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ON THE p-ADIC COHOMOLOGY
OF THE LUBIN-TATE TOWER

 P SCHOLZE

A. – We prove a finiteness result for the p-adic cohomology of the Lubin-Tate tower. For
any n � 1 and p-adic field F , this provides a canonical functor from admissible p-adic representations
of GLn.F / towards admissible p-adic representations of GalF �D�, where GalF is the absolute
Galois group of F , and D=F is the central division algebra of invariant 1=n.

Moreover, we verify a local-global-compatibility statement for this correspondence, and compati-
bility with the patching construction of Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.

R. – Nous prouvons un résultat de finitude pour la cohomologie p-adique de la tour
de Lubin-Tate. Pour tout n � 1 et corps p-adique F , cela fournit un functor canonique à partir
de représentations p-adiques admissibles de GLn.F / vers des représentations p-adiques admissibles
de GalF �D�, où GalF est le groupe de Galois absolu de F , et D=F est l’algèbre à division centrale
d’invariant 1=n.

De plus, nous vérifions une compatibilité locale-globale pour cette correspondance, et une compa-
tibilité avec le patching de Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.

1. Introduction

The goal of this paper is to provide further evidence for the existence of a p-adic
local Langlands correspondence, as was first envisioned by Breuil [4], and established
for GL2.Qp/ by Colmez [14], Paskunas [30], and others. So far, little is known
beyond GL2.Qp/, and work of Breuil-Paskunas [5], shows that already for GL2.F /,
F ¤ Qp, the situation is very difficult. There is a recent work of Caraiani-Emerton-Gee-
Geraghty-Paskunas-Shin, [7], that constructs some p-adic GLn.F /-representation starting
from an n-dimensional representation of the absolute Galois group of a p-adic field F , for
general n and F . Their construction is based on the patching construction of Taylor-Wiles,
and is thus global in nature. Unfortunately, it is not clear that their construction gives a
representation independent of the global situation.

In this paper, we work in the opposite direction. Namely, starting from a p-adic
GLn.F /-representation � , we produce a representation F.�/ of the absolute Galois
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812 P. SCHOLZE

group GalF , for any n and F , in a purely local way. Corollary 9.3 ensures that (for n D 2),
composing the patching construction with our functor gives back the original Galois
representation.

Actually, F.�/ also carries an admissible D�-action, where D=F is the central division
algebra of invariant 1=n. Thus, simultaneously, this indicates the existence of a p-adic
Jacquet-Langlands correspondence relating p-adic GLn.F / and D�-representations. Such
a correspondence is not known already for GL2.Qp/, and its formalization remains myste-
rious, as the D�-representations are necessarily (modulo p) of infinite length. However, we
do not pursue these questions here.

Let us now describe our results in more detail. Let n � 1 be an integer and F=Qp a finite
extension. Let O � F be the ring of integers,$ 2 O a uniformizer, and let q be the cardinality
of the residue field of F , which we identify with Fq . Fix an algebraically closed extension k
of Fq , e.g., Fq . Let MF D F ˝W.Fq/W.k/ be the completion of the unramified extension of F

with residue field k. Let MO � MF be the ring of integers.

In this situation, one has the Lubin-Tate tower .M LT;K/K�GLn.F /, which is a tower of
smooth rigid-analytic varieties M LT;K over MF parametrized by compact open subgroupsK
of GLn.F /, with finite étale transition maps. There is a compatible continuous action ofD�

on all M LT;K , as well as an action of GLn.F / on the tower, that is, g 2 GLn.F / induces
an isomorphism between M LT;K and M LT;g�1Kg . There is the Gross-Hopkins period
map, [26],

�GH W M LT;K ! Pn�1
MF
;

compatible for varying K, which is an étale covering map of rigid-analytic varieties with
fibers GLn.F /=K. It is alsoD�-equivariant if the right-hand side is correctly identified with
the Brauer-Severi variety for D=F (which splits over MF ). Moreover, there is a Weil descent
datum on M LT;K , under which �GH is equivariant for the above identification of Pn�1

MF
with

the Brauer-Severi variety of D=F .

It was first observed by Weinstein, cf. [35], that the inverse limit

M LT;1 D lim
 �

K�GLn.F /

M LT;K

exists as a perfectoid space. The induced map

�GH W M LT;1 ! Pn�1
MF

is in a suitable sense a GLn.F /-torsor; however, it takes a little bit of effort to make this state-
ment precise and we do not do so here. However, for any smooth GLn.F /-representation �
on an Fp-vector space, (1) one can construct a Weil-equivariant sheaf F � on the étale site of
the rigid space Pn�1

MF
. Our main theorem is the following:

T 1.1. – Let � be an admissible smooth GLn.F /-representation on an Fp-vector
space. The cohomology group

H i
Ket.P

n�1
C ; F �/

(1) One can also handle more general base rings, and we do so in the paper.
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p-ADIC COHOMOLOGY OF LUBIN-TATE TOWER 813

is independent of the choice of an algebraically closed complete extension C of MF , and vanishes
for i > 2.n � 1/. (2) For all i � 0,

H i
Ket.P

n�1
Cp ; F �/

is an admissibleD�-representation, and the action of the Weil groupWF extends continuously
to an action of the absolute Galois group GalF of F .

The proof of this theorem follows closely the proof of finiteness of Fp-cohomology of
proper (smooth) rigid spaces, [33]. In particular, it depends crucially on properness of Pn�1,
or more precisely, on properness of the image of �GH. Unfortunately, it turns out that the
Lubin-Tate case is essentially (up to products and changing the center) the only example of a
Rapoport-Zink space with surjective period map. We refer to the Appendix by M. Rapoport
for further discussion of this point. Thus, the methods of this paper do not shed light on other
groups.

R 1.2. – Intuitively, H�
Ket.P

n�1
C ; F �/ is the �-isotypic component of the coho-

mology of the Lubin-Tate tower, but the formulation is different for several reasons. First,
the (usual or compactly supported) cohomology groups of M LT;0;C or M LT;1;C itself
are not well-behaved, e.g., not admissible and not invariant under change of C , cf. work of
Chojecki, [13]. Using lifts of Artin-Schreier covers one can check that alreadyH 1

Ket.BC ;Fp/ is
infinite-dimensional and depends on C , where BC denotes the closed unit disk over C .
Second, taking the �-isotypic component is not an exact operation for Fp-representations.

For the local-global-compatibility results, we have decided to work only with GL2, as
this leads to many technical simplifications; it is to be expected that many arguments can
be adapted to GLn if one uses Harris-Taylor type Shimura varieties, [25]. Fix a totally real
field F and a place p dividing p such that Fp is the p-adic field considered previously.
Moreover, fix an infinite place1F of F . Let D0 be a division algebra over F which is split
at p and is ramified at all infinite places. Let G D D�0 be the algebraic group of units in D0.
Let D be the inner form of G which is split at 1F and ramified at p (and unchanged at
all other places), and denote by D� the algebraic group of units of D. Fix a compact open
subgroupU p � G.Ap

F;f
/ Š D�.Ap

F;f
/. For eachK � GL2.Fp/ Š G.Fp/, one has the space

of algebraic automorphic forms

S.KU p;Fp/ D C 0.G.F /nG.AF;f /=KU p;Qp=Zp/;

as well as the cohomology

H 1.ShK0Up;C;Qp=Zp/

of the Shimura curve ShK0Up=F for D=F , for varying K 0 � D�p D D�.Fp/. These
H 0- (resp. H 1-) groups are respectively the middle cohomology groups of the relevant
Shimura varieties. Let

� D lim
�!
K

S.KU p;Qp=Zp/

(2) As pointed out by the referee, the vanishing for i > 2.n�1/ follows already from a general result of Berkovich,
[1, Theorem 2.5.1], cf. also [27, Corollary 2.8.3].
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814 P. SCHOLZE

and

� D lim
�!
K0

H 1.ShK0Up;C;Qp=Zp/;

which are admissible GL2.Fp/-, resp. D�p -representations over Zp. Moreover, � carries a
representation of GalF , and thus of GalFp . The following theorem is an easy consequence of
Čerednik’s p-adic uniformization, cf. [10], [16], [31], [3], along with the duality isomorphism
between the Lubin-Tate and the Drinfeld tower, cf. [22], [23], [35].

T 1.3. – There is a canonical GalFp �D
�
p -equivariant isomorphism

H 1
Ket.P

1
Cp ; F �/ Š � :

This is a form of a p-adic local-global-compatibility result, and we deduce the following
more precise results. Fix an absolutely irreducible (odd) 2-dimensional representation �

of GalF over a finite extension Fq of Fp; this gives rise to a maximal ideal m of the
abstract Hecke algebra T (coming from unramified places), and we assume that the localiza-
tion �m ¤ 0, i.e., � is modular. There is a corresponding Hecke algebra T.U p/m (a complete
local noetherian ring with residue field Fq) acting faithfully on �m. There is a 2-dimensional
Galois representation

�m W GalF ! GL2.T.U p/m/
characterized by the Eichler-Shimura relations expressing the characteristic polynomials
of Frobenius elements in terms of Hecke operators. The next result says that one can
recover �mjGalFp

from �m.

T 1.4. – There is a T.U p/mŒGalFp �D
�
p �-equivariant isomorphism

H 1
Ket.P

1
Cp ; F �m

/ Š �mjGalFp
˝T.Up/m �mŒ�m�;

for some faithful T.U p/mŒD�p �-module �mŒ�m� carrying the trivial GalFp -action. If � jGalFp
is

irreducible, this determines the T.U p/mŒGalFp �-representation �mjGalFp
uniquely.

Moreover, there is a version for the m-torsion.

T 1.5. – The 2-dimensional GalFp -representation � jGalFp
is determined by the

admissible GL2.Fp/-representation �Œm�. More precisely, � jGalFp
can be read off from the

GalFp -representation
H 1
Ket.P

1
Cp ; F �Œm�/;

which is an infinite-dimensional admissible GalFp �D
�
p -representation. Any indecomposable

GalFp -subrepresentation of H 1
Ket.P

1
Cp ; F �Œm�/ is of dimension � 2, and � jGalFp

is determined

in the following way.

Case (i). If there is a 2-dimensional indecomposable GalFp -representation

� 0 � H 1
Ket.P

1
Cp ; F �Œm�/;

then � jGalFp
D � 0.

4 e SÉRIE – TOME 51 – 2018 – No 4



p-ADIC COHOMOLOGY OF LUBIN-TATE TOWER 815

Case (ii). Otherwise, H 1
Ket.P

1
Cp ; F �Œm�/ is a direct sum of characters of GalFp , and at most

two different characters �1; �2 of GalFp appear; if only one appears, let �2 D �1 be the only
character appearing. Then � jGalFp

D �1 ˚ �2.

Acknowledgments. – The results of this paper were found during the conference in honor of
Henri Carayol and Jean-Pierre Wintenberger in Strasbourg in January 2014, and the author
wishes to thank Arthur-César Le Bras for useful discussions during that conference. The
compatibility with patching was proved following questions of Ana Caraiani, whom the
author wishes to thank. The results of this paper were first announced in February 2014
(during a snowstorm in Princeton). The author wants to apologize for the long delay in the
preparation of this paper. Moreover, he wants to thank Christophe Breuil, Frank Calegari,
Przemyslaw Chojecki, Pierre Colmez, Matt Emerton, Laurent Fargues, Toby Gee, David
Geraghty, Michael Harris, Eugen Hellmann, Vytautas Paškūnas, Sug Woo Shin, Richard
Taylor and Jack Thorne for helpful discussions, and Judith Ludwig and Michael Rapoport
for the careful reading of the manuscript. Finally, he thanks the referee for the careful
reading, and in particular for making him aware of relevant work of Berkovich. This work
was done while the author was a Clay Research Fellow.

2. Some equivariant sites

In the proof of our main result, we need to consider cohomology groups of some objects
like Pn�1=K for a compact open subgroup K � D�. There are several possible definitions
of these cohomology groups. One might define them in terms of the simplicial adic space
.Pn�1 � EK/=K with terms Pn�1 � Ki , or in terms of some stacky diamond .Pn�1/˘=K,
using diamonds as in [36]. The technically simplest solution seems to be to directly define a
site .Pn�1=K/Ket that gives rise to these cohomology groups. We are thankful to the referee
for pointing out to us that similar results had previously been obtained by Berkovich, cf. [2,
Sections 6, 7]; (3) in particular, [2, Key Lemma 7.2] is closely related to Corollary 2.5 below.

In the following, let X be either a locally noetherian analytic adic space, in the sense
that X is locally of the form Spa.A;AC/ for some strongly noetherian Tate ring A and a
ring of integral elements AC � A, or a perfectoid space. (4) If X is a perfectoid space, all
affinoid subsets below are assumed to be of the form Spa.A;AC/, where A is perfectoid. For
simplicity, we will spell out only the case of locally noetherian analytic adic spaces.

D 2.1. – Let G be a locally profinite group. An action of G on X is said to
be continuous if X admits a cover by open affinoid Spa.A;AC/ � X stabilized by open
subgroups H � G such that the action morphism H � A! A is continuous.

L 2.2. – Assume that a locally profinite group G acts continuously on the locally
noetherian analytic adic space X . For any quasicompact open subset U � X , the stabi-
lizer GU � G of U in G is open. If U D Spa.A;AC/ is affinoid, then the action morphism
GU � A! A is continuous.

(3) More details, including some unpublished results of Berkovich, are explained in [15, Appendix B].
(4) Everything works for analytic adic spaces which have a well-behaved étale site.
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816 P. SCHOLZE

Proof. – First, we check that there is a basis of affinoid open subsets Spa.A;AC/ � X

which have an open stabilizerH inG, and for which the action morphism onA is continuous.
It is enough to check that this property passes to rational subsets. Fix a ring of definition
A0 � A and a pseudouniformizer $ 2 A0, i.e., a topologically nilpotent unit of A. If
U � Spa.A;AC/ is the rational subset defined by

U D f8i D 1; : : : ; n W jfi .x/j � jg.x/j ¤ 0g

for some f1; : : : ; fn; g 2 A such that the ideal .f1; : : : ; fn/ is all of A, then V , defined as
$.ACf1 C � � � C A

Cfn/ and contained in A, is an open neighborhood of 0 such that for all
f 0i 2 fi C V , g0 2 g C V , the rational subset defined by f 01 ; : : : ; f

0
n; g
0 agrees with U . From

this and the continuity of the action morphismH �A! A, it follows that the stabilizerHU
of U in H is open.

To check that the action ofHU on OX .U / is continuous, we deal with two cases separately.
First, assume that all fi D 1. Then OX .U / is the completion of AŒ1=g� with respect to the
topology making $mA0Œ1=g� a basis of open neighborhoods of 0. The action of h 2 HU
sends g�1 to h.g/�1 D g�1.1 C ahg

�1 C a2
h
g�2 C � � � / in case h.g/ D g � ah for some

element ah 2 $A0; this happens in an open subgroup h 2 H 0 � HU . Moreover, ah varies
continuously with h, which implies that also

h.g/�1 D g�1.1C ahg
�1
C a2hg

�2
C � � � / 2 OX .U /

varies continuously with h. Going through the definitions, this implies that the action of H 0

on OX .U / is continuous, and asH 0 � HU is open, this implies the same for the action ofHU
on OX .U /.

Now assume that g D 1. In that case, OX .U / is the completion of A with respect to
the topology making $mA0Œf1; : : : ; fn� a basis of open neighborhoods of 0. In this case,
continuity is immediately verified. In general, as A is Tate, any rational subset is a rational
subset of the second form inside a rational subset of the first form, verifying continuity
of HU � OX .U /! OX .U /.

Thus, any quasicompact open U � X is covered by finitely many Ui � U whose stabi-
lizer Gi � G is open. The intersection

T
i Gi � G is still open and stabilizes U , proving the

first claim. For the second claim, if U D Spa.A;AC/, one can choose all Ui D Spa.Ai ; ACi / � U
affinoid such that the action of Gi on Ai is continuous. Then the action of

T
i Gi on the

closed subspace A �
Q
i Ai is continuous, giving the result.

We will also need a result about extending group actions to finite étale covers.

L 2.3. – Let X D Spa.A;AC/ with A a strongly noetherian Tate ring. Let G be a
profinite group acting continuously onX , and letB be a finite étaleA-algebra,BC � B the inte-
gral closure of AC, and Y D Spa.B;BC/. Assume that there is some closed subgroupH0 � G
such that theH0-action onX lifts to anH0-action on Y , and fix such an action. Then there is an
open subgroup H � G containing H0 and a continuous action of H on Y compatible with the
action of X and the H0-action on Y . Given two such continuous actions of open subgroups H ,
H 0 on Y , there is an open subgroup H 00 � H \H 0 containing H0 on which they agree.

Note that in particular, one can apply the lemma in the case that H0 is trivial, or in the
case G D H0 �G0 of two commuting actions.
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p-ADIC COHOMOLOGY OF LUBIN-TATE TOWER 817

Proof. – Everything can be translated into actions onA resp.B. LetC 0.G;A/ be the ring
of continuous functions G ! A with pointwise addition and multiplication; this is again a
complete Tate ring, intuitively corresponding to the space X � G. There is a natural map
m W A ! C 0.G;A/ sending f 2 A to the map g 7! g.f /; this corresponds to the action
map X � G ! X . There is also the diagonal embedding p W A ! C 0.G;A/ corresponding
to the projection X �G ! X .

One checks that giving a continuous action of H on B is equivalent to giving an isomor-
phism of finite étale C 0.H;A/-algebras

B ˝A;m C
0.H;A/ Š B ˝A;p C

0.H;A/

satisfying the obvious cocycle condition over C 0.H �H;A/. Now recall the following result
of Elkik, [17], and Gabber-Ramero, [24, Proposition 5.4.53], cf. also [32, Lemma 7.5 (i)].

T 2.4. – LetRi be a filtered inductive system of complete Tate rings with compat-
ible rings of definition Ri;0 � Ri . Pick a pseudouniformizer $ 2 Ri;0 for some i , which we
assume is minimal, thus giving compatible pseudouniformizers$ 2 Ri;0 for all i . LetR0 be the
$ -adic completion of lim

�!i
Ri;0, and R D R0Œ$�1�. Then

RfKet Š 2-lim
�!i

.Ri /fKet :

Applying this to the system Ri D C
0.Hi ; A/ for a basis of open subgroups Hi � G

containing H0, with Ri;0 D C
0.Hi ; A0/, we get R D C 0.H0; A/ as the completed direct

limit. As we are given an isomorphism

B ˝A;m C
0.H0; A/ Š B ˝A;p C

0.H0; A/

of finite étale C 0.H0; A/-algebras satisfying the cocycle condition, the theorem of Elkik-
Gabber-Ramero shows that this spreads in an essentially unique way into an isomorphism

B ˝A;m C
0.H;A/ Š B ˝A;p C

0.H;A/

for an open subgroupH�G containingH0. Moreover, the cocycle condition is satisfied forH
sufficiently small, by applying the same reasoning for the system of the C 0.Hi �Hi ; A/.

This implies the same result for étale maps.

C 2.5. – Let X be a locally noetherian analytic adic space equipped with a
continuous action by a profinite groupG. LetY ! X be an étale map, and assume thatY is qcqs,
and carries a compatible action of a closed subgroupH0 � G. Then there is an open subgroupH
ofG containingH0 which acts continuously on Y extending theH0-action, compatibly with the
action on X , and two such actions agree after shrinking H . Any morphism Y ! Y 0 of qcqs
étale adic spaces equipped withH0-actions overX is equivariant for theH -action ifH is small
enough.

Proof. – We have already verified this result for finite étale maps and open subsets. In
general Y ! X has an open cover by finitely many subsets which are compositions of
open subsets and finite étale maps. Thus, we can get such actions over a quasicompact open
cover fYi ! Y g; to glue them to all of Y , we need to make them compatible on Yi �Y Yj .
As Y is quasiseparated, the fiber products Yi �Y Yj are quasicompact. The fact that any two

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



818 P. SCHOLZE

actions of open subgroupsH ,H 0 on Yi �Y Yj agree on an open neighborhood then gives the
action on Y . Similarly, one checks that this action is equivariant for morphisms.

Now we can define the equivariant étale site.

D 2.6. – Let X be a locally noetherian analytic adic space with a continuous
action by a locally profinite group G. Let .X=G/Ket be the site whose objects are (locally
noetherian analytic) adic spaces Y equipped with a continuous action ofG, and aG-equivariant
étale morphismY ! X . Morphisms areG-equivariant maps overX , and a family of morphisms
ffi W Yi ! Y g is a cover if jY j D

S
i fi .jYi j/.

Let .X=G/�
Ket denote the associated topos.

It is directly verified that .X=G/Ket has good properties, e.g., all finite limits exist. If G is
profinite, there is also a good notion of quasicompact and quasiseparated objects.

L 2.7. – Let X be a locally noetherian analytic adic space with a continuous action
by a profinite group G.

(i) An object Y 2 .X=G/Ket is quasicompact if and only if jY j is quasicompact.
(ii) An object Y 2 .X=G/Ket is quasiseparated if and only if jY j is quasiseparated.

(iii) A morphism f W Y ! Y 0 in .X=G/Ket is quasiseparated (resp. quasicompact) if and only
if jf j W jY j ! jY 0j is quasiseparated (resp. quasicompact).

(iv) Consider the set ofU 2 .X=G/Ket for whichU is affinoid; this forms a basis for the topology
consisting of qcqs objects which are stable under fiber products.

(v) The site .X=G/Ket is algebraic, in particular locally coherent.

Proof. – As étale maps are open, it follows that if jY j is quasicompact, then so
is Y 2 .X=G/Ket: If ffi W Yi ! Y g is a cover, so that jY j D

S
i fi .jYi j/, then finitely many of

the open subsets fi .jYi j/ already cover, giving a finite subcover in .X=G/Ket.

Next, we show that the set of affinoid U 2 .X=G/Ket forms a basis for the topology. For
any Y 2 .X=G/Ket, pick an open affinoid subset V � Y . This is stabilized by some open
subgroup H � G, and then U D V �H G is an affinoid space (as it is non-equivariantly
isomorphic to V �G=H ). One gets a G-equivariant map U ! Y , and these cover Y .
Obviously, the set of affinoid U 2 .X=G/Ket is stable under fiber products, proving (iv).

Now let Y 2 .X=G/Ket be quasicompact. Then we can cover Y by finitely many affinoid
Ui 2 .X=G/Ket. The resulting surjection from a quasicompact space

F
i jUi j to jY j shows that

jY j is quasicompact, proving (i). All other properties are readily established.

Moreover, we need the following property.

P 2.8. – Let X be a qcqs locally noetherian analytic adic space with a contin-
uous action by a profinite group G. The association mapping Y 2 .X=G/Ket to Y 2 XKet

defines a morphism of sites XKet ! .X=G/Ket under which X�
Ket is a projective limit of the fibered

topos ..X=H/�
Ket/H , where .X=H/�

Ket is considered as a fibered topos over the category of open
subgroups H � G in an obvious way. More generally, whenever H0 � G is a closed subgroup,
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.X=H0/
�

Ket is a projective limit of the fibered topos .X=H/�
Ket for H � H0 open subgroups of G.

In particular, for any sheaf F 2 .X=G/�
Ket,

H i ..X=H0/Ket; F / D lim
�!

H0�H�G

H i ..X=H/Ket; F /;

where we write F also for its pullback to .X=H0/Ket, resp. .X=H/Ket.

Proof. – We can replace .X=G/Ket by the site .X=G/qcqs
Ket of qcqs Y 2 .X=G/Ket, which gives

rise to the same topos. Then, by Lemma 2.5 and the previous identification of qcqs objects,
we have an identification of categories

.X=H0/
qcqs
Ket Š 2-lim

�!H0�H�G
.X=H/

qcqs
Ket ;

where H runs over open subgroups. Moreover, .X=H0/
qcqs
Ket is equipped with the weakest

induced topology. Thus, by SGA 4 VI, théorème 8.2.3, we get the result.

It is useful to combine this result with the observation that .X=H/Ket ! .X=G/Ket is a slice
if H � G is open.

P 2.9. – Let X be a locally noetherian analytic adic space with a contin-
uous action by a locally profinite group G. Let H � G be an open subgroup, and consider
X �H G 2 .X=G/Ket. Then the functorU 7! U �H G induces an equivalence between .X=H/Ket

and the slice site .X=G/Ket=.X �H G/.

Proof. – It is enough to prove that one gets an equivalence of categories .X=H/Ket Š

.X=G/Ket=.X �H G/, as the notion of covers corresponds. The inverse functor is given by
sending aG-equivariant map U ! X �H G to the fiber overX D X �H H ! X �H G, and
the functors are clearly inverse.

Assume now that X lives over Spa.K; OK/ for some nonarchimedean field K; fix a
pseudouniformizer $ 2 OK . Let OCX =$ be the sheaf on XKet which is the sheafication
of U 7! OCX .U /=$ .

L 2.10. – Let X be a locally noetherian analytic adic space over Spa.K; OK/

with a continuous action by a locally profinite group G (compatible with the trivial action
on Spa.K; OK/). The association OCX=G=$ mapping U 2 .X=G/Ket to .. OCX =$/.U //

G is a
sheaf on .X=G/Ket. The pullback of OCX=G=$ to XKet is equal to OCX =$ .

We warn the reader that there is no sheaf OCX=G in general whose reduction modulo $

is OCX=G=$ , so that we are doing some abuse of notation here. The problem is that OCX may
not have enough sections invariant under G, but continuity of the action of G implies that
there are many sections which are invariant modulo $ .

Proof. – The sheaf property of OCX=G=$ follows by taking G-invariants in the sheaf

property of OCX =$ . To check the pullback, one first checks from the definition that the
definition of OCX=G=$ is compatible with pullback to .X=H/Ket for an open subgroupH � G,
and then one uses Proposition 2.8 along with the observation that by continuity of the
G-action, any section of . OCX =$/.U / is invariant under some open H � G if U is qcqs.

We will need the following “conservativity” property.
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L 2.11. – LetX be a locally noetherian analytic adic space with a continuous action
by a locally profinite group G. Then a pointed sheaf F on .X=G/Ket is trivial if and only if its
pullback to XKet is trivial.

Proof. – Assume that the pullback of F toXKet is trivial, and let s 2 F .U /,U 2 .X=G/Ket,
be a section. Assume first that s becomes trivial after pullback to .X=H/Ket for
some open H � G. Then s becomes trivial over U 2 .X=H/Ket, which corresponds
to U �H G 2 .X=G/Ket, which is a cover U �H G ! U of U in .X=G/Ket, so that s is already
trivial in .X=G/Ket.

Thus, it is enough to check that s becomes trivial after pullback to .X=H/Ket for some
open H � G. In particular, we may assume that G is profinite, and then that U is qcqs.
By assumption the pullback of s to U 2 XKet is trivial. On the other hand, by Proposition 2.8,
we have

H 0.UKet; F / D lim
�!
H�G

H 0..U=H/Ket; F /;

so s becomes trivial on U 2 .X=H/Ket for some open H � G, finishing the proof.

Now assume that X is a locally noetherian adic space over Spa.Qp;Zp/ and that
.XH /H ! X is a G-torsor for some profinite group G, in the sense that for all open
normal subgroups H � G, XH ! X is a finite étale G=H -torsor, compatibly in H .
Moreover, assume that there is a perfectoid space X1 ! X such that

X1 � lim
 �
H

XH

in the sense that there is a covering ofX1 by affinoid perfectoidU1 D Spa.R1; RC1/ coming
as pullback of affinoid UH D Spa.RH ; RCH / � XH for all sufficiently small H , with RC1 the
p-adic completion of lim

�!H
RCH . In that case, one has jX1j Š lim

 �H
jXH j. (Cf. [35, Defini-

tion 2.4.1].)
Note that there is a natural morphism of sites .X1=G/Ket ! XKet, as any étale U ! XKet

pulls back to an étale U1 ! X1 equipped with a continuous action of G. Assume more-
over that a locally profinite group J acts continuously and compatibly on X and all XH ,
commuting with the G-action. Then J acts continuously on X1.

P 2.12. – The natural morphism .X1=G �J /Ket ! .X=J /Ket is an equivalence
of sites.

Proof. – Let us sketch the argument. It is enough to check that there is an equivalence of
categories .X1=G � J /Ket Š .X=J /Ket, as the notions of covers correspond. For this, we can
replace J by an open subgroup, in particular we can assume that J is compact. Also we can
argue locally on X and assume that X , and thus all XH , X1, are qcqs.

Now it is enough to prove .X1=G � J /
qcqs
Ket Š .X=J /

qcqs
Ket by covering general objects by

qcqs objects. We claim that there is an equivalence of categories

.X1=J /
qcqs
Ket D 2-lim

�!H�G
.XH=J /

qcqs
Ket :

As usual, such a statement can be reduced to quasicompact open embeddings and finite étale
covers individually. For quasicompact open embeddings, it follows from the identification
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jX1j Š lim
 �H

jXH j of topological spaces. For finite étale covers, it follows from the theorem
of Elkik-Gabber-Ramero, Theorem 2.4, along with the assumption X1 � lim

 �H
XH .

Now, if U ! X1 is étale and qcqs and admits a compatible continuous G � J -action,
then J -equivariantly U ! X1 comes via pullback from some étale qcqs UH ! XH for H
small enough. Then the identification U D UH �XH X1 ! X1 endows U with a second
H � J -action, agreeing on J . As in the proof of Proposition 2.8, we have an equivalence of
categories

.X1=J /
qcqs
Ket Š 2-lim

�!H
.X1=H � J /

qcqs
Ket ;

which shows that the two H � J -actions on U are compatible after shrinking H . This gives
an H � J -equivariant identification U D UH �XH X1, and then the G � J -action on U
endows UH with a G=H � J -action. By finite étale descent, this descends UH to U0 ! X ,
a qcqs étale J -equivariant map. One checks that this gives the desired equivalence of cate-
gories.

L 2.13. – Under the identification of topoi .X1=G/�Ket Š X
�

Ket , the sheaves OCX1=G=p

and OCX =p correspond.

Proof. – By Lemma 2.11, this can be checked after pullback to .X1/Ket. By Lemma 2.10,
the sheaf OCX1=G=p pulls back to OCX1=p. The same can be verified for OCX =p by using the
local structure of X1 � lim

 �H
XH and [32, Theorem 7.17] to compute the pullback along

.X1/Ket ! XKet.

3. Finiteness

Let us use the notation from the introduction, so n � 1 is an integer and F=Qp a finite
extension with ring of integers O � F and $ 2 O. Let q be the cardinality of the residue
field of F , which we identify with Fq . Fix an algebraically closed extension k of Fq , e.g., Fq .
Let MF D F ˝W.Fq/ W.k/ be the completion of the unramified extension of F with residue

field k. Let MO � MF be the ring of integers.

In this situation, one has the Lubin-Tate tower .M LT;K/K�GLn.F /, which is a tower of
smooth rigid-analytic varieties M LT;K over MF parametrized by compact open subgroupsK
of GLn.F /, with finite étale transition maps, cf. [26]. There is a compatible continuous action
ofD� on all M LT;K , as well as an action of GLn.F / on the tower, i.e., g 2 GLn.F / induces
an isomorphism between M LT;K and M LT;g�1Kg . There is the Gross-Hopkins period
map, [26],

�GH W M LT;K ! Pn�1
MF
;

compatible for varying K, which is an étale covering map of rigid-analytic varieties with
fibers GLn.F /=K. It is alsoD�-equivariant if the right-hand side is correctly identified with
the Brauer-Severi variety for D=F (which splits over MF ). Moreover, there is a Weil descent
datum on M LT;K (cf. [31, 3.48]), under which �GH is equivariant, under this identification
of Pn�1

MF
with the Brauer-Severi variety for D=F .
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Moreover, denote by M LT;1 over MF (which lives over the completion of the maximal
abelian extension of F , which is a perfectoid field) the perfectoid space constructed in [35],
so that

M LT;1 � lim
 �
K

M LT;K :

Fix an admissible Fp-representation � of GLn.F /. We want to construct a sheaf F �

on .Pn�1
MF
=D�/Ket, which is also equivariant for the Weil descent datum. The idea is to descend

the trivial sheaf � along the map

�GH W M LT;1 ! Pn�1
MF
;

which can be considered as a GLn.F /-torsor.

P 3.1. – The association mapping a D�-equivariant étale map U ! Pn�1
MF

to
the Fp-vector space

Mapcont;GLn.F /�D�.jU �Pn�1
MF

M LT;1j; �/

of continuous GLn.F / �D�-equivariant maps defines a Weil-equivariant sheaf F � on .Pn�1
MF
=D�/Ket.

The association � 7! F � is exact, and all geometric fibers of F � are isomorphic to � , i.e.,
for any x D Spa.C; CC/ ! Pn�1

MF
with C= MF complete algebraically closed and CC � C an

open bounded valuation subring, the pullback of F � to Nx,

F �; Nx D lim
�!

Nx2U2.Pn�1
MF
=D�/Ket

F �.U /;

is isomorphic to �; the isomorphism is canonical after fixing a lift of Nx to M LT;1.

Proof. – As étale covers induce (by definition) surjections on topological spaces and are
open, it follows that F � is a sheaf; Weil equivariance follows from Weil equivariance of all
other objects involved. By exactness of pullback and Lemma 2.11, exactness of� 7! F � can
be checked after pullback to .Pn�1

MF
/Ket. The pullback of F � to .Pn�1

MF
/Ket is the sheaf assigning

to an étale U ! Pn�1
MF

the set of continuous GLn.F /-equivariant maps

jU �Pn�1
MF

M LT;1j ! �;

as if U is qcqs, any such map is automatically equivariant for some openH � D�. Here, we
use Proposition 2.8 to compute the pullback of F � . To check exactness over .Pn�1

MF
/Ket, we

check at geometric points; it is enough to prove that the stalk of F � on any geometric point
is equal to � . Thus, fix some geometric point Nx D Spa.C; CC/! Pn�1

MF
, and let fUi ! Xg be

the cofiltered inverse system of affinoid étale neighborhoods of Nx; we may assume that they
are all connected. Then

F �; Nx D lim
�!
i

Mapcont;GLn.F /.jUi �Pn�1
MF

M LT;1j; �/ :

Observe that as Ui is connected, GLn.F / acts transitively on the connected components
of jUi �Pn�1

MF

M LT;1j. It follows that the map F �; Nx ! � given by evaluation at a fixed

point of Nx �Pn�1
MF

M LT;1 is injective. To check surjectivity, note that by smoothness of � ,
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any element f 2 � is invariant under some open subgroup 1C$mMn. O/ of GLn.F /. On
the other hand, for any m, one can choose Ui so that Ui ! Pn�1

MF
factors over

Ui ! M LT;m D M LT;1C$mMn. O/ :

In that case, there is a GLn.F /-equivariant continuous surjection

jUi �Pn�1
MF

M LT;1j ! GLn.F /=.1C$mMn. O// :

Composing with the action map GLn.F /=.1C$mMn. O//! � given by acting on f then
shows surjectivity of F �; Nx ! � .

Let C= MF be an algebraically closed complete extension with ring of integers OC . By a
subscript C , we denote the base change to Spa.C; OC /. The goal of this section is to prove
the following theorem.

T 3.2. – For any i � 0, the D�-representation H i
Ket.P

n�1
C ; F �/ is admissible

and vanishes for i > 2.n � 1/. If � is injective as GLn. O/-representation, then it vanishes
for i > n � 1. Moreover, the natural map

H i
Ket.P

n�1
C ; F �/˝Fp OC =p ! H i

Ket.P
n�1
C ; F � ˝ OCX =p/

is an almost isomorphism, andH i
Ket.P

n�1
C ; F �/ is independent of C (i.e., the natural map for an

inclusion C ,! C 0 is an isomorphism).

The almost isomorphism with OCX =p-cohomology is an analog of a result of Falt-
ings, [21, §3, Theorem 8], cf. also [33, Theorem 1.3]. One may hope that it allows one to
understand the p-adic Hodge-theoretic properties of the Galois representations appearing
in H i

Ket.P
n�1
C ; F �/ for Banach space representations � , following e.g., [33].

Our proof of Theorem 3.2 follows closely the proof [33, Theorem 1.3]. It starts by proving
finiteness of the OCX =p-twisted cohomology groups, and there it starts with a local finiteness
result. Let us first recall the form of this result in [33, Lemma 5.6 (ii)]. For the formulation,
we need two definitions.

D 3.3. – Let V be a smooth affinoid adic space over Spa.C; OC /. A map

V ! Tn WD Spa.C hT˙11 ; : : : ; T˙1n i; OC hT
˙1
1 ; : : : ; T˙1n i/

is a set of good coordinates if it can be written as a composite of finite étale maps and rational
embeddings.

D 3.4. – Let V be a separated analytic adic space, and U � V a subset. Then
U is said to be strictly contained in V if for any maximal point x D Spa.K; OK/ 2 U and
any open bounded valuation subring KC � K, there is a map Spa.K;KC/ ! V extending
Spa.K; OK/! U .

If U is a quasicompact open subset, then recall that by [27, Theorem 5.1.5], U admits a
universal compactification into a proper (but not finite type) adic space NU , and the condition
can be rephrased as saying that the map U ! V extends (necessarily uniquely) to NU ! V ;
in other words, the inclusion U ! V factors over a proper space. It is also equivalent to the
classical notion [28, Definition 2.1].
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L 3.5 ([33, Lemma 5.6 (ii)]). – Let V be a smooth affinoid adic space over Spa.C; OC /
with good coordinates, and let U � V be a strict rational subset. Then the image of

H i .VKet; OC=p/! H i .UKet; OC=p/

is almost finitely generated for all i � 0.

In order to facilitate applications, let us note that this result is true without the “good
coordinates” assumption.

C 3.6. – LetV be a separated smooth quasicompact adic space over Spa.C; OC /,
and let U � V be a strict quasicompact open subset. Then the image of

H i .VKet; OC=p/! H i .UKet; OC=p/

is almost finitely generated for all i � 0.

Proof. – Our strategy is to compute both sides via compatible Cech spectral sequences
associated to coverings of V and U by subsets V 0, U 0 to which the previous result applies.
By [33, Lemma 5.4], for this strategy to work in cohomological degree i , we actually need to
run via N spectral sequences, where N � i C 2. Thus, fix some i and N � i C 2.

In a first step, assume that V is affinoid. Below, we will construct a finite index set J along
with a cover U D

S
j2J Uj and rational subsets Vj � V , such that for all j 2 J , Vj is an

affinoid with good coordinates, and Uj � Vj is a strict rational subset. Given this data, we
can find intermediate strict rational subsets Uj D U

.N/
j � � � � � U

.1/
j D Vj . For any subset

S � J , let U .k/S D
T
j2S U

.k/
j . Then VS WD U

.1/
S � Vj is a rational subset, so that VS has

good coordinates; moreover, U .k/S � VS is a rational subset. This means that Lemma 3.5

applies to U .kC1/S � U
.k/
S for all S ¤ ;, k D 1; : : : ; N � 1. Let U .k/ D

S
j2J U

.k/
j � V . For

each k D 1; : : : ; N , there is a Cech spectral sequenceM
S�J;jS jDm1C1

Hm2.U
.k/
S ; OC=p/) Hm1Cm2.U .k/; OC=p/;

together with maps between these spectral sequences. Applying Lemma 3.5 and [33,
Lemma 5.4] gives the result in the case that V is affinoid.

To handle the general case, let us again take a finite index set J along with a cover
U D

S
j2J Uj and rational subsets Vj � V , such that for all j 2 J , Vj is an affinoid and

Uj � Vj is a strict rational subset. Given this data, we can find intermediate strict rational
subsets Uj D U

.N/
j � � � � � U

.1/
j D Vj . For any subset S � J , let U .k/S D

T
j2S U

.k/
j .

Then VS WD U
.1/
S � Vj is affinoid (as V is separated); moreover, U .k/S � VS is a strict subset.

This means that the affinoid case already handled applies to U .kC1/S � U
.k/
S for all S ¤ ;,

k D 1; : : : ; N � 1. Let U .k/ D
S
j2J U

.k/
j � V . For each k D 1; : : : ; N , there is a Cech

spectral sequence M
S�J;jS jDm1C1

Hm2.U
.k/
S ; OC=p/) Hm1Cm2.U .k/; OC=p/;

together with maps between these spectral sequences. Applying the affinoid case already
handled and [33, Lemma 5.4] gives the result.
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It remains to construct the cover U D
S
j2J Uj and Vj � V such that for all j 2 J ,

Vj is an affinoid with good coordinates and Uj � Vj is a strict rational subset. This is
similar, but easier, than [33, Lemma 5.3]. Pick a maximal point x 2 U , with closure fxg � V
in V . We claim that there is an affinoid subset Vx � V containing fxg. For this, we use
a result of Temkin, [42, Theorem 3.1]. This requires some translation, as he works with
Berkovich spaces there. As V is a qcqs adic space, it is equivalent to a qcqs rigid space, or to a
compact Hausdorff strictlyC -analytic Berkovich space. The question whether the germ Vx is
good is precisely the question whether there is an affinoid neighborhood Vx of fxg. The
criterion of Temkin answers this question in terms of the closure fxg in the adic space, cf.
[42, Remark 2.6]. As V is separated, this closure embeds into the Riemann-Zariski space of
the completed residue field K.x/ at x, by the valuative criterion for separatedness, cf. [27,
§1.3]. On the other hand, by the assumption that U is strictly contained in V , fxg surjects
onto the Riemann-Zariski space ofK.x/. This identifies fxgwith the Riemann-Zariski space
of K.x/, which is affinoid in the sense of [42, §1]. This verifies the existence of Vx . By [33,
Lemma 5.2], we may assume that Vx has good coordinates. We may then find a strict rational
subset Ux � Vx contained in U , and containing U \ fxg. The union of all Ux is equal to U ;
by quasicompacity, we can find a finite subcoverU D

S
j2J Uj , along with Vj � V such that

Uj is strictly contained in Vj . This produces the desired cover.

To formulate the local finiteness result in the current setup, recall that one has the Gross-
Hopkins period map at level 0

�GH W M LT;0 ! Pn�1
MF
;

which admits local sections as a map of adic spaces. Here and in the following, we write
M LT;0 D M LT;GLn. O/ for the space at level 0. Pick some affinoid open subset V � Pn�1

MF

such that M LT;0 ! Pn�1
MF

admits a section V ! M LT;0 on V , which we fix. Recall that

F � is built from the GLn.F /-torsor M LT;1 ! Pn�1
MF

, which factors over a GLn. O/-torsor
M LT;1 ! M LT;0. Therefore, the pullback of F � to M LT;0 (and thus to V ) depends only
on the GLn. O/-representation �jGLn. O/

. More precisely, for any GLn. O/-representation �0,

one can define the sheaf F �0
on .M LT;0=D

�/Ket by setting

F �0
.U / DMapcont;GLn. O/�D�.jU �M LT;0 M LT;1j; �0/

for U 2 .M LT;0=D
�/Ket. The obvious analog of Proposition 3.1 holds true in this setup.

Pick a rational subset U � V which is strictly contained in V .

L 3.7. – For any m � 0, there is a compact open K0 � D� stabilizing V , U and the
section V ! M LT;0 such that for all K � K0 and any admissible smooth representation �0
of GLn. O/, the image of the natural map

H i ..VC =K/Ket; F �0
˝ OC=p/! H i ..UC =K/Ket; F �0

˝ OC=p/

is almost finitely generated for all i D 0; : : : ; m.

Proof. – Let �reg D C 0.GLn. O/;Fp/ be the regular representation of GLn. O/. There is
a resolution

0! �0 ! .�reg/n1 ! .�reg/n2 ! � � �
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for some integers ni 2 Z. This follows from the anti-equivalence of admissible smooth
GLn. O/-representations and finitely generated FpŒŒGLn. O/��-modules, and Lazard’s
theorem thatFpŒŒGLn. O/�� is noetherian, cf. e.g., [19, Theorem 2.1.2, Equation 2.2.12]. Using
exactness of�0 7! F �0

, this induces anE1-spectral sequence computingH i ..V=K/Ket; F �0
/

in terms ofH i ..V=K/Ket; F �reg/, and similarly for U . Filtering U � V byN strict inclusions
of rational subsets and using [33, Lemma 5.4] reduces the lemma to the case �0 D �reg. (5)

LetV1 ! M LT;1 be the pullback ofV ! M LT;0; thenK still acts onV1 2 .M LT;1/Ket.
Recall that there is the isomorphism between Lubin-Tate and Drinfeld tower at infinite level

M LT;1 Š M Dr;1;

cf. [22], [23], which is an isomorphism of perfectoid spaces by [35, Theorem 7.2.3]. Also recall
that the Drinfeld tower is a tower of smooth adic spaces

M Dr;K

over Spa. MF ; MO/, parametrized by compact open subgroupsK � D�. By [35, Theorem 6.5.4],
one has

M Dr;1 � lim
 �
K

M Dr;K :

In particular, by Proposition 2.12, one has an equivalence of sites

.M Dr;1=K/Ket Š .M Dr;K/Ket;

under which V1 with its continuousK-action descends to some VK 2 M Dr;K . Then VK is a
quasicompact separated smooth adic space over Spa. MF ; MO/. Applying Proposition 2.12 toVK
then shows that there is an equivalence of sites

.V1=K/Ket Š .VK/Ket :

L 3.8. – Let ˛ W .V1=K/Ket ! .V=K/Ket denote the projection. There is a quasi-
isomorphism of complexes of sheaves on .V=K/Ket

R˛� OCV1=K=p Š F �reg ˝ OCV=K=p :

Proof. – Let ˛m W .Vm=K/Ket ! .V=K/Ket denote the projection from the preimage
Vm � M LT;m, where M LT;m D M LT;1C$mMn. O/. Then .Vm=K/Ket is equivalent to the slice
of .V=K/Ket over Vm 2 .V=K/Ket with its natural K-action. As Vm is finite étale over V , one
has an isomorphism

R˛m� OCVm=K=p Š F C.GLn. O/=.1C$mMn. O//;Fp/ ˝ OCV=K=p :

Indeed, this can be checked locally on .V=K/Ket, and after pullback to the slice of .V=K/Ket

over Vm, everything decomposes into a direct sum, as

Vm �V Vm Š Vm �GLn. O/=.1C$mMn. O//:

(5) In this step, we need to takeK small enough to also stabilize all intermediate rational subsets. As the number of
intermediate rational subsets depends on the cohomological degree i , we need to take K dependent on i . A more
careful argument would certainly avoid this.
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Also note that OCV1=K=p D ˛� OCV=K=p, as can be checked after pullback to .V1/Ket by
Lemma 2.11, where it follows from V1 � lim

 �m
Vm. As

F �reg D lim
�!

F C.GLn. O/=.1C$mMn. O//;Fp/;

the statement of the lemma translates into the equality

R˛�˛
� G D lim

�!
m

R˛m�˛
�
m G

for the sheaf G D OCV=K=p on .V=K/Ket. In fact, this is true for any sheaf G on .V=K/Ket, and
follows from SGA 4 VI Corollaire 8.7.5 and the identification of .V1=K/�Ket as a projective
limit of the fibred topos

.Vm=K/
�

Ket Š .V1=.1C$
mMn. O// �K/Ket;

cf. Proposition 2.8, Proposition 2.12.

Thus, we can rewrite

H i ..VC =K/Ket; F �reg ˝ OCVC =K=p/ D H
i ..V1;C =K/Ket; OCV1;C =K=p/;

which in turn, by Lemma 2.13, can be rewritten asH i ..VK;C /Ket; OCVK;C =p/. Similarly, we have

H i ..UC =K/Ket; F �reg ˝ OCUC =K=p/ D H
i ..UK;C /Ket; OCUK;C =p/;

where UK � M Dr;K is defined like VK , so that UK is a strict open subset of VK . By
Corollary 3.6, the image of

H i ..VK;C /Ket; OCVK;C =p/! H i ..UK;C /Ket; OCUK;C =p/

is almost finitely generated, which is what we wanted to prove.

C 3.9. – Fix some j � 0. Then there is some compact openK0 � D� such that
for all open K � K0 and admissible smooth representations � of GLn.F /, the cohomology
group

H i ..Pn�1C =K/Ket; F � ˝ OC=p/

is almost finitely generated for all i D 0; : : : ; j .

Proof. – This follows from the local statement by picking sufficiently many open affinoid
covers of Pn�1 satisfying the hypothesis of Lemma 3.7 and using [33, Lemma 5.4], cf. proof
of [33, Lemma 5.8].

C 3.10. – For any compact open subgroup K � D� and admissible smooth
representation � of GLn.F /, the cohomology group

H i ..Pn�1C =K/Ket; F � ˝ OC=p/

is almost finitely generated for all i � 0.

Proof. – It is enough to prove this for i � j for any fixed j . Then the previous corol-
lary shows that the statement is true after replacing K by some open normal K 0 � K.
But H i ..Pn�1C =K/Ket; G / is computed by a Hochschild-Serre spectral sequence from
H i1.K=K 0;H i2..Pn�1C =K 0/Ket; G // for any sheaf G , giving the result in general.
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C 3.11. – For any compact open subgroup K � D� and admissible smooth
representation � of GLn.F /, the cohomology group

H i ..Pn�1C =K/Ket; F �/

is finite for all i � 0, and the map

H i ..Pn�1C =K/Ket; F �/˝ OC =p ! H i ..Pn�1C =K/Ket; F � ˝ OC=p/

is an almost isomorphism.

Proof. – The proof is the same as that of [33, Theorem 5.1] (which in turn is modeled on
that of [21, §3, Theorem 8]). Note that the argument there is written in terms of the pro-étale
site which we have not introduced forPn�1C =K. One can rewrite the argument entirely in terms
of the étale site as follows. On the pro-étale site of Pn�1C , one can look at the sheaf O[� which
is the quotient of O[ by the subsheaf of topologically nilpotent elements. It is a simple exercise
to present O[� as a colimit of the sheaf OC=p along suitable transition maps. Namely, first
define

OCC=p D OC=p ˝ OC mC

(which can be written as a colimit according to mC D
S
p1=n OC ). There is an isomorphism

x 7! xp � p.p�1/=px from OCC=p1=p to OCC=p (this can be checked on the pro-étale site
of Pn�1C ); let ê�1 W OCC=p Š OCC=p1=p Š p.p�1/=p OCC=p � OCC=p

be the inverse of this isomorphism composed with multiplication by p.p�1/=p. Then

O[� D lim
�!ê�1 OCC=p :

This implies that O[� comes via pullback from the étale site of Pn�1C , and in fact from
.Pn�1C =D�/Ket. One can check that O[� is a sheaf of O[C -modules; let O[�Œ.p[/k � � O[� denote
the subsheaf of elements killed by .p[/k . Then there are short exact sequences

0! O[�Œ.p[/k1 �! O[�Œ.p[/k1Ck2 �! O[�Œ.p[/k2 �! 0;

as well as Frobenius isomorphisms

O[�Œ.p[/k � Š O[�Œ.p[/pk �;

and O[�Œp[� Š OCC=p is almost isomorphic to OC=p. All of these statements can be checked
on the pro-étale site of Pn�1C . This implies that the cohomology groups

Mk D H
i ..Pn�1C =K/Ket; F � ˝ O[�Œ.p[/k �/

satisfy the assumptions of [33, Lemma 2.12]. In particular, there is an almost isomorphism

H i ..Pn�1C =K/Ket; F � ˝ OC=p/a Š . OaC =p/
r

for some integer r � 0, compatible with Frobenius. By tensoring with the maximal ideal, this
gives an actual isomorphism

H i ..Pn�1C =K/Ket; F � ˝ OCC=p/ Š .mC =p/
r ;
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compatible with Frobenius, which in turn induces an isomorphism

H i ..Pn�1C =K/Ket; F � ˝ O[�/ Š .C [=mC [/
r

compatible with Frobenius, by passing through the colimit defining O[�. But there is an
Artin-Schreier sequence

0! F � ! F � ˝ O[� ! F � ˝ O[� ! 0;

the exactness of which can be checked over the pro-étale site of Pn�1C , where F � is locally
trivial, and the result follows from the Artin-Schreier sequence for O[�. Now the long exact
cohomology sequence

� � � ! H i ..Pn�1C =K/Ket; F �/! H i ..Pn�1C =K/Ket; F � ˝ O[�/! H i ..Pn�1C =K/Ket; F � ˝ O[�/! � � �

implies that
H i ..Pn�1C =K/Ket; F �/ Š Frp;

as ' � 1 is surjective on C [=mC [ with kernel Fp.

L 3.12. – For any compact open subgroupK � D� and any sheaf G on .Pn�1C =K/Ket,
there is a Hochschild-Serre spectral sequence

H
i1
cont.K;H

i2.Pn�1C ; G //) H i1Ci2..Pn�1C =K/Ket; G / :

Here, all K-modules are considered as discrete.

Proof. – One gets the spectral sequence as a direct limit over K 0 of spectral sequences

H i1.K=K 0;H i2..Pn�1C =K 0/Ket; G //) H i1Ci2..Pn�1C =K/Ket; G /;

which one gets as Cartan-Leray spectral sequences for the covering Pn�1C �K0 K ! Pn�1C

in .Pn�1C =K/Ket, under the identification of .Pn�1C =K 0/Ket with a slice of .Pn�1C =K/Ket.

Also recall the following lemma about continuous group cohomology of p-adic Lie
groups.

L 3.13. – Let G be a compact p-adic Lie group, and let � be an admissible smooth
Fp-representation of G. Then H i

cont.G; �/ is finite-dimensional for all i � 0.

Proof. – Under the identification of continuous group cohomology with the derived
functor of G-invariants in case G is compact, cf. [20, Proposition 2.2.6], this follows from
the anti-equivalence of admissible smooth representations of G with finitely generated
FpŒŒG��-modules, cf. [19, 2.2.12], and Lazard’s theorem that FpŒŒG�� is noetherian, cf. e.g.,
[19, Theorem 2.1.2].

C 3.14. – For any admissible smooth representation � of GLn.F /, the coho-
mology group

H i
Ket.P

n�1
C ; F �/

is an admissible D�-representation invariant under change of C . The map

H i
Ket.P

n�1
C ; F �/˝Fp OC =p ! H i

Ket.P
n�1
C ; F � ˝ OC=p/

is an almost isomorphism.
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Proof. – The almost isomorphism follows by passing to the direct limit overK in Corol-
lary 3.11, using Lemma 2.8. For example, by computing the right-hand side using the
pro-étale site, and a simplicial affinoid perfectoid cover over which F � is free, one sees that
enlarging C ,! C 0, the map

H i
Ket.P

n�1
C ; F � ˝ OC=p/˝ OC =p OC 0=p ! H i

Ket.P
n�1
C 0 ; F � ˝ OC=p/

is an almost isomorphism. Here we use the fact that if X D Spa.R;RC/ is an affinoid
perfectoid space over Spa.C; OC / with base-change X 0 D Spa.R0; R0C/ to Spa.C 0; OC 0/,
thenR0C=p is almost isomorphic toRC=p˝ OC =p OC 0=p (cf. proof of [32, Proposition 6.18]).
This implies that H i

Ket.P
n�1
C ; F �/ is invariant under change of C .

To check that H i
Ket.P

n�1
C ; F �/ is an admissible D�-representation, we argue by induction

on i ; thus, assume the result is known for i 0 < i . We need to show that for any compact open
subgroup K � D�, the space

H i
Ket.P

n�1
C ; F �/

K

is finite-dimensional. Consider the Hochschild-Serre spectral sequence

H
i1
cont.K;H

i2
Ket .P

n�1
C ; F �//) H i1Ci2..Pn�1C =K/Ket; F �/

from Lemma 3.12. In particular, consider the contributions on the diagonal i1 C i2 D i .
For i2 < i , the groupH i2

Ket .P
n�1
C ; F �/ is admissible asK-representation by induction, which

by Lemma 3.13 implies that

H
i1
cont.K;H

i2
Ket .P

n�1
C ; F �//

is finite-dimensional if i2 < i . The only other contribution to the diagonal i1C i2 D i comes
from

H i
Ket.P

n�1
C ; F �/

K :

Assume it was infinite-dimensional. In the spectral sequence, it only interacts with terms
where i2 < i , and only finitely many such. This gives only a finite-dimensional space,
so an infinite-dimensional space survives to the E1-page, which contributes an infinite-
dimensional space to H i ..Pn�1C =K/Ket; F �/. However, this space is finite by Corollary 3.11.
Thus, we see that H i

Ket.P
n�1
C ; F �/ is an admissible D�-representation, as desired.

To complete the proof of Theorem 3.2, it remains to verify the vanishing statements in
large degrees. We claim that

H i
Ket.P

n�1
C ; F � ˝ OC=p/

is almost zero for i > 2.n� 1/ in general, and i > n� 1 if � is injective as GLn. O/-represen-
tation. (6) As the cohomological dimension of jPn�1C j is n�1, it is enough to prove that under
the projection � W .Pn�1C /Ket ! jPn�1C j,

Ri��.F � ˝ OC=p/

is almost for i > n � 1, and for i > 0 if � is injective as GLn. O/-representation. It is
enough to prove this after pullback to M LT;0;C , as M LT;0;C ! Pn�1C admits local
sections. After this pullback, F � can be written as the inductive limit of the F �H over all

(6) As remarked before, the vanishing for i > 2.n�1/ follows from a general result of Berkovich, [1, Theorem 2.5.1];
cf. also [27, Corollary 2.8.3].
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open subgroups H � GLn. O/, all of which are Fp-local systems. Thus, almost vanishing
for i > n � 1 follows from [33, Lemma 5.6].

Now assume � is injective as GLn. O/-representation. Then we may write � as GLn. O/-re-
presentation as a direct summand of a power of �reg. Thus, we can reduce to the case that
� D �reg. In that case, we have to compute

Rif� OC=p

for the projection f W .M LT;1;C /Ket ! jM LT;0;C j. But by [44, Lemma 2.10.1] (and its
proof), the space jM LT;0;C j is covered by open affinoid U whose preimage U1 � M LT;1;C is
affinoid perfectoid, so that by [32, Proposition 7.13], the higher cohomology groups
H i ..U1/Ket; OC=p/ are almost zero for i > 0.

4. Admissible representations: General base rings

In this section, we want to extend the finiteness results from the previous section to
admissible representations of GLn.F / over more general base rings, using the setup of
Emerton, [19].

D 4.1 ([19, §2]). – Let .A;m/ be a complete noetherian local ring with finite
residue field of characteristic p, and G a p-adic analytic group. An AŒG�-module V is called
smooth if for all v 2 V , there is some open subgroupH � G and i � 1 such that v isH -invariant
and miv D 0.

A smooth AŒG�-module V is called admissible if for all i � 1 and H � G open, the
A=mi -module V H Œmi � is finitely generated (equivalently, of finite length).

R 4.2. – In case A D Zp, the representations live on p-torsion modules like Qp=Zp.
In geometric settings, one gets such representations by considering the cohomology
with Qp=Zp-coefficients (which carries essentially the same information as completed
cohomology with Zp-coefficients).

We recall that the category of admissible AŒG�-modules is well-behaved.

T 4.3 ([19, Proposition 2.2.13]). – The category of admissible AŒG�-modules is
abelian, and a Serre subcategory of the category of smooth AŒG�-modules.

In this section, we prove the following generalization of Theorem 3.2.

T 4.4. – Let .A;m/ be a complete noetherian local ring with finite residue field of
characteristic p. Let V be an admissibleAŒGLn.F /�-module, and let F V be the corresponding
sheaf on .Pn�1C =D�/Ket. For all i � 0, the D�-representation

H i
Ket.P

n�1
C ; F V /

is admissible, independent of C , and vanishes for i > 2.n � 1/. The natural map

H i
Ket.P

n�1
C ; F V /˝Zp OC ! H i

Ket.P
n�1
C ; F V ˝ OC/

is an almost isomorphism.
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R 4.5. – Emerton also introduces the notion of p-adically admissible representa-
tions in [19, Definition 2.4.7], making it possible to say that completed cohomology (which
is a p-adically complete Zp-module) itself is admissible. An obvious variant holds for this
notion of admissibility as well.

Proof. – Note first that by Proposition 2.8, we have

H i
Ket.P

n�1
C ; F V / D lim

�!
K�D�

H i ..Pn�1C =K/Ket; F V /;

where K � D� acts trivially on H i
Ket..P

n�1
C =K/; F V /. Moreover, each site .Pn�1C =K/Ket is

coherent, so as V D lim
�!

V Œmj �, we have

H i ..Pn�1C =K/Ket; F V / D lim
�!

H i ..Pn�1C =K/Ket; F V Œmj �/;

wheremj annihilatesH i ..Pn�1C =K/Ket; F V Œmj �/. It follows thatH i
Ket.P

n�1
C ; F V / is smooth. To

prove admissibility, we now have Theorem 4.3 available.

Assume first that V is killed bymj . We induct on the minimal such j ; for j D 1, the result
is given by Theorem 3.2. Now look at the exact sequence

0! V Œm�! V ! V ! 0;

where V D V=V Œm�. It induces a long exact sequence

� � � ! H i
Ket.P

n�1
C ; F V Œm�/! H i

Ket.P
n�1
C ; F V /! H i

Ket.P
n�1
C ; F V /! � � � :

The outer two terms are admissible by induction. This implies, by Theorem 4.3, that the
middle term is admissible as well. Using the 5-lemma, one also proves the almost isomor-
phism by induction.

In general, the almost isomorphism follows by writing

H i
Ket.P

n�1
C ; F V / D lim

�!
H i
Ket.P

n�1
C ; F V Œmj �/;

and similarly for the OC=p-twisted cohomology groups. For admissibility, we induct on i ,
so assume that for all admissible AŒGLn.F /�-modules V , H i 0

Ket .P
n�1
C ; F V / is admissible

for i 0 < i . Fix some j and V , and generators .f1; : : : ; fn/ D mj . There is an exact sequence

0! V Œmj �! V
.f1;:::;fn/
������! V n :

Let V D V=V Œmj � and W D coker.V
.f1;:::;fn/
�! V n/ D V n=V , both of which are admissible

AŒGLn.F /�-modules. Now

H i
Ket.P

n�1
C ; F V /Œm

j � D ker
�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V n/

�
Œmj �;

and there is an exact sequence

0! ker
�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V /

�
Œmj �

! ker
�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V n/

�
Œmj �

! ker
�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V n/

�
Œmj � :

Therefore, it is enough to show that the two outer terms

ker
�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V /

�
; ker

�
H i
Ket.P

n�1
C ; F V /! H i

Ket.P
n�1
C ; F V n/

�
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are admissible AŒD��-modules. But the first admits a surjection from the admissible
AŒD��-module

H i
Ket.P

n�1
C ; F V Œmj �/;

and the second from the AŒD��-module

H i�1
Ket .Pn�1C ; F W /;

which is admissible by induction.

We end this section with two results of general nature. First, we observe that the Weil
group action extends to a Galois group action. Let IF � WF � GalF be the inertia, Weil,
and Galois group of F , respectively.

P 4.6. – Let .A;m/ be a complete noetherian local ring with finite residue field
of characteristic p. Let V be an admissible AŒGLn.F /�-module, and let F V be the corre-
sponding sheaf on .Pn�1C =D�/Ket, where C D Cp (and k D NFp). Then the natural WF -action
on

H i
Ket.P

n�1
C ; F V /;

coming from the IF -action on C D Cp and the Weil descent datum, is continuous and extends
(necessarily uniquely) to a continuous action of GalF .

Proof. – Writing V as the union of V Œmj �, we may assume that mj D 0 for some j , so
that A is finite. Continuity of the WF -action reduces to continuity of the IF -action, which
follows from writing

H i
Ket.P

n�1
Cp ; F V / D lim

�!
M= MF

H i
Ket.P

n�1
M ; F V /

as a direct limit over finite extensions M of MF contained in Cp. Now for all compact open
subgroups K � D�, the group

H i
Ket.P

n�1
Cp ; F V /

K

is finite. But any continuous action of WF on a finite set extends continuously to GalF .
Namely, an open subgroup I0 � IF acts trivially, and it remains to extend theWF =I0-action
to a GalF =I0-action. This follows by observing that some power of any fixed Frobenius
element acts trivially, as any element of a finite group is of finite order.

Moreover, one can always compute H 0.

P 4.7. – Let .A;m/ be a complete noetherian local ring with finite residue
field of characteristic p. Let V be an admissible AŒGLn.F /�-module, and let F V be the
corresponding sheaf on .Pn�1C =D�/Ket. Then the natural map

H 0
Ket.P

n�1
C ; F V SLn.F// ,! H 0

Ket.P
n�1
C ; F V /

is an isomorphism. It acquires an action of GLn.F /=SLn.F / D F � (via the determinant map),
and the groupWF �D� acts via the mapWF �D� ! F � given by the inverse of the product of
the Artin reciprocity map (sending geometric Frobenii to uniformizers) and the reduced norm.
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Proof. – This follows from the identification of the geometric connected components

�0 M LT;1;C D F
�

and the identification of the GLn.F / �WF �D�-action given by Strauch, [38].

5. Shimura curves

For the global situation, we change notation slightly. Let now F be totally real number
field with a fixed place p abovep and fixed infinite place1F , andD0=F a quaternion algebra
which is definite at all infinite places, and split at p. Let G D D�0 be the algebraic group
of units of D0, and let D�=F be the nontrivial inner form of G which is isomorphic to G
away from p and 1F . Then, as notation suggests, D� is the algebraic group of units of a
quaternion algebraD=F ; it is a division algebra at p, and splits at1F . Fix an identification

G.Ap
F;f

/ Š D.Ap
F;f

/ :

Our previous local objects are given by Fp, G.Fp/ Š GL2.Fp/ and D�p D D
�.Fp/.

Associated with D�=F (or rather ResF=QD�) and the conjugacy class of

h W S D ResC=RGm ! .ResF=QD
�/R D

Y
� WF ,!R

D� ˝F;� R;

which is trivial in all components different from1F , and equal to

aC ib 2 S.R/ D C� 7!

 
a b

�b a

!
2 .D� ˝F;1F R/.R/ Š GL2.R/

in the component of 1F , one has (a tower of) Shimura curves ShU =F parametrized by
(sufficiently small) compact open U � D�.AF;f /.

Fix some tame level, i.e., a compact open subgroup U p � G.Ap
F;f

/. Then U p is of the

form U p D U
p
SU

S , where S is a finite set of finite places of F containing all places above p,
U
p
S � G.A

p
F;S / is compact open, and U S D

Q
v 62S GL2. OFv / � GL2.ASF;f / Š G.AS

F;f
/ is

a product of hyperspecial maximal compact open subgroups. We consider the Hecke algebra

T D TS D ZŒGL2.ASF;f /==U
S � D

Y
v 62S

Tv;

where
Tv D ZŒGL2.Fv/==GL2. OFv /� Š ZŒTv; S˙1v � :

Here, as usual, Tv is the Hecke operator corresponding to the double coset

GL2. OFv /

 
$v 0

0 1

!
GL2. OFv /;

and Sv is the one corresponding to

GL2. OFv /

 
$v 0

0 $v

!
GL2. OFv /;

where $v is a local uniformizer at v. Moreover, let us fix an absolutely irreducible represen-
tation

� W GalF;S ! GL2.Fq/;
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where GalF;S is the Galois group of the maximal extension of F unramified outside S and
q is a power of p. This gives rise to a maximal ideal m D m� of T, given as the kernel of
the map T ! Fq sending Tv to tr.�.Frobv// and Sv to qv det.�.Frobv// for v 62 S , where
Frobv 2 GalF;S is a Frobenius element, and qv is the cardinality of the residue field at v.

The Hecke algebra T acts on H i .ShKUp;C;Zp/ for all compact open K � D�p . Observe
that, as � is absolutely irreducible, the localization

H i .ShKUp;C;Zp/m D 0

at m vanishes for i ¤ 1. Indeed, in degree 0, the action of D�.AF;f / factors through
the determinant (i.e., reduced norm) det W D�.AF;f / ! A�

F;f
, so that in particular the

associated Galois representations are reducible. By Poincaré duality (with Fp-coefficients),
the same applies to i D 2, leaving only i D 1. Also note that this implies that

H 1.ShKUp;C;Zp/m
is torsion-free. To avoid trivialities, we assume that it is nonzero, i.e., � is modular.

Let T.KU p/ be the image of T in End.H 1.ShKUp;C;Z//, and let T.KU p/m be its m-adic
completion. Then T.KU p/m acts faithfully on

H 1.ShKUp;C;Zp/m :

There is an associated Galois representation.

T 5.1 ([8], [9]). – There is a unique (up to conjugation) continuous 2-dimensional
Galois representation

� D �m W GalF;S ! GL2.T.KU p/m/
unramified outside S , such that for all v 62 S ,

tr.�.Frobv// D Tv; det.�.Frobv// D qvSv :

Proof. – From [8], one gets the existence of Galois representations for the Qp-coho-
mology of ShKUp , which in particular (as T.KU p/ is reduced) gives a representation

GalF;S ! GL2.T.KU p/mŒ1=p�/ :

On the other hand, all characteristic polynomials of Frobenii take values in T.KU p/m, so
one gets a determinant with values in T.KU p/m, cf. [11, Example 2.32]. But � is absolutely
irreducible by assumption, so there is a representation � as desired by [11, Theorem 2.22]. (7)

Note that in particular, � D � mod m. In fact, one sees � in H 1.ShKUp;F ;Zp/m: We
want to prove that

H 1.ShKUp;F ;Zp/m D � ˝T.KUp/m �

for some T.KU p/m-module � on which GalF acts trivially. It turns out that there are some
useful general lemmas about such situations. We are thankful to Matt Emerton for related
discussions; in particular, part of the argument below is inspired by the proof of [18, Propo-
sition 5.5.3].

(7) Carayol in [9] gives a different argument for this gluing. For p ¤ 2, one can use the theory of pseudorepresen-
tations in place of determinants.
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D 5.2. – Let .R;mR/ be a noetherian local ring, G some group, and

�R W G ! GLn.R/

an n-dimensional representation such that �R D �R mod mR is absolutely irreducible.
LetM be anRŒG�-module. ThenM is said to be �R-typic if one can writeM as a tensor product

M D �R ˝R M0;

where M0 is an R-module, and G acts only through its action on �R.

P 5.3. – In the situation of Definition 5.2, if M is �R-typic, then

M0 D HomRŒG�.�R;M/ :

The functors M0 7! �R ˝R M0, M 7! HomRŒG�.�R;M/ induce an equivalence of categories
between the category of �R-typic RŒG�-modules and the category of R-modules.

Proof. – It is enough to prove that for any R-module M0, the natural map

M0 ! HomRŒG�.�R; �R ˝R M0/

is an isomorphism. As both sides commute with filtered colimits, we may assume that M0 is
finitely generated. Filtering by modules generated by one element, one can reduce to the case
that M0 D R=I for some ideal I � R. Replacing R by R=I , we can assume that M0 D R.
In that case, we have to prove that

EndRŒG�.�R/ D R :

But this follows from the assumption that �R is absolutely irreducible.

P 5.4. – In the situation of Definition 5.2, assume that M is �R-typic, and
N �M is an RŒG�-submodule. Then N is �R-typic.

Proof. – Write M D �R ˝R M0 as usual. We may assume that M0 is finitely generated,
by writing M0 as a filtered colimit of finitely generated modules M0;i and N as the filtered
colimit of N \ .�R ˝R M0;i / (noting that the category of �R-typic modules is closed under
filtered colimits).

We may further replace M0 by the image of

�_R ˝R N ,! �_R ˝R �R ˝R M0 !M0 :

After this reduction, we claim thatN DM . IfN ¤M , then by NakayamaN !M=mRM is
not surjective. The image ofN inM=mRM D �R˝R=mRM0=mR is equal to �R˝R=mRN for
someR=mR-vector spaceN , as �R is absolutely irreducible, andN isG-stable. LetM 00 be the
kernel of the composite map M0 ! M0=mR ! .M0=mR/=N , which is a proper submodule
ofM0. On the other hand, the image of �_R˝RN !M0 is contained inM 00, asN is contained
in the �R-typic module �R ˝R M 00. This is a contradiction, finishing the proof.

For later use, we record the following lemma.

L 5.5. – Let M be an RŒG�-module which is faithful as R-module (i.e., the map
R ! End.M/ is injective). Assume that M is �R-typic and � 0R-typic, for two representations
�R, � 0R as above. Moreover, assume that R is henselian. Then �R Š � 0R.
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Proof. – By checking over R=mR, one sees that �R Š � 0R; in particular, �R and � 0R are
of the same dimension. By [11, Theorem 2.22], it is enough to prove that the determinants
associated with �R and � 0R agree, i.e., for all g 2 G, the characteristic polynomials of �.g/ and
� 0.g/ agree. For this, it is enough to find ideals Ii � R with empty intersection, such that the
determinants agree modulo Ii for all i . WriteM D �R˝RM0 for someR-moduleM0, which
is necessarily faithful. For each elementm 2M0, one has the annihilator Im D Ann.m/ � R.
By faithfulness, the intersection of all Im is trivial. Thus, we may work modulo Im. Note that
�R ˝R R=Im ,! M sending x ˝ 1 to x ˝ m is an RŒG�-submodule. By Proposition 5.4,
�R ˝R R=Im is still � 0R-typic, so

�R ˝R R=Im Š .�
0
R ˝R R=Im/˝R=Im A

for some R=Im-module A. The isomorphism implies that Adim�R Š .R=Im/
dim�R , which

implies that A is finite projective of rank 1 as R=Im-module, i.e., a line bundle. As R=Im is
local, it follows that A Š R=Im is free. Thus, �R and � 0R are isomorphic after reduction
to R=Im, which finishes the proof.

Now one has the following theorem, due to Carayol: In [8], he gives a description of the
Qp-cohomology, and in [9], he explains how to get an integral statement.

T 5.6. – The T.KU p/mŒGalF;S �-module H 1.ShKUp;F ;Zp/m is � -typic.

Proof. – By Proposition 5.4, it is enough to prove that

H 1.ShKUp;F ;Zp/mŒ1=p�

is � -typic. But this follows from the description of the Qp-cohomology of ShKUp;F by
Carayol, [8].

At this point, we can also pass to completed cohomology. LetbH 1.U p;Zp/ D lim
 �
m

lim
�!
K

H 1.ShKUp;F ;Z=p
mZ/;

and bH 1.U p;Zp/m D lim
 �
m

lim
�!
K

H 1.ShKUp;F ;Z=p
mZ/m:

Then the inverse limit
T.U p/m WD lim

 �
K

T.KU p/m

acts faithfully and continuously on bH 1.U p;Zp/m.

P 5.7. – There is a unique (up to conjugation) continuous 2-dimensional
Galois representation

� D �m W GalF;S ! GL2.T.U p/m/
unramified outside S , such that for all v 62 S ,

tr.�.Frobv// D Tv; det.�.Frobv// D qvSv :

The ring T.U p/m is a complete noetherian local ring with finite residue field.
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Proof. – One gets a 2-dimensional determinant with values in T.U p/m by [11, Ex. 2.32].
This gives rise to a representation as � is absolutely irreducible, by [11, Theorem 2.22 (i)].

For the final assertion, note that the existence of the Galois representation � gives a map
from the Galois deformation ring R�;S to T.U p/m. This map is necessarily surjective, as Tv
and Sv can be recovered from the image of Frobenius elements Frobv. AsR�;S is a complete
noetherian local ring with finite residue field, so is T.U p/m.

P 5.8. – The T.U p/mŒGalF;S �-modulebH 1.ShUp;F ;Zp/m

is � -typic.

Proof. – This follows from Theorem 5.6 (noting that the � ’s are compatible), and the
observation that all operations in the definition ofbH 1.ShUp;F ;Zp/m D lim

 �
m

lim
�!
K

H 1.ShKUp;F ;Z=p
mZ/m

preserve � -typic modules.

6. Local-global compatibility

In this section, we prove a local-global compatibility result for the functor constructed
above. This turns out to be mostly a straightforward consequence of p-adic uniformization,
originally due to Čerednik, [10], and in moduli-theoretic terms to Drinfeld, [16], and gener-
alized by Rapoport-Zink, [31], and Varshavsky, [43].

We continue to consider the Shimura curves ShU associated to a division algebra D over
a totally real field F as in the previous section.

D 6.1. – Let �iUp be the admissible Zp-representation of GalF;S �D�p given by

�iUp D H
i .U p;Qp=Zp/ D lim

�!
K

H i .ShKUp;F ;Qp=Zp/ :

Let �Up be the admissible Zp-representation of GL2.Fp/ D G.Fp/ given by the space of
continuous functions

�Up D C
0.G.F /nG.AF;f /=U p;Qp=Zp/ :

We note that one would usually consider the space

�
comp
Up D C 0.G.F /nG.AF;f /=U p;Zp/;

but this carries the same information as �Up : One can write �Up D �
comp
Up ˝Zp Qp=Zp and

conversely
�

comp
Up D Tp�Up D lim

p
�Up Œp

n� :

A similar discussion applies to �iUp (at least if everything is interpreted in the derived sense, or
if everything is concentrated in only one cohomological degree). We will be mostly interested
in �Up WD �1Up .
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T 6.2. – There is a natural isomorphism of admissible GalFp �D
�
p -representations

over Zp,
H i
Ket.P

1
Cp ; F �Up

/ Š �iUp :

In fact, the statement is true on the derived level. The key tool to proving Theorem 6.2 is
the p-adic uniformization theorem.

T 6.3 (Čerednik). – Let U D KU p � D�.AF;f / D D�p �G.A
p

F;f
/. There is an

isomorphism of adic spaces over Cp,

.ShU ˝F Cp/ad
Š G.F /nŒM Dr;K;Cp �G.A

p

F;f
/=U p�;

compatible for varying U , and with the Weil descent datum to F .

A proof relying on Rapoport-Zink’s book has been given by Boutot-Zink, [3]. Let

ShUp;Cp D G.F /nŒM Dr;1;Cp �G.A
p

F;f
/=U p�;

which is a perfectoid space over Cp (equipped with a Weil descent datum to F ), such that

ShUp;Cp � lim
 �
K

.ShKUp ˝F Cp/ad :

These properties follow from the similar properties of M Dr;1;Cp , cf. [35, Theorem 6.5.4].
In particular, we find that

(1) H i .ShUp;Cp ;Qp=Zp/ D lim
�!
K

H i .ShKUp;Cp ;Qp=Zp/ D H i .U p;Qp=Zp/

as WFp � D
�
p -representations; here WFp � GalFp � GalF denotes the (local) Weil group

of Fp.
On the other hand, by [35, Proposition 7.1.1], there is the Hodge-Tate period map

�HT W M Dr;1;Cp ! P1Cp ;

compatible with Weil descent data, where the right-hand side is the Brauer-Severi variety
for D=F . Under the duality isomorphism

M Dr;1;Cp Š M LT;1;Cp ;

this is identified with the Grothendieck-Messing period map, cf. [35, Theorem 7.2.3]. The
GL2.Fp/-equivariance of the Hodge-Tate period map ensures that it gives a map

�Sh
HT W ShUp;Cp D G.F /nŒM Dr;1;Cp �G.A

p

F;f
/=U p�! P1Cp :

Note that �HT is WFp �D
�
p -equivariant.

R 6.4. – Here, we construct a global Hodge-Tate period map directly from the
local Hodge-Tate period map. As the Shimura curves under consideration are not of Hodge
type, one cannot formally use the construction of a global Hodge-Tate period map in [34]
to get one in this setup. In cases of overlap, it is to be expected that these period maps are
compatible, but we do not discuss this here.

P 6.5. – There is aWFp�D
�
p -equivariant isomorphism of sheaves on the étale

site of (the adic space) P1Cp ,

R�Sh
HTKet�Qp=Zp Š F �Up

:
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Proof. – First, we check that the higher direct images vanish. It is enough to check this
at stalks, so let Nx D Spa.C; CC/ ! P1Cp be any geometric point, i.e., C= MF is complete
algebraically closed andCC � C is an open and bounded valuation subring. We may assume
that C is the completion of the algebraic closure of the residue field of P1Cp at the image of Nx.
Let Nx ! Ui ! P1Cp be a cofinal system of étale neighborhoods of Nx; then Nx � lim

 �i
Ui . Write

U Sh
i ! ShUp;Cp

for the pullback of Ui , so that U Sh
i is a perfectoid space étale over ShUp;Cp . One can form

the inverse limit U Sh
Nx D lim

 �
U Sh
i in the category of perfectoid spaces (over Cp). Now

.Rj�Sh
HTKet�Qp=Zp/ Nx D lim

�!
i

H
j

Ket.U
Sh
i ;Qp=Zp/ D H j

Ket.U
Sh
Nx ;Qp=Zp/ :

On the other hand, the fiber U Sh
Nx is given by profinitely many copies of Nx,

U Sh
Nx D Spa.C 0.G.F /nGL2.Fp/ �G.ApF;f /=U

p; C /; C 0.G.F /nGL2.Fp/ �G.ApF;f /=U
p; CC// :

This implies that

H
j

Ket.U
Sh
Nx ;Qp=Zp/

vanishes for j > 0, and equals C 0.G.F /nGL2.Fp/�G.ApF;f /=U
p;Qp=Zp/ in degree 0, e.g.,

by writing U Sh
Nx as an inverse limit of finitely many copies of Nx and using [32, Corollary 7.18].

It remains to identify �Sh
HTKet�Qp=Zp. The previous computation already showed that the

fibers are isomorphic to �Up . Let U ! P1Cp be any étale map. We have to construct a map

H 0.U �P1Cp
G.F /nŒM Dr;1;Cp �G.A

p

F;f
/=U p�;Qp=Zp/

!Mapcont;GL2.Fp/.jU �P1Cp
M Dr;1;Cp j; C

0.G.F /nGL2.Fp/�G.ApF;f /=U
p;Qp=Zp// :

But the left hand side is the same as

C 0.jU �P1Cp
G.F /nŒM Dr;1;Cp �G.A

p

F;f
/=U p�j;Qp=Zp/

and it remains to observe that there is a natural GL2.Fp/-equivariant map

.U �P1Cp
M Dr;1;Cp / � .G.F /nGL2.Fp/ �G.ApF;f /=U

p/

! U �P1Cp
G.F /nŒM Dr;1;Cp �G.A

p

F;f
/=U p� :

From Proposition 6.5, we see that

H i .ShUp;Cp ;Qp=Zp/ D H i
Ket.P

1
Cp ; F �Up

/ :

Together with (1), this gives Theorem 6.2 (noting thatWFp -equivariance implies GalFp -equiv-
ariance by continuity).
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7. Consequences

In this section, we continue the setup of Section 5. Again, we fix an absolutely irreducible
(odd) 2-dimensional representation � of GalF over a finite extension Fq of Fp. We assume
that the associated maximal ideal m of the abstract Hecke algebra T satisfies

�Up;m ¤ 0

for some U p. We fix a finite set S of finite places containing all places above p, such that � is
unramified outside S , and U p D U pS � U

S , where U S D
Q
v 62S GL2. OFv / � GL2.ASF;f / Š

G.AS
F;f

/. We want to see that if �Up;m ¤ 0, then also �Up;m ¤ 0. Note that an automorphic
representation of G transfers to D� if and only if it is discrete series at p, by the Jacquet-
Langlands correspondence. We will construct some cuspidal types which will allow us to
construct congruences to representations which are discrete series (even cuspidal) at p, and
thus transfer all torsion classes from G to D�.

P 7.1. – Let m � 0 be an integer. Consider the compact open subgroup

Um D

( 
1C$mC1 OFp $m OFp

$mC1 OFp 1C$mC1 OFp

!)
� GL2.Fp/ :

There is a homomorphism

˛m W Um ! OFp=$
m OFp W

 
1C$mC1a $mb

$mC1c 1C$mC1d

!
7! b C c :

For each nontrivial character  W OFp=$
m OFp ! C�, if � is an irreducible smooth

representation of GL2.Fp/ such that �jUm contains the character  ı ˛m, then � is cuspidal.

Proof. – Assume that  is trivial on $k OFp with k minimal, so 0 < k � m. Let
 0 W OFp=$ OFp ! C� be the restriction of  to $k�1 OFp=$

k OFp . Then �jUmCk�1
contains the character  0 ı ˛mCk�1. But this corresponds to a ramified simple stratum
in the sense of [6, Definition 13.1], and so any representation � containing the char-
acter  0 ı ˛mCk�1 of UmCk�1 is cuspidal. Namely, `.�/ > 0 by [6, 12.9 Theorem] and
� cannot contain an essentially scalar stratum by [6, 13.2 Proposition (1), 11.1 Proposi-
tion 1], thus is cuspidal by [6, 14.5 Theorem, 13.3 Theorem].

Let e be the ramification index of ŒFp W Qp�, and fix a surjection ˇm W OFp=$
me ! Z=pmZ.

In particular, we get the following corollary.

C 7.2. – Let Am D ZpŒT �=
�
.T p

m
� 1/=.T � 1/

�
. Define a character

 m W Ume ! A�m by composing

ˇm ı ˛me W Ume ! OFp=$
me
! Z=pmZ

with the map sending 1 2 Z=pmZ to T 2 A�m. Any automorphic representation ofG appearing
in

C 0.G.F /nG.AF;f /=Ume � U p;  m/Œ1=p�
is cuspidal at p. �
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C 7.3. – Let T.U p/m be defined as in Section 5, so that it acts faithfully
on H 1.U p;Qp=Zp/m. The natural action of T on

�Up;m D C
0.G.F /nG.AF;f /=U p;Qp=Zp/m

extends to a continuous action of T.U p/m.

R 7.4. – One can deduce from this corollary the existence of Galois representa-
tions for Hilbert modular forms which are nowhere discrete series, assuming only its exis-
tence for forms which are discrete series at p. Thus, this provides an alternative argument for
Taylor’s construction of these Galois representations, [39], and it seems reasonable to expect
that one could do a similar argument in the compact unitary case, providing an alternative
to the construction of Galois representations of Shin, [37], and Chenevier-Harris, [12], by
reducing directly to the representations constructed by Harris-Taylor, [25].

Proof. – It is enough to check this for each group

C 0.G.F /nŒG.AF;f /=K 0U p�;Z=pmZ/m :

We may assume that K 0 D Ume is of the form seen in Corollary 7.2, as these groups are
cofinal. (As we use only onem, we may have to increase simultaneouslym in the coefficients
Z=pmZ for this.) In that case, Z=pmZ Š Am=.T � 1/, and  m mod .T � 1/ is trivial. Thus,
there is a T-equivariant surjection

C 0.G.F /nŒG.AF;f /=UmeU p�;  m/m ! C 0.G.F /nŒG.AF;f /=UmeU p�;Z=pmZ/m :

We see that it suffices to show that the action of T on

M D C 0.G.F /nŒG.AF;f /=UmeU p�;  m/m
extends to a continuous action of T.U p/m. But M is p-torsion free, so it suffices to check in
characteristic 0. There, the result follows by observing that by Corollary 7.2, all automorphic
representations of G appearing in MŒ1=p� are cuspidal at p, and thus transfer to D�, where
they show up in the cohomology group

H 1.ShKmUp;C;Zp/m
for Km sufficiently small. As T.U p/m � T.KmU p/m acts by definition continuously
on H 1.ShKmUp;C;Zp/m, the result follows.

Recall that there is a 2-dimensional Galois representation

� W GalF;S ! GL2.T.U p/m/;

and that by Proposition 5.8, �Up;m is � -typic, so

�Up;m D � ˝T.Up/m �Up Œ��

for some T.U p/mŒD�p �-module �Up Œ��.
Summing up, we have the following result.

C 7.5. – There is a canonical T.U p/mŒGalFp �D
�
p �-equivariant isomorphism

H 1
Ket.P

1
Cp ; F �Up;m

/ Š � jGalFp
˝T.Up/m �Up Œ�� :

The T.U p/m-module �Up Œ�� is faithful. �
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In particular this implies that the localization �Up;m determines the representation

� jGalFp
W GalFp ! GL2.T.U p/m/;

at least if � jGalFp
is absolutely irreducible.

T 7.6. – Assume that � jGalFp
is absolutely irreducible. (8) Then

� jGalFp
W GalFp ! GL2.T.U p/m/

is determined by �Up;m. More precisely, the T.U p/mŒGalFp �-module

H 1
Ket.P

1
Cp ; F �Up;m

/

is � jGalFp
-typic, and faithful as T.U p/m-module; this determines � jGalFp

by Lemma 5.5

above. �

We want to pass from information about the localization�Up atm to them-torsion�Up Œm�.
For this, observe the following.

P 7.7. – For any ideal I � T.U p/m, the natural map

H 1
Ket.P

1
Cp ; F �Up;mŒI �

/! H 1
Ket.P

1
Cp ; F �Up;m

/ŒI �

is injective, and the action of . O�D/1 on the cokernel is trivial, where . O�D/1 � O�D denotes the
subgroup of elements of reduced norm 1.

Proof. – The group

H 0.P1Cp ; F �Up;m
/ D H 0.ShUp;Cp ;Qp=Zp/m

is trivial, as � is absolutely irreducible (as global GalF -representation). Now note that if
I D .f1; : : : ; fm/ is a sequence of generators, then they give an embedding

�Up;m=�Up;mŒI � ,!

mY
iD1

�Up;m I

let � be its cokernel. The displayed injection implies that

H 0.P1Cp ; F �Up;m=�Up;mŒI �
/ D 0;

from which one gets injectivity of the map in the proposition.

To see that . O�D/1 acts trivially on the cokernel, note that the cokernel injects into the
kernel of

H 1
Ket.P

1
Cp ; F �Up;m=�Up;mŒI �

/! H 1
Ket.P

1
Cp ; F Qm

iD1 �Up;m
/ :

But this kernel admits a surjection fromH 0.P1Cp ; F �/. On such groups, . O�D/1 acts trivially
by Proposition 4.7.

(8) By Theorem 7.8 below, this can be determined in terms of �Up Œm�.
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T 7.8. – The 2-dimensional GalFp -representation � jGalFp
is determined (up to

isomorphism) by the admissible GL2.Fp/-representation

�Up Œm� D C
0.G.F /nG.AF;f /=U p;Fq/Œm� :

More precisely, � jGalFp
can be read off from the GalFp -representation

H 1
Ket.P

1
Cp ; F �Up Œm�

/;

which is an infinite-dimensional admissible GalFp �D
�
p -representation. Any indecomposable

GalFp -subrepresentation ofH 1
Ket.P

1
Cp ; F �Up Œm�

/ is of dimension� 2, and � jGalFp
is determined

in the following way.

Case (i) If there is a 2-dimensional indecomposable GalFp -representation

� 0 � H 1
Ket.P

1
Cp ; F �Up Œm�

/;

then � jGalFp
D � 0.

Case (ii) Otherwise, H 1
Ket.P

1
Cp ; F �Up Œm�

/ is a direct sum of characters of GalFp , and at most
two different characters �1; �2 of GalFp appear; if only one appears, let �2 D �1 be the only
character appearing. Then � jGalFp

D �1 ˚ �2.

Proof. – Recall that

H 1
Ket.P

1
Cp ; F �Up Œm�

/ � � jGalFp
˝ �Up Œm�;

with . O�D/1 acting trivially on the cokernel. Thus, the cokernel is an admissible representation
of D�=. O�D/1 D F �; an argument identifying the central character of �Up Œm� in terms
of the determinant of � then shows that the cokernel is finite-dimensional. Thus, to prove
thatH 1

Ket.P
1
Cp ; F �Up Œm�

/ is infinite-dimensional, it is enough to prove that �Up Œm� is infinite-
dimensional.

Assume it was finite-dimensional. Pick a minimal prime ideal Qm � T.KU p/m, corre-
sponding to some cuspidal automorphic representation � contributing toH 1.ShKUp ;Zp/m.
Let L=Qp be the finite extension which is the residue field of T.KU p/m at Qm, and let
$L 2 OL � L be a uniformizer and its ring of integers. Let QmL � OL ˝Zq T.KU p/m be the
kernel of the induced multiplication map to OL. ThenH 1.ShKUp;C; L= OL/Œ QmL� is a divisible
torsion OL-module whose $L-torsion is contained in �Up Œm� ˝Fq OL=$L. It follows that
the �-part of H 1.ShKUp;C; L/ is of bounded dimension over L, independently of K and � .
This implies that the D�p -representation appearing in � is of bounded dimension. On the
other hand, by using suitable cuspidal types one can make thisD�p -representation arbitrarily
ramified, which makes its dimension arbitrarily big, e.g., by [6, 54.4 Proposition].

Any indecomposable GalFp -subrepresentation of

H 1.P1Cp ; F �Up Œm�
/ � � jGalFp

˝ �Up Œm�

is isomorphic to a subrepresentation of � jGalFp
, and in particular of dimension � 2. If

� jGalFp
is indecomposable, then it occurs as a subrepresentation of H 1

Ket.P
1
Cp ; F �Up Œm�

/, as

the cokernel of the displayed inclusion is finite-dimensional. This deals with Case (i).
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If � jGalFp
D �1 ˚ �2 is decomposable, then the displayed inclusion shows that

H 1
Ket.P

1
Cp ; F �Up Œm�

/

is a direct sum of characters �1 and �2. Moreover, both of them appear (if they are distinct),
by finiteness of the cokernel. This deals with Case (ii).

8. Patching: The key geometric input

In this section, we will prove a refinement of Theorem 3.2 that will allow us to prove
compatibility with patching. The argument is closely related to the notion of ultraproducts,
but we will take a very algebraic approach.

Fix an infinite set f�igi2I of admissible smooth Fp-representations of GLn.F /. Assume
that for all compact open H � GLn. O/, the dimension of �Hi (for varying i ) is bounded.

Let … be the subset of smooth vectors in
Q
i2I �i , that is,

… D
[
H

Y
i2I

�Hi :

This is a representation of GLn.F / on anR D
Q
i2I Fp-module. Before going on, it is helpful

to recall some properties of R.

L 8.1. – The inclusion
I ,! SpecR;

sending i 2 I to the kernel of the projection R ! Fp to the i -th coordinate, identifies SpecR
with the Stone-Cech compactification of I . For each x 2 SpecR, the local ringRx is Fp. There
is an identification

R D C 0.SpecR;Fp/
of R with continuous maps SpecR! Fp. The ring R is coherent.

Proof. – The identification of SpecR with the Stone-Cech compactification of I is stan-
dard. (9) For each maximal ideal m � R, the corresponding ultrafilter Fm on I is given by
those subsets I 0 � I such that the idempotent element eI 0 which is 1 at i 2 I 0 and 0 other-
wise, is not in m.

First, we check that all local rings are isomorphic to Fp. Take a prime ideal p � R. For
any x 2 R, the equation

p�1Y
aD0

.x � a/ D 0

holds true (by checking in each factor). Modulo p, it follows that x D a for some a 2 Fp,
as desired. It follows that all points of SpecR are closed and thus that SpecR is profinite. It
follows that the structure sheaf on SpecR is the constant sheaf Fp, which implies the equality
R D C 0.SpecR;Fp/. As SpecR is profinite, this can be written as a filtered colimit of finite
products of Fp; this is a filtered colimit of noetherian algebras along flat transition maps,
showing that R is coherent.

(9) Contrary to some other statements of the lemma, it does not use that Fp is finite.
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Fix a point x 2 SpecRnI ; this corresponds to a nonprincipal ultrafilter F on I under the
identification with the Stone-Cech compactification. It follows that

�patch
WD …˝R Rx

is an admissible smooth Rx D Fp-representation of GLn.F /, which we will call the patched
representation. Here, the word “patched” is used in the sense of Taylor-Wiles patching, where
one builds a new object Xpatch from an infinite set fXigi2I of objects such that each “finite
piece” ofX looks like a corresponding “finite piece” ofXi for infinitely many i . In our setup,
we have for instance the following simple observation.

L 8.2. – For each compact open normal subgroup H � GLn. O/, there are infinitely
many i 2 I (more precisely, for all i 2 I 0 with I 0 2 F) such that

.�patch/H Š �Hi

as GLn. O/=H -representations.

Proof. – There are only finitely many isomorphism classes of GLn. O/=H -representations
of bounded dimension; recall that the dimension of �Hi was assumed to be bounded. As F is
an ultrafilter, it follows that for i 2 I 0 with I 0 2 F, all �Hi Š �0 are isomorphic. But then

…H
˝R

Y
i2I 0

Fp Š �0 ˝Fp

Y
i2I 0

Fp;

and thus also .�patch/H Š �0.

In the patching construction of [7], one chooses some representation of GLn. O/=H which
occurs infinitely often, and then chooses them compatibly for all H . After that, one wants
to extend the resulting GLn. O/-representation to all of GLn.F / by allowing extra Hecke
operators. This is possible only if the previous choices were made carefully; in our setup,
everything works automatically. We leave it to the reader to verify that the representation
constructed in [7] can be obtained as�patch for a suitably chosen x 2 SpecRnI ; this amounts
to going through their construction, and with every choice made one has to shrink the filter
accordingly.

As before, one can attach to … a sheaf F … of R-modules on .Pn�1
MF
=D�/Ket by sending a

D�-equivariant étale U ! Pn�1
MF

to the set of D� �GLn.F /-equivariant continuous maps

jU �Pn�1
MF

M LT;1j ! …:

The result of this section is the following.

T 8.3. – Assume that all �i are injective as H -representations for some compact
open subgroupH � GLn.F / (independent of i). (10) For all j � 0 and compact openK � D�,
the cohomology group

H j ..Pn�1C =K/Ket; F …/

is a finitely presented R-module.

(10) It would be enough to assume that they have perfect resolutions by injective H -representations which are of
“bounded complexity” in a suitable sense. As in our application, they will actually be injective, we restrict to this
simpler setup.
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To explain the meaning of this result, we need the following classification of finitely
presented R-modules.

L 8.4. – Let Vi , i 2 I , be a sequence ofFp-vector spaces of bounded dimension. Then

M D
Y
i2I

Vi

is a finitely presentedR-module. Conversely, ifM is a finitely presentedR-module with special-
ization Vi over Fp at i 2 I � SpecR, then the Vi are of bounded dimension, and the natural
map

M !
Y
i2I

Vi

is an isomorphism.

Proof. – For the first part, we may find a finite decomposition I D
FD
dD0 Id such that

Vi Š Fdp for i 2 Id . Then Md D
Q
i2Id

Fdp Š Rd
d

is a finite free Rd D
Q
i2Id

Fp-module,
and

M D

DY
dD0

Md

is a finitely presented R D
QD
dD0Rd -module.

Assume now that M is finitely presented. Then we may find a presentation

RN ! RD !M ! 0 :

The map RN ! RD is given by a matrix A D .Ai /i2I 2 MN�D.R/ D
Q
i2I MN�D.Fp/.

There are only finitely many possibilities for each Ai , so after a finite decomposition of I
(corresponding to a clopen decomposition of SpecR), we may assume that A is constant. In
that case, M Š Rd is constant, so that the claim is clear.

In particular, the following follows directly from Theorem 8.3, using that taking coho-
mology commutes with localization on R.

C 8.5. – Assume that all�i are injective asH -representations for some compact
open subgroup H � GLn.F /. For all j � 0 and compact open K � D�, one has

H j ..Pn�1C =K/Ket; F …/ D
Y
i2I

H j ..Pn�1C =K/Ket; F �i
/;

and thus

H j ..Pn�1C =K/Ket; F �patch/ D

 Y
i2I

H j ..Pn�1C =K/Ket; F �i
/

!
˝R Rx :

Intuitively, the last statement says that patching commutes with the functor

� 7! H j ..Pn�1C =K/Ket; F �/:

To prove Theorem 8.3, we follow the proof of Theorem 3.2. In doing so, we need to
establish some properties of R˝Fp OC =p first.

L 8.6. – The ring R˝Fp OC =p is coherent.
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Proof. – Recall that R D C 0.SpecR;Fp/ can be written as R D lim
�!

Rj where each Rj is
a finite product of Fp’s. Then also R ˝Fp OC =p D lim

�!
Rj ˝Fp OC =p can be written as a

filtered colimit of coherent algebras along flat transition maps, and thus is coherent itself.
Here, we use that OC =p is coherent, namely any finitely generated ideal J � OC =p is in fact
principal, J D OC =p � x, and those are finitely presented, J Š OC =.p=x/.

C 8.7. – The ringR˝Fp OC =p is almost coherent in the sense that the category
of almost finitely presented R ˝Fp OC =p is abelian, and closed under kernels, cokernels and
extensions.

Proof. – By the previous lemma, the category of finitely presentedR˝Fp OC =p has these
properties. The corollary follows by approximating almost finitely presented modules (and
maps between them) by finitely presented modules.

Now, we first prove the analog of the local finiteness result. As in the previous section,
choose some affinoid V � Pn�1

MF
which lifts to M LT;0, and fix such a lift; moreover fix some

strict quasicompact open subset U � V .

L 8.8. – Assume that all�i are injective asH -representations for some compact open
subgroup H � GLn.F /. For any m � 0, there is a compact open K0 � D� stabilizing V , U
and the section V ! M LT;0;C such that for all K � K0, the image of the natural map

H j ..V=K/Ket; F … ˝ OC=p/! H j ..U=K/Ket; F … ˝ OC=p/

is an almost finitely presented R˝Fp OC =p-module for all j D 0; : : : ; m.

Proof. – As before, this statement depends only on … as a GLn. O/-representation. We
assumed that all�i are injective asH -representations for some open subgroupH � GLn. O/;
fix such anH which is pro-p and normal in GLn. O/. As FpŒŒH �� is local, it follows that �i is
isomorphic to dim�Hi many copies of the regular representation �reg

H of H . As dim�Hi is
bounded, it follows that…jH can be written as a direct summand of .�reg

H /n˝FpR for some n.

Let VH ; UH � M LT;H be the preimages of V;U � M LT;0. There is a Hochschild-Serre
spectral sequence

H j1.GLn. O/=H;H j2..VH=K/Ket; F … ˝ OC=p//) H j1Cj2..V=K/Ket; F … ˝ OC=p/;

and similarly forU . Filtering the inclusionU � V by sufficiently many strict rational subsets
and using the obvious analog of [33, Lemma 5.4] which holds for almost finitely presented
R˝Fp OC =p by using Corollary 8.7, this reduces us to proving that the image of

H j ..VH=K/Ket; F … ˝ OC=p/! H j ..UH=K/Ket; F … ˝ OC=p/

is an almost finitely presented R ˝Fp O=p-module. As …jH is a direct summand of
.�

reg
H /n ˝Fp R, this image is a direct summand of n copies of the base extension Fp ! R of

the image of

H j ..VH=K/Ket; F �
reg
H
˝ OC=p/! H j ..UH=K/Ket; F �

reg
H
˝ OC=p/ :

But the latter is almost finitely generated over OC =p by Lemma 3.7, thus almost finitely
presented as OC =p is almost noetherian, cf. [33, Proposition 2.6].
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C 8.9. – Assume that all�i are injective asH -representations for some compact
open subgroup H � GLn.F /. For any j � 0 and any compact open K � D�, the
R˝Fp OC =p-module

H j ..Pn�1C =K/Ket; F … ˝ OC=p/

is almost finitely presented.

Proof. – By a Hochschild-Serre spectral sequence (cf. proof of Corollary 3.10), we may
assume that K is sufficiently small (depending on j ). In that case, the same argument as for
Corollary 3.9 applies, noting as before that the analog of [33, Lemma 5.4] holds for almost
finitely presented R˝Fp OC =p-modules.

Now we can finish the proof of Theorem 8.3. Note that one has an almost isomorphism

H j ..Pn�1C =K/Ket; F …/˝ OC =p ! H j ..Pn�1C =K/Ket; F … ˝ OC=p/ :

Indeed, after each localization R ! Ry D Fp for y 2 SpecR, this follows by applying
Theorem 3.2 to the admissible smooth Ry D Fp-representation … ˝R Ry . Globally, the
result follows from the following simple observation applied to the kernel and cokernel of
the displayed map.

L 8.10. – Let M be an R ˝Fp OC =p-module. Assume that for all y 2 SpecR,
M ˝R Ry is almost zero. Then M is almost zero.

Proof. – Take any m 2 M and nilpotent � 2 OC =p. Then �m D 0 2 M ˝R Ry for all
y 2 SpecR, as M ˝R Ry is almost zero. But then �m D 0 2 M , showing that m is almost
zero.

Finally, Theorem 8.3 follows from Corollary 8.9 and the following lemma.

L 8.11. – Let M be an R-module such that M ˝Fp OC =p is an almost finitely
presented R˝Fp OC =p-module. Then M is finitely presented.

Proof. – Any almost finitely presented R ˝Fp OC =p-module N has elementary divisors
in the sense of [33, Proposition 2.11] at each y 2 SpecR. By approximating N with finitely
presented modules, one checks that these assemble into a continuous map

N W SpecR! `1� .N/0
using notation employed there. Applying this to N D M ˝Fp OC =p shows that the func-
tion sending y 2 SpecR to the dimension of My is locally constant. Thus, after passing to
a clopen decomposition of SpecR, we can assume that for all y 2 SpecR, My is of dimen-
sion d . We claim that in this case, M is locally free of rank d . Pick any y 2 SpecR, and
choose a map Rd !M that becomes an isomorphism after localization at y, and let M 0 be
the cokernel. This induces a map

.R˝Fp OC =p/
d
!M ˝Fp OC =p

that becomes an isomorphism after localization at y. Its cokernel M 0 ˝Fp OC =p is then
an almost finitely presented R ˝Fp OC =p-module whose localization at y is almost zero.
Repeating forM 0 what we know aboutM then shows that after replacing SpecR by an open
neighborhood of y, we haveM 0 D 0. This means thatRd !M is surjective. Checking at all
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local rings implies that Rd !M is an isomorphism, as all localizations ofM are of rank d .
Thus, M Š Rd is free, as desired.

R 8.12. – The results of this section imply similar results over a finite base ringA
over Z=pnZ if all �Hi are free A-modules.

9. Patching

In this section, we do the analog of the patching construction from [7], in the simplest
possible situation. Our setup here is more restrictive than it should be (in particular, it
forces ŒFp W Qp� to be even), but we hope that the simplicity of the discussion gives some
justification.

We assume that p is the only place above p in F , and that G is split at all finite places. (11)

Let

� W GalF ! GL2.Fq/

be absolutely irreducible, and unramified outside p. Let U p D
Q
v¤pGL2. OFv / �

GL2.ApF;f / Š G.Ap
F;f

/. Let m � T be the maximal ideal corresponding to � . More-
over, we fix a character  W GalF;p ! O�L unramified outside p, for some finite extension L
of Qp with residue field Fq and uniformizer $L, such that det � D  �cycl mod $L. We
assume that

�Up;m D C
0.G.F /nŒG.AF;f /=U p�;Qp=Zp/m ¤ 0 :

Comparing central characters and determinants of associated Galois representations, we see
that this implies that also

C 0.G.F /nŒG.AF;f /=U p�; L= OL/Œ �m ¤ 0 :

There are framed and unframed Galois deformation rings R�; 
� and R � , parametrizing

(framed) deformations of � unramified outside p and with determinant  �cycl, and a local
framed Galois deformation ring R�; 

p parametrizing framed deformations of � jGalF
with

determinant  �cycl. There is a natural map R�; 
p ! R

�; 
� .

To apply the Taylor-Wiles patching technique [41], adapted to the case of totally real fields
in [40], we impose some usual hypothesis, cf. [29, §2.2].

H 9.1. – In this section, assume that the following conditions are satisfied.

(i) The prime p � 5.
(ii) The representation � jGalF.�p/

is absolutely irreducible.

(iii) If p D 5 and � has projective image PGL2.F5/, then the kernel of proj � does not
fix F.�5/.

Under these hypotheses, we have the existence of Taylor-Wiles primes.

(11) The latter hypothesis is only imposed to be able to use the references below without further justification.

4 e SÉRIE – TOME 51 – 2018 – No 4



p-ADIC COHOMOLOGY OF LUBIN-TATE TOWER 851

P 9.2 ([29, Proposition 2.2.4]). – The integer

g D dimFq H
1.GalF;p; ad0�.1// � ŒF W Q�

is nonnegative. For each positive integer n, there exists a finite set Qn of g C ŒF W Q� primes
of F such that qv � 1 mod pn for all v 2 Qn and Frobv has distinct eigenvalues, and with the
following property. The framed deformation ring R�; 

�;Qn
parametrizing framed deformations

of � unramified outside p and Qn and with determinant  �cycl is topologically generated by
g elements over R�; 

p .

In the following, we fix such a setQn for each n � 1, as well as a non-principal ultrafilter F
on fn � 1g. This choice accounts for all choices needed to make the patching construction,
and in a precise sense it amounts to the choice of g C ŒF W Q� “infinite primes” v of F such
that qv � 1 mod p1.

We continue to follow the discussion in [29, §2.2.5]. For each n � 1, let UQn.1/ �
UQn.0/ � G.A

p

F;f
/ Š GL2.ApF;f / be the compact open subgroups given by

UQn.1/ D
Y
v 62Qn

GL2. OFv / �
Y
v2Qn

Uv.1/ � UQn.0/ D
Y
v 62Qn

GL2. OFv / �
Y
v2Qn

Uv.0/;

where
Uv.1/ D f

�
a b
c d

�
j c � 0 mod v; a=d 7! 1 2 �vg

� Uv.0/ D f
�
a b
c d

�
j c � 0 mod vg � GL2. OFv /;

where�v Š Z=pnZ is the unique quotient of order pn of the units k�v of the residue field kv
at v. Thus, UQn.1/ � UQn.0/ is a normal subgroup with quotient

�Qn WD UQn.0/=UQn.1/ Š .Z=pnZ/gCŒF WQ�:

If necessary, we replace once Fq by Fq2 in the following step. Doing so, we can fix a root ˛v
of the polynomialX2�TvXCqvSv in Fq for all v 2 Qn. For each sufficiently small compact
open subgroup K � GL2.F /, let

S .KUQn.i/; OL/ D C
0.G.F /nG.AF;f /=KUQn.i/; OL/Œ �

for i D 0; 1 be the space of functions with central character  . On these spaces, there
is an action by the Hecke algebra T.UQn.i// generated by the usual elements Tv and Sv
for v 62 Qn, v ¤ p, as well as operators Uv for v 2 Qn given by the action of the
Uv.i/-double coset of diag.�v; 1/. Let mQn.i/ � T.UQn.i// denote the (maximal) ideal
generated by m \ T.UQn.i// and Uv � ˛v for v 2 Qn. By [29, Lemma 2.1.7], the natural
map

S .K; OL/m ! S .KUQn.0/; OL/mQn .0/

is an isomorphism. Moreover, [29, Lemma 2.1.4] implies that

S .KUQn.1/; OL/mQn .1/

is a finite free OLŒ�Qn �-module with

S .KUQn.1/; OL/mQn .1/ ˝ OLŒ�Qn �
OL Š S .KUQn.0/; OL/mQn .0/ :

By the existence of Galois representations, there is an action of the unframed defor-
mation ring R �;Qn on S .KUQn.1/; OL/mQn .1/. Moreover, using local deformation rings

at places v 2 Qn, there is a map OLŒŒy1; : : : ; ygCŒF WQ��� ! R
 
�;Qn

such that the action
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of OLŒŒy1; : : : ; ygCŒF WQ��� on S .KUQn.1/; OL/mQn .1/ comes from the �Qn -action via the
fixed surjection

OLŒŒy1; : : : ; ygCŒF WQ���! OLŒ.Z=pnZ/gCŒF WQ�� Š OLŒ�Qn � :

The map R �;Qn ! R
�; 
�;Qn

is formally smooth of dimension 3, so we can fix

ygCŒF WQ�C1; : : : ; ygCŒF WQ�C3

such that
R

�; 
�;Qn

Š R
 
�;Qn

ŒŒygCŒF WQ�C1; : : : ; ygCŒF WQ�C3�� :

Finally, we fix surjections
R

�; 
p ŒŒx1; : : : ; xg ��! R

�; 
�;Qn

and a lifting
OLŒŒyi ��! R

�; 
p ŒŒx1; : : : ; xg ��;

where we abbreviate OLŒŒyi �� D OLŒŒy1; : : : ; ygCŒF WQ�C3�� here and in the following.
Set

Sn.K/ D R
�; 
�;Qn

˝
R
 
�;Qn

S .KUQn.1/; OL/mQn .1/;

which becomes a R�; 
p ŒŒx1; : : : ; xg ��-module via the chosen surjection

R
�; 
p ŒŒx1; : : : ; xg ��! R

�; 
�;Qn

:

Finally, we can do the patching. Fix an open ideal I � OLŒŒyi ��. Let

�n.I / D lim
�!
K

Sn.K/˝ OLŒŒyi �� OLŒŒyi ��=I :

Then, for all sufficiently large n so that I contains the kernel of

OLŒŒyi ��! OLŒ�Qn �ŒŒygCŒF WQ�C1; : : : ; ygCŒF WQ�C3��;

�n.I / is an admissible GL2.Fp/-representation over the finite ring OLŒŒyi ��=I such that
�n.I /

K is finite free for all sufficiently small compact open subgroups K � GL2.F /.
Moreover,

�n.I /˝ OLŒŒyi ��=I OL=$L D C
0.G.F /nG.ApF;f /=

Y
v¤p

GLn. OFv /; OL=$L/

is independent of n, so that in particular the ranks of �n.I /K are bounded uniformly in n.
Thus, we may take an ultraproduct as in Section 8:

For any I , we have the map Y
n�1

OLŒŒyi ��=I ! OLŒŒyi ��=I;

which is the localization at the maximal ideal of the product corresponding to the fixed non-
principal ultrafilter F. Define

�1.I / D lim
�!
K

.
Y
n�1

�n.I /
K/˝Q

n�1 OLŒŒyi ��=I OLŒŒyi ��=I :

Then �.I / is an admissible GL2.Fp/-representation over OLŒŒyi ��=I such that

�1.I /
K
D .

Y
n�1

�n.I /
K/˝Q

n�1 OLŒŒyi ��=I OLŒŒyi ��=I
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is finite free. Finally, we can pass to the inverse limit

�comp
1 D lim

 �
I

�1.I /

to get what one may call a .$L; y1; : : : ; ygCŒF WQ�C3/-adically admissible
OLŒŒyi ��ŒGL2.Fp/�-representation. Using the freeness properties of the situation, one may
also pass to

�1 D �
comp
1 ˝ OLŒŒyi �� !;

where ! is the injective hull of OL=$L as OLŒŒyi ��-module. This is an admissible
GL2.Fp/-representation over OLŒŒyi ��.

Note that R�; 
p ŒŒx1; : : : ; xg �� acts on all objects considered, in particular on �

comp
1

and �1. Using the exact same arguments (and the same ultrafilter F), one also produces a
patched admissible D�p -representation �1 over OLŒŒyi �� from the cohomology groups

H 1.ShKUQn .1/; OL/Œ �mQn .1/ :

As all these groups carry continuous GalFp -actions, so does �1. Actually, �1 is also an

R
�; 
p ŒŒx1; : : : ; xg ��-module, and if � jGalFp

is absolutely irreducible, then �1 is � -typic, where

� denotes the universal (framed) deformation of � jGalFp
.

C 9.3. – There is a canonical GalFp �D
�
p -equivariant isomorphism

H 1
Ket.P

1
Cp ; F �1

/ Š �1

of R�; 
p ŒŒx1; : : : ; xg ��-modules.

Proof. – By passing to a colimit afterwards, it is enough to prove that for an open ideal
I � OLŒŒyi ��,

H 1
Ket.P

1
Cp ; F �1.I /

/ Š �1.I / :

By Theorem 6.2, we know that for each big enough n,

H 1
Ket.P

1
Cp ; F �n.I /

/ Š �n.I /;

and the relevant H 0 vanishes. In particular, we get

H 1..P1Cp=K/Ket; F �n.I /
/ Š �n.I /

K

for any compact open subgroup K � D�p . Let … D
S
H�GL2.F /

Q
n �n.I /

H , the product
running over sufficiently big n. We have the natural map

H 1..P1Cp=K/Ket; F …/!
Y
n

�n.I /
K :

This map is an isomorphism by Corollary 8.5 (or rather its version for finite base rings, and
with fixed central character). Base extension along the fixed mapY

n

OLŒŒyi ��=I ! OLŒŒyi ��=I

corresponding to F shows that

H 1..P1Cp=K/Ket; F �1.I /
/ Š �1.I /

K :

Finally, passage to the direct limit over K gives the result.
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Appendix

Accessible and weakly accessible period domains
By Michael Rapoport

A.1. Introduction

The goal of this appendix is to investigate in which situations the period maps from
RZ spaces towards partial flag varieties are surjective. This question can be posed in two
variants: One can either ask if the map is surjective on classical points, or surjective on all
(adic, or equivalently, Berkovich) points. These questions can be translated into the question
whether the weakly admissible, resp. admissible, locus inside the partial flag variety is the
whole partial flag variety. We answer both of these questions below. It turns out that asking
surjectivity for all points is significantly more restrictive and occurs essentially only in the
Lubin-Tate case.

Most of the material presented in this appendix was explained to the author by P. Scholze.
Moreover, we thank S. Orlik for helpful conversations.

A.2. Recollections on period domains

Let .G; b; f�g/ be a PD-triple (1) over the p-adic field F . This means that G is a reduc-
tive algebraic group over F , that b 2 G. MF /, and that f�g is a conjugacy class of cocha-
racters of G. We will assume throughout that f�g is minuscule. Two PD-triples .G; b; f�g/
and .G0; b0; f�0g/ are called equivalent if there is an isomorphism G ' G0 which takes f�g
into f�0g and b into a � -conjugate of b0. All concepts below depend only on the equiva-
lence class of PD-triples. Let E D E.G; f�g/ be the corresponding reflex field. We denote
by F .G; f�g/ the corresponding partial flag variety defined over E, and by MF .G; f�g/ its
base change to ME. We denote by F .G; f�g/wa the period domain associated to the PD-triple
.G; b; f�g/, i.e., the weakly admissible subset of MF .G; f�g/, which we consider as an open
adic subset. It is defined by the weak admissibility condition of Fontaine on the Lie algebra
of G (semi-stability, cf. [48, Def. 9.2.14]) and the triviality of the degree in �1.G/�;Q.

(1) In [48, Ex. 9.1.22], to .G; b/ is associated an augmented affine group scheme G over the category ofF -isocrystals,
and in [48, Def. 9.5.1] one considers the PD-pair associated to .G; f�g/, rather than the triple .G; b; f�g/.
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D A.1. – A PD-triple .G; b; f�g/ is weakly accessible if F .G; b; f�g/wa D

MF .G; f�g/, i.e., the period domain associated to .G; b; f�g/ is the whole partial flag variety.

A.3. The admissible set

Let XF be the Fargues-Fontaine curve relative to F (and some fixed algebraically closed
perfectoid field of characteristic p). By Fargues, [50], there is a bijection

(1) B.G/!
˚
G-bundles on XF

	
= '; b 7! E b :

Restricted to basic elements, this yields even an equivalence of groupoids,

G. MF /basic !
˚
semi-stable G-bundles on XF

	
:

Here the LHS becomes a groupoid via the action by � -conjugacy of G. MF /. Also, a
G-bundle E is called semi-stable if for all � 2 RepG mapping the center of G into the
center of GLn, the vector bundle ��. E / onXF is semi-stable in the sense of Mumford (recall
that deg and rank are well-defined for vector bundles on XF ). It is enough to check this
for � the adjoint representation of G.

D A.2. – Fix a PD-triple .G; b; f�g/ over F . Let C be an algebraically closed
non-archimedean field extension of MF , and use the tilt C [ of C to build XF ; denote by 1 2
XF .C / the corresponding distinguished point of XF .

To any point x 2 F .G; f�g/.C /, there is associated aG-bundle E b;x onXF which is called
the modification of E b at1 along x.

R A.3. – If E is a vector bundle of rank n on XF , and f�g is a minuscule cocha-
racter class of GLn, then it is clear how to define the modification E x for x 2 F .GLn; f�g/.C /.
On the other hand, for non-minuscule f�g, or generalG (and then even for minuscule cocha-
racters), it is nontrivial to define the modification E b;x . Indeed, the definition involves the

BdR-Grassmannian Gr
B
C
dR

G . One uses the Bialynicki-Birula morphism, valid for any f�g,

Gr
B
C
dR

G;f�g
! MF .G; f�g/;

which is an isomorphism if f�g is minuscule. We refer to [46, Section 3.4, 3.5] for a precise
discussion of this point, and we follow their normalizations. We note however that on points
defined over a finite extension of MF , the Bialynicki-Birula morphism is a bijection (for
all f�g).

D A.4. – A point x 2 F .G; f�g/.C / is called admissible with respect to b if
the associated G-bundle E b;x is semi-stable. Equivalently, the image of E b;x under the map in
Corollary A.10 is the unique basic class Œb�� with �.Œb��/ D �.Œb�/ � �\.

R A.5. – (i) An admissible point x 2 F .G; f�g/.C / is automatically weakly
admissible. If x is defined over a finite extension of MF , the converse is true. For points defined
over finite extensions of MF , these assertions can be reduced to the case of GLn by using
the adjoint representation, for which see [47]. Now the admissible locus is an open subset
of F .G; f�g/ (cf. below) which on classical points agrees with the weakly admissible locus.
As the weakly admissible locus is maximal among open subsets with given classical points,
it follows that the admissible locus is contained in the weakly admissible locus.
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(ii) Assume that .G; f�g/ � .GLn; f�.1.r/;0.n�r//g/, i.e., the PD-triple .G; b; f�g/ is of
Hodge type. Then Faltings and Hartl have defined the notion of admissibility of a point
in F .G; f�g/.C /, cf. [48, ch. XI, §4] (Faltings’ definition uses base change toBcris.C /; Hartl’s
definition uses the Robba ring QB�rig.C /; Hartl has shown that these definitions coincide,
comp. [48, Thm. 11.4.11]). The definition of admissibility above specializes in this case to
their definition.

D A.6. – Fix a PD-triple .G; b; f�g/overF . The admissible locus F .G; b; f�g/a

is the unique open adic subset of MF .G; f�g/ whose C -valued points are the admissible points
of F .G; f�g/.C /, for any algebraically closed non-archimedean field extension of MF .

It follows from [53] that the admissible set is indeed an open adic subset of MF .G; f�g/,
again using the adjoint representation of G to reduce to the case G D GLn.

R A.7. – Whereas we have a fairly accurate picture of what the weakly admissible
locus looks like (and one of the main attractions of the corresponding theory is to determine
explicitly this locus in specific cases, cf. [56, Ch. I]), the admissible locus seems quite amor-
phous, and is explicitly known in only very few cases. Here are two examples.

(i) Let .G; b; f�g/ D .GLn; b; f�.1.1/;0.n�1//g/, where Œb� is the unique basic element

ofB.G; f�g/. This case is called the Lubin-Tate case. In this case, all points of MF .G; f�g/ are
admissible. This follows by Gross/Hopkins [52] from Theorem A.17 below. Another, more
direct proof is due to Hartl, comp. [48, Prop. 11.4.14].

The same holds for .GLn; b; f�.1.n�1/;0.1//g/, where again Œb� is the unique basic element
of B.G; f�g/.

(ii) Let .G; b; f�g/ D .D 1
n
; b; f�.1.1/;0.n�1//g/, where Œb� is the unique basic element

of B.G; f�g/. This case is called the Drinfeld case. In this case, all weakly admissible points
of MF .G; f�g/ are admissible. They form the Drinfeld halfspace inside Pn�1. This follows by
Faltings’ theorem [56, ch. 5] from Theorem A.17 below, but has also been shown by Hartl,
comp. [48, Prop. 11.4.14]. The same holds for .D

� 1n
; b; f�.1.n�1/;0.1//g/, where again Œb� is the

unique basic element of B.G; f�g/.

D A.8. – A PD-triple .G; b; f�g/ is accessible if F .G; b; f�g/a D MF .G; b; f�g/,
i.e., the admissible set associated to .G; b; f�g/ is the whole partial flag variety.

From Remarks A.5, (i) it follows that an accessible PD-triple is weakly accessible.

P A.9. – Associating to a G-bundle its isomorphism class, we obtain from (1)
a bijection˚

iso-classes of G-bundles of the form E 1;x j x 2 F .G; f��1g/
	
! B.G; f�g/:

Proof. – Let b 2 G. MF /. If Œb� lies in the image of the map, it follows from the construction
of E 1;x that �.Œb�/ D �\ in �1.G/� . Now b represents an element of the image of the map if
and only if E b is of the form E 1;x ; equivalently, if and only if E b;x� is the trivial G-bundle
for some x� 2 F .G; f�g/. In other words, this holds if and only if there exists x� such that
E b;x� is a semi-stable G-bundle. Hence this is equivalent to F .G; b; f�g/a ¤ ;. This in turn
is equivalent to the condition that F .G; b; f�g/wa ¤ ;, as these are two open sets with the
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same classical points. By [48, Thm. 9.5.10] this is equivalent to Œb� 2 A.G; f�g/. Since we saw
already the equality �.b/ D �\, this is equivalent to Œb� 2 B.G; f�g/.

C A.10. – Let b 2 G. MF / be basic. Then there is a bijection˚
iso-classes of G-bundles of the form E b;x j x 2 F .G; f��1g/

	
! B.Jb; f�g C �b/:

Here �b is the central cocharacter associated to the basic element b.

Proof. – This follows by translation with b from the previous proposition, cf. [54, 4.18].
Alternatively, one can apply the functor Hom. E b; / to the assertion of the corollary, to
reduce to the previous proposition.

A.4. Weakly accessible PD-triples

Our first aim is to determine all weakly accessible PD-Pairs. The following lemma reduces
this problem to the core cases. We always make the assumption that the period domain
associated to any PD-triple considered below is non-empty.

L A.11. – (i) .G; b; f�g/ is weakly accessible if and only if .Gad; bad; f�adg/ is weakly
accessible.

(ii)
�
G1 � G2; .b1; b2/; f.�1; �2g

�
is weakly accessible if and only if .G1; b1; f�1g/ and

.G2; b2; f�2g/ are both weakly accessible.

(iii) If f�g is central, then .G; b; f�g/ is weakly accessible.

Proof. – (i) Let � W MF .G; f�g/ ! MF .Gad; f�adg/ denote the natural morphism. Then
the assertion follows from

F .G; f�g/wa
D ��1

�
F .Gad; f�adg/

wa�
(recall that we are assuming both period domains to be non-empty).

Finally, (ii) and (iii) are obvious.

After the previous reduction steps, the following proposition gives the complete classifi-
cation of all weakly accessible PD-triples.

P A.12. – Let .G; b; f�g/ be a PD-triple defining a non-empty period domain,
where G is F -simple adjoint and f�g is non-trivial. Then the PD-triple .G; b; f�g/ is weakly
accessible if and only if the F -group Jb is anisotropic, in which case Œb� is basic.

Proof. – We note that, G being of adjoint type, weak admissibility is equivalent to semi-
stability in the sense of [48], i.e, F .G; b; f�g/wa D F .G; b; f�g/ss, cf. [48, top of p.272]. We
also note that the last sentence follows because if J is anisotropic, then b is basic. Indeed, if
b is not basic, then the slope vector �b is a non-trivial cocharacter of J defined over F , cf.
[54, after (3.4.1)].

Assume that there exists a point x 2 F .G; f�g/ n F .G; b; f�g/ss. Then, applying [48,
Thm. 9.7.3], we obtain a 1-PS � of Jb defined over F which violates the Hilbert-Mumford
inequality. In particular, � is non-trivial, and Jb is not anisotropic.

Conversely, assume that F .G; b; f�g/ss D F .G; f�g/. We claim that then Jb is
anisotropic. To prove this, we may change b within its � -conjugacy class Œb�, since this
leaves the isomorphism class of Jb unchanged. We argue by contradiction. So, let us assume
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that T is a maximal torus of Jb such that X�.T /� ¤ .0/. Here � D Gal. NF=F /. Then
T ˝F MF is also a maximal torus of G ˝F MF . By assumption, for any � 2 X�.T / defining
an element x 2 F .G; f�g/, the pair .b; F x/ is semi-stable. To apply the Hilbert-Mumford
inequality, we fix an invariant inner product . ; / on G, cf. [48, Def. 6.2.1]. Hence by the
Hilbert-Mumford inequality [48, Thm. 9.7.3], we obtain

.�; � � �b/ � 0; 8� 2 X�.T /
� ;

where �b 2 X�.T /Q denotes the slope vector of b. Indeed, the LHS is equal to � L .x; �/, by
[48, Lemma 11.1.3] (in loc. cit., the situation over a finite field is considered; but the lemma
holds in the present situation mutatis mutandum). Replacing � by its negative, we see that
.�; �� �b/ D 0. Hence .�; �/ is independent of � 2 X�.T / in its geometric conjugacy class.
It follows that for any w;w0 in the geometric Weyl group W of T in G,

(2) .�;w� � w0�/ D 0:

We wish to show that this implies that� D 0, which would yield the desired contradiction. We
write G D ResF 0=F .G0/, where G0 is an absolutely simple adjoint group over the extension
field F 0 of F . Let F 00 be the maximal unramified subextension of F 0=F . Then

(3) G. MF / D
Y

i2Z=f Z

G0. MF 0/;

where Z=f Z denotes the Galois group of F 00=F , and where MF , resp. MF 0, denotes the comple-
tion of the maximal unramified extension of F , resp. F 0. Furthermore, it is easy to see that
any b 2 G. MF / is � -conjugate to an element in the product on the RHS of (3) of the form
.b00; 1; : : : ; 1/, and that then

Jb D ResF 0=F J
0

b0
0
:

Correspondingly, T D ResF 0=F .T 0/, where T 0 is a maximal torus of J 0
b0
0

defined over F 0.

Hence

(4) X�.T /Q D
Y

�2HomF .F 0; NF /

X�.T
0/Q;

with its action by � induced by the action of � 0 D Gal. NF=F 0/ on X�.T 0/Q.
Since 0 ¤ � 2 X�.T /� , all components �� of � in the product decomposition (4) are non-

zero, and are determined by any one of them. Now T 0˝F 0 MF 0 is a maximal torus ofG0˝F 0 MF 0

and, sinceG0 is absolutely simple, its geometric Weyl groupW 0 acts irreducibly on X�.T 0/Q,
cf. [45, Cor. of Prop. 5 in VI, §1.2]. Furthermore, the geometric Weyl group of T is the
product of copies of W 0 over the same index set as in (4). Hence the identity (2) implies
that any time the component �� of � is non-trivial, the component �� is zero. Hence the
assumption � 2 X�.T /� implies � D 0, since the assumption � ¤ 0 implies that �� ¤ 0 for
some � . This yields the desired contradiction.

C A.13. – In Proposition A.12, assume that G is absolutely simple adjoint and
that f�g is non-trivial. Then .G; b; f�g/ satisfies the condition of Proposition A.12 if and only
if G is the algebraic group associated to a simple central algebra D of some rank n2 over F ,
Œb� is basic, and the difference between the Hasse invariant of D in Z=nZ ' �1.G/� and the
class �.Œb�/ lies in .Z=n/�.
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R A.14. – Note that the class f�g does not intervene in Proposition A.12. It
does, however, enter in the condition that the period domain F .G; b; f�g/wa be non-empty.
Indeed, this condition is equivalent to the condition that Œb� 2 A.G; f�g/, cf. [48, Thm.
9.5.10], i.e., that Œb� be acceptable with respect to f�g in the sense of [55].

A.5. Accessible PD-triples

Here the classification is much more narrow.

P A.15. – A PD-triple .G; b; f�g/ is accessible if and only if b is basic, and the
pair .Jb; f�g/ is uniform in the sense of [54, §6], i.e., B.Jb; f�g/ contains precisely one element.

Proof. – The accessibility of .G; b; f�g/ implies its weak accessibility, cf. Remark A.5, (i);
hence b is basic by Proposition A.12. The assumption that .G; b; f�g/ is accessible is equiv-
alent to saying that any modification E b;x for x 2 F .G; f�g/ is semi-stable. Hence, by
Corollary A.10, the set B.Jb; f��1gC�b/ contains only one element, i.e., .Jb; f��1gC�b/ is
uniform. The assertion follows since .Jb; f��1gC �b/ is uniform if and only if .Jb; f��1g/ is
uniform, if and only if .Jb; f�g/ is uniform.

Kottwitz [54, §6] has given a complete classification of uniform pairs .G; f�g/. Applying
his result, we obtain the following corollary.

C A.16. – Let .G; b; f�g/ be a PD-triple. Assume that G is absolutely simple
adjoint, that f�g is non-trivial, and that Œb� 2 B.G; f�g/. Then .G; b; f�g/ is accessible if and
only if G ' PGLn, and f�g corresponds to .1; 0; : : : ; 0/ or .1; 1; : : : ; 1; 0/.

A.6. An application to the crystalline period map

Let .G; b; f�g/ be a local Shimura datum over F , cf. [55], i.e., a PD-triple such that f�g is
minuscule and such that Œb� 2 B.G; f�g/. Conjecturally, there is an associated local Shimura
variety, i.e., a tower of rigid-analytic spaces over ME, with members enumerated by the open
compact subgroups of G.Qp/,

(5) fMKgK D fM.G; b; f�g/KgK ;

on whichG.Qp/ acts as Hecke correspondences. The tower comes with a compatible system
of morphisms

(6) �K WMK !
MF .G; f�g/:

The morphism �K is called the crystalline period morphism at level K of the local Shimura
variety attached to .G; b; f�g/.

T A.17. – Assume that the local Shimura variety associated to .G; b; f�g/ comes
from an RZ-space of type EL or PEL, in which case the local Shimura variety exists. Then the
image of the crystalline period morphisms coincides with the admissible locus F .G; b; f�g/a.

Proof. – See [51] (which uses [49]) and [57].
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E A.18. – (i) In the Lubin-Tate case (see Remarks A.7, (i)), Gross and Hopkins
[52] have shown that the image of the crystalline period morphism is the whole projective
space F .G; f�g/.

(ii) In the Drinfeld case (see Remarks A.7, (ii)), the image of the crystalline period map is
the Drinfeld half-space, cf. [56, ch. 5].

C A.19. – Assume that the local Shimura variety associated to .G; b; f�g/

comes from an RZ-space of type EL or PEL, in which case the local Shimura variety exists.
Also, assume that G is absolutely simple. Then the crystalline period morphisms are surjective
if and only if the local Shimura variety is of Lubin-Tate type.

A.7. Open questions

Here we list some open questions.

Q A.20. – When is F .G; b; f�g/a D F .G; b; f�g/wa?

This question was answered by Hartl in the case where G D GLn. Besides the Lubin-
Tate case and the Drinfeld case, there is one essentially new case related to GL4. B. Gross
asks whether the PD-triples formed by an adjoint orthogonal groupG, its natural minuscule
coweight f�g (the one attached to a Shimura variety for SO.n � 2; 2/) and the unique basic
element in B.G; f�g/ give further examples.

For the next question, recall that for any standard parabolicP � in the quasi-split formG�

of G, there is a subset B.G/P� defined in terms of the Newton map on B.G/. If P � D G�,
then B.G/G� D B.G/basic. We call the inverse image of B.G/P� under the map in Corol-
lary A.10 the HN-stratum F .G; b; f�g/P� attached to P �. Hence for P � D G� the corre-
sponding HN-stratum is the admissible set.

Q A.21. – For which P � is the HN-stratum non-empty? Does the decomposi-
tion into disjoint sets F .G; b; f�g/P� of MF .G; f�g/ have the stratification property? Which
strata F .G; b; f�g/P� have classical points?

The first question is non-empty, as is shown by the Lubin-Tate case, in which only
F .G; b; f�g/G� is non-empty. There are examples of strata F .G; b; f�g/P� without clas-
sical points: One gets these by looking at cases of weakly accessible, but non-accessible,
PD-triples, in which case all strata with P � ¤ G� have no classical points, but some of them
are nonempty.

There is also a HN-decomposition of MF .G; f�g/ in the sense of [48]. It does not have
the stratification property. Here we have an understanding of the structure of the individual
strata, in terms of period domains of PD-triples of smaller dimension. However, even for
these simpler strata, the question of the non-emptiness of strata is only partially solved (by
Orlik).

Q A.22. – What is the relation between the two stratifications?
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