Nous prouvons un résultat de finitude pour la cohomologie
De plus, nous vérifions une compatibilité locale-globale pour cette correspondance, et une compatibilité avec le patching de Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.
We prove a finiteness result for the
Moreover, we verify a local-global-compatibility statement for this correspondence, and compatibility with the patching construction of Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin.
Keywords: Lubin-Tate tower,
Mot clés : Tour de Lubin-Tate, cohomologie
@article{ASENS_2018__51_4_811_0, author = {Scholze, Peter}, title = {On the $p$-adic cohomology of the {Lubin-Tate} tower}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {811--863}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {4}, year = {2018}, doi = {10.24033/asens.2367}, mrnumber = {3861564}, zbl = {1419.14031}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2367/} }
TY - JOUR AU - Scholze, Peter TI - On the $p$-adic cohomology of the Lubin-Tate tower JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 811 EP - 863 VL - 51 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2367/ DO - 10.24033/asens.2367 LA - en ID - ASENS_2018__51_4_811_0 ER -
%0 Journal Article %A Scholze, Peter %T On the $p$-adic cohomology of the Lubin-Tate tower %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 811-863 %V 51 %N 4 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2367/ %R 10.24033/asens.2367 %G en %F ASENS_2018__51_4_811_0
Scholze, Peter. On the $p$-adic cohomology of the Lubin-Tate tower. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 811-863. doi : 10.24033/asens.2367. https://www.numdam.org/articles/10.24033/asens.2367/
Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS, Volume 78 (1993), pp. 5-161 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Vanishing cycles for formal schemes, Invent. math., Volume 115 (1994), pp. 539-571 (ISSN: 0020-9910) | DOI | MR | Zbl
, Grundl. math. Wiss., 335, Springer, Berlin, 2006, 347 pages (ISBN: 978-3-540-31486-8; 3-540-31486-5) | DOI | MR | Zbl
Memoirs of the American Mathematical Society, Mem. Amer. Math. Soc., 216, 2012 (ISBN: 978-0-8218-5227-9, ISSN: 0065-9266) | DOI | MR | Zbl
The emerging
The p-adic uniformization of Shimura curves (2000) ( https://www.math.uni-bielefeld.de/~zink/p-adicuni.ps )
Sur les représentations
,
Patching and the
Construction of automorphic Galois representations, II, Camb. J. Math., Volume 1 (2013), pp. 53-73 (ISSN: 2168-0930) | DOI | MR | Zbl
, Automorphic forms and Galois representations. Vol. 1 (London Math. Soc. Lecture Note Ser.), Volume 414, Cambridge Univ. Press, Cambridge, 2014, pp. 221-285 | DOI | MR | Zbl
On
Représentations de
Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 1-74 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Coverings of
Solutions d'équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup., Volume 6 (1973), pp. 553-603 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Ordinary parts of admissible representations of
Ordinary parts of admissible representations of
Local-global compatibility in the
A relation between two moduli spaces studied by V. G. Drinfeld, Algebraic number theory and algebraic geometry (Contemp. Math.), Volume 300, Amer. Math. Soc. (2002), pp. 115-129 | DOI | MR | Zbl
Almost étale extensions, Astérisque, Volume 279 (2002), pp. 185-270 (ISSN: 0303-1179) | Numdam | MR | Zbl
, Progress in Math., 262, Birkhäuser, 2008, 406 pages (ISBN: 978-3-7643-8455-5) | MR | Zbl
, Lecture Notes in Math., 1800, Springer, 2003, 307 pages (ISBN: 3-540-40594-1) | MR | Zbl
, Topology and representation theory (Evanston, IL, 1992) (Contemp. Math.), Volume 158, Amer. Math. Soc., Providence, RI, 1994, pp. 23-88 | DOI | MR | Zbl
, Annals of Math. Studies, 151, Princeton Univ. Press, 2001, 276 pages (ISBN: 0-691-09090-4) | MR | Zbl
, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, 1996, 450 pages (ISBN: 3-528-06794-2) | MR | Zbl
Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math., Volume 2 (1967), pp. 191-214 (ISSN: 0020-9910) | DOI | MR | Zbl
The Fontaine-Mazur conjecture for
The image of Colmez's Montreal functor, Publ. Math. IHÉS, Volume 118 (2013), pp. 1-191 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Annals of Math. Studies, 141, Princeton Univ. Press, Princeton, NJ, 1996, 324 pages (ISBN: 0-691-02782-X; 0-691-02781-1) | MR | Zbl
Perfectoid Spaces, Publ. Math. de l'IHES, Volume 116 (2012), pp. 245-313 | DOI | Numdam | MR | Zbl
On torsion in the cohomology of locally symmetric varieties, Ann. of Math., Volume 182 (2015), pp. 945-1066 (ISSN: 0003-486X) | DOI | MR | Zbl
Galois representations arising from some compact Shimura varieties, Ann. of Math., Volume 173 (2011), pp. 1645-1741 (ISSN: 0003-486X) | DOI | MR | Zbl
Geometrically connected components of Lubin-Tate deformation spaces with level structures, Pure Appl. Math. Q., Volume 4 (2008), pp. 1215-1232 (ISSN: 1558-8599) | DOI | MR | Zbl
https://math.berkeley.edu/~jared/Math274/ScholzeLectures.pdf )
(lecture notes from course at Berkeley in 2014, in preparation, preliminary version available at
Moduli of
On the meromorphic continuation of degree two
On Galois representations associated to Hilbert modular forms, Invent. math., Volume 98 (1989), pp. 265-280 (ISSN: 0020-9910) | DOI | MR | Zbl
On local properties of non-Archimedean analytic spaces, Math. Ann., Volume 318 (2000), pp. 585-607 (ISSN: 0025-5831) | DOI | MR | Zbl
Ring-theoretic properties of certain Hecke algebras, Ann. of Math., Volume 141 (1995), pp. 553-572 (ISSN: 0003-486X) | DOI | MR | Zbl
Semistable models for modular curves of arbitrary level, Invent. math., Volume 205 (2016), pp. 459-526 (ISSN: 0020-9910) | DOI | MR | Zbl
Uniformization of algebraic curves by discrete arithmetic subgroups of
Cité par Sources :