/p-adicuni.ps )

Carayol, H. Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 409-468 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Carayol, H., p -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemp. Math.), Volume 165, Amer. Math. Soc., Providence, RI, 1994, pp. 213-237 | DOI | MR | Zbl

Caraiani, A.; Emerton, M.; Gee, T.; Geraghty, D.; Paškūnas, V.; Shin, S. W. Patching and the p-adic local Langlands correspondence, Cambridge Journal of Math., Volume 4 (2016), pp. 197-287 | DOI | MR | Zbl

Chenevier, G.; Harris, M. Construction of automorphic Galois representations, II, Camb. J. Math., Volume 1 (2013), pp. 53-73 (ISSN: 2168-0930) | DOI | MR | Zbl

Chenevier, G., Automorphic forms and Galois representations. Vol. 1 (London Math. Soc. Lecture Note Ser.), Volume 414, Cambridge Univ. Press, Cambridge, 2014, pp. 221-285 | DOI | MR | Zbl

Chojecki, P. On mod p non-abelian Lubin-Tate theory for GL 2(p) , Compos. Math., Volume 151 (2015), pp. 1433-1461 (ISSN: 0010-437X) | DOI | MR | Zbl

Colmez, P. Représentations de GL 2(p) et (ϕ,Γ)-modules, Astérisque, Volume 330 (2010), pp. 281-509 (ISBN: 978-2-85629-281-5, ISSN: 0303-1179) | Numdam | MR | Zbl

Dat, J. F. Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 1-74 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Drinfelʼd, V. G. Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen., Volume 10 (1976), pp. 29-40 (ISSN: 0374-1990) | MR | Zbl

Elkik, R. Solutions d'équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup., Volume 6 (1973), pp. 553-603 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Emerton, M. Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque, Volume 331 (2010), pp. 355-402 (ISBN: 978-2-85629-282-2, ISSN: 0303-1179) | Numdam | MR | Zbl

Emerton, M. Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors, Astérisque, Volume 331 (2010), pp. 403-459 (ISBN: 978-2-85629-282-2, ISSN: 0303-1179) | Numdam | MR | Zbl

Emerton, M. Local-global compatibility in the p-adic Langlands programme for GL 2/ (2011) ( http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf ) | MR | Zbl

Faltings, G. A relation between two moduli spaces studied by V. G. Drinfeld, Algebraic number theory and algebraic geometry (Contemp. Math.), Volume 300, Amer. Math. Soc. (2002), pp. 115-129 | DOI | MR | Zbl

Faltings, G. Almost étale extensions, Astérisque, Volume 279 (2002), pp. 185-270 (ISSN: 0303-1179) | Numdam | MR | Zbl

Fargues, L.; Genestier, A.; Lafforgue, V., Progress in Math., 262, Birkhäuser, 2008, 406 pages (ISBN: 978-3-7643-8455-5) | MR | Zbl

Gabber, O.; Ramero, L., Lecture Notes in Math., 1800, Springer, 2003, 307 pages (ISBN: 3-540-40594-1) | MR | Zbl

Hopkins, M. J.; Gross, B. H., Topology and representation theory (Evanston, IL, 1992) (Contemp. Math.), Volume 158, Amer. Math. Soc., Providence, RI, 1994, pp. 23-88 | DOI | MR | Zbl

Harris, M.; Taylor, R., Annals of Math. Studies, 151, Princeton Univ. Press, 2001, 276 pages (ISBN: 0-691-09090-4) | MR | Zbl

Huber, R., Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, 1996, 450 pages (ISBN: 3-528-06794-2) | MR | Zbl

Kiehl, R. Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math., Volume 2 (1967), pp. 191-214 (ISSN: 0020-9910) | DOI | MR | Zbl

Kisin, M. The Fontaine-Mazur conjecture for GL 2 , J. Amer. Math. Soc., Volume 22 (2009), pp. 641-690 (ISSN: 0894-0347) | DOI | MR | Zbl

Paškūnas, V. The image of Colmez's Montreal functor, Publ. Math. IHÉS, Volume 118 (2013), pp. 1-191 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Rapoport, M.; Zink, T., Annals of Math. Studies, 141, Princeton Univ. Press, Princeton, NJ, 1996, 324 pages (ISBN: 0-691-02782-X; 0-691-02781-1) | MR | Zbl

Scholze, P. Perfectoid Spaces, Publ. Math. de l'IHES, Volume 116 (2012), pp. 245-313 | DOI | Numdam | MR | Zbl

Scholze, P. p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi, Volume 1 (2013) http://journals.cambridge.org/article_S2050508613000012 | DOI | MR | Zbl

Scholze, P. On torsion in the cohomology of locally symmetric varieties, Ann. of Math., Volume 182 (2015), pp. 945-1066 (ISSN: 0003-486X) | DOI | MR | Zbl

Shin, S. W. Galois representations arising from some compact Shimura varieties, Ann. of Math., Volume 173 (2011), pp. 1645-1741 (ISSN: 0003-486X) | DOI | MR | Zbl

Strauch, M. Geometrically connected components of Lubin-Tate deformation spaces with level structures, Pure Appl. Math. Q., Volume 4 (2008), pp. 1215-1232 (ISSN: 1558-8599) | DOI | MR | Zbl

Scholze, P.; Weinstein, J. (lecture notes from course at Berkeley in 2014, in preparation, preliminary version available at https://math.berkeley.edu/~jared/Math274/ScholzeLectures.pdf )

Scholze, P.; Weinstein, J. Moduli of p-divisible groups, Camb. J. Math., Volume 1 (2013), pp. 145-237 (ISSN: 2168-0930) | DOI | MR | Zbl

Taylor, R. On the meromorphic continuation of degree two L-functions, Doc. Math., Volume Extra Vol. (2006), pp. 729-779 (ISSN: 1431-0635) | MR | Zbl

Taylor, R. On Galois representations associated to Hilbert modular forms, Invent. math., Volume 98 (1989), pp. 265-280 (ISSN: 0020-9910) | DOI | MR | Zbl

Temkin, M. On local properties of non-Archimedean analytic spaces, Math. Ann., Volume 318 (2000), pp. 585-607 (ISSN: 0025-5831) | DOI | MR | Zbl

Taylor, R.; Wiles, A. Ring-theoretic properties of certain Hecke algebras, Ann. of Math., Volume 141 (1995), pp. 553-572 (ISSN: 0003-486X) | DOI | MR | Zbl

Varshavsky, Y. p-adic uniformization of unitary Shimura varieties. II, J. Differential Geom., Volume 49 (1998), pp. 75-113 http://projecteuclid.org/euclid.jdg/1214460937 (ISSN: 0022-040X) | MR | Zbl

Weinstein, J. Semistable models for modular curves of arbitrary level, Invent. math., Volume 205 (2016), pp. 459-526 (ISSN: 0020-9910) | DOI | MR | Zbl

Čerednik, I. V. Uniformization of algebraic curves by discrete arithmetic subgroups of PGL 2(kw) with compact quotient spaces, Mat. Sb. (N.S.), Volume 100(142) (1976), p. 59-88, 165 | MR

Cité par Sources :