Nous développons une théorie de la diffusion définitive en espace physique pour l'équation scalaire d'onde dans la région extérieure de la métrique de Kerr dans le cas sous-extrémal général . En particulier, nous prouvons des résultats qui correspondent à « l'existence et l'unicité des états de diffusion » et la « complétude asymptotique » et nous montrons de plus que la matrice de diffusion qui envoie les champs de radiation sur l'horizon passé et l'infini nul passé aux champs sur l'horizon futur et l'infini nul futur est un opérateur borné. Ce dernier point nous permet de donner une théorie de réflexion superradiante dans le domaine temporel. Le fait que la matrice de diffusion est bornée montre en particulier que l'amplification maximale de solutions associées aux paquets d'ondes entrants d'énergie finie sur l'infini nul passé est bornée. En fréquence, cela correspond à l'affirmation nouvelle que les coefficients de réflexion et de transmission, convenablement normalisés, sont bornés uniformément, indépendamment des paramètres de fréquence. Nous complétons ceci de plus avec une démonstration que la réflexion superradiante amplifie effectivement l'énergie rayonnée à l'infini nul futur, pour les paquets d'ondes appropriés comme ci-dessus. Les résultats font usage essentiel d'un raffinement de notre démonstration récente [30] de la bornitude et de la décroissance des solutions du problème de Cauchy de façon à s'appliquer à la classe de solutions où seulement une énergie dégénérée est supposée finie. Nous montrons en contraste que l'application de diffusion analogue ne peut pas être définie pour la classe de solutions d'énergie finie non dégénérée. C'est dû au fait que le célèbre effet de décalage vers le rouge agit comme une instabilité de décalage vers le bleu quand on résout l'équation d'onde rétrograde.
We develop a definitive physical-space scattering theory for the scalar wave equation on Kerr exterior backgrounds in the general subextremal case . In particular, we prove results corresponding to “existence and uniqueness of scattering states” and “asymptotic completeness” and we show moreover that the resulting “scattering matrix” mapping radiation fields on the past horizon and past null infinity to radiation fields on and is a bounded operator. The latter allows us to give a time-domain theory of superradiant reflection. The boundedness of the scattering matrix shows in particular that the maximal amplification of solutions associated to ingoing finite-energy wave packets on past null infinity is bounded. On the frequency side, this corresponds to the novel statement that the suitably normalized reflection and transmission coefficients are uniformly bounded independently of the frequency parameters. We further complement this with a demonstration that superradiant reflection indeed amplifies the energy radiated to future null infinity of suitable wave-packets as above. The results make essential use of a refinement of our recent proof [30] of boundedness and decay for solutions of the Cauchy problem so as to apply in the class of solutions where only a degenerate energy is assumed finite. We show in contrast that the analogous scattering maps cannot be defined for the class of finite non-degenerate energy solutions. This is due to the fact that the celebrated horizon red-shift effect acts as a blue-shift instability when solving the wave equation backwards.
DOI : 10.24033/asens.2358
Keywords: Scattering theory, wave equation, Kerr solution, black holes.
Mot clés : Théorie de la diffusion, équation d'onde, solution de Kerr, trous noirs.
@article{ASENS_2018__51_2_371_0, author = {Dafermos, Mihalis and Rodnianski, Igor and Shlapentokh-Rothman, Yakov}, title = {A scattering theory for the wave equation on {Kerr} black hole exteriors}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {371--486}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {2}, year = {2018}, doi = {10.24033/asens.2358}, mrnumber = {3798305}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2358/} }
TY - JOUR AU - Dafermos, Mihalis AU - Rodnianski, Igor AU - Shlapentokh-Rothman, Yakov TI - A scattering theory for the wave equation on Kerr black hole exteriors JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 371 EP - 486 VL - 51 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2358/ DO - 10.24033/asens.2358 LA - en ID - ASENS_2018__51_2_371_0 ER -
%0 Journal Article %A Dafermos, Mihalis %A Rodnianski, Igor %A Shlapentokh-Rothman, Yakov %T A scattering theory for the wave equation on Kerr black hole exteriors %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 371-486 %V 51 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2358/ %R 10.24033/asens.2358 %G en %F ASENS_2018__51_2_371_0
Dafermos, Mihalis; Rodnianski, Igor; Shlapentokh-Rothman, Yakov. A scattering theory for the wave equation on Kerr black hole exteriors. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 371-486. doi : 10.24033/asens.2358. http://www.numdam.org/articles/10.24033/asens.2358/
Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math., Volume 182 (2015), pp. 787-853 (ISSN: 0003-486X) | DOI | MR
Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., Volume 12 (2015), pp. 689-743 (ISSN: 0219-8916) | DOI | MR
, London Mathematical Society Lecture Note Series, 374, Cambridge Univ. Press, Cambridge, 2010, 118 pages (ISBN: 978-0-521-12822-3) | MR | Zbl
Dynamics of scalar fields in the background of rotating black holes II: A note on superradiance, Phys. Rev. D, Volume 58 (1998) (087503) | DOI
Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds, J. Funct. Anal., Volume 263 (2012), pp. 2770-2831 (ISSN: 0022-1236) | DOI | MR | Zbl
Global uniqueness theorems for linear and nonlinear waves, J. Funct. Anal., Volume 269 (2015), pp. 3458-3499 (ISSN: 0022-1236) | DOI | MR
Unique continuation from infinity for linear waves, Adv. Math., Volume 286 (2016), pp. 481-544 (ISSN: 0001-8708) | DOI | MR
Klein paradox and superradiance for the charged Klein-Gordon field, Sémin. Équ. Dériv. Partielles (2004) (exp. 23) | Numdam | MR | Zbl
Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential, J. Math. Pures Appl., Volume 83 (2004), pp. 1179-1239 (ISSN: 0021-7824) | DOI | MR | Zbl
Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Ann. Inst. H. Poincaré Phys. Théor., Volume 54 (1991), pp. 261-320 (ISSN: 0246-0211) | Numdam | MR | Zbl
Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric, Ann. Inst. H. Poincaré Phys. Théor., Volume 61 (1994), pp. 411-441 (ISSN: 0246-0211) | Numdam | MR | Zbl
Scattering of scalar fields by spherical gravitational collapse, J. Math. Pures Appl., Volume 76 (1997), pp. 155-210 (ISSN: 0021-7824) | DOI | MR | Zbl
The Hawking effect, Ann. Inst. H. Poincaré Phys. Théor., Volume 70 (1999), pp. 41-99 (ISSN: 0246-0211) | Numdam | MR | Zbl
Radiation fields on Schwarzschild spacetime, Comm. Math. Phys., Volume 331 (2014), pp. 477-506 (ISSN: 0010-3616) | DOI | MR | Zbl
Hamilton-Jacobi and Schrödinger separable solutions of Einstein's equations, Comm. Math. Phys., Volume 10 (1968), pp. 280-310 http://projecteuclid.org/euclid.cmp/1103841118 (ISSN: 0010-3616) | DOI | MR | Zbl
, International Series of Monographs on Physics, 69, The Clarendon Press, Oxford Univ. Press, New York, 1983, 646 pages (ISBN: 0-19-851291-0) | MR | Zbl
, Annals of Math. Studies, 146, Princeton Univ. Press, Princeton, NJ, 2000, 319 pages (ISBN: 0-691-04956-4; 0-691-04957-2) | MR | Zbl
The interior of charged black holes and the problem of uniqueness in general relativity, Comm. Pure Appl. Math., Volume 58 (2005), pp. 445-504 (ISSN: 0010-3640) | DOI | MR | Zbl
A scattering theory construction of dynamical black hole spacetimes (preprint arXiv:1306.5534, to appear in J. Diff. Geom ) | MR
The linear stability of the Schwarzschild solution to gravitational perturbations (preprint arXiv:1601.06467 ) | MR
Scattering for the wave equation on the Schwarzschild metric, Gen. Relativity Gravitation, Volume 17 (1985), pp. 353-369 (ISSN: 0001-7701) | DOI | MR | Zbl
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric II, J. Math. Phys., Volume 27 (1986), pp. 2520-2525 (ISSN: 0022-2488) | DOI | MR | Zbl
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Physics, Volume 175 (1987), pp. 366-426 (ISSN: 0003-4916) | DOI | MR | Zbl
The interior of dynamical vacuum black holes I: The -stability of the Kerr Cauchy horizon (preprint arXiv:1710.01722 )
Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes, Mem. Amer. Math. Soc., Volume 247 (2017), 113 pages (ISBN: 978-1-4704-2376-6; 978-1-4704-3701-5, ISSN: 0065-9266) | MR
A note on energy currents and decay for the wave equation on a Schwarzschild background (preprint arXiv:0710.0171 )
Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: The cases or axisymmetry (preprint arXiv:1010.5132 )
A proof of Price's law for the collapse of a self-gravitating scalar field, Invent. math., Volume 162 (2005), pp. 381-457 (ISSN: 0020-9910) | DOI | MR | Zbl
The red-shift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math., Volume 62 (2009), pp. 859-919 (ISSN: 0010-3640) | DOI | MR | Zbl
, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, pp. 421-432 | DOI | MR | Zbl
A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. math., Volume 185 (2011), pp. 467-559 (ISSN: 0020-9910) | DOI | MR | Zbl
The black hole stability problem for linear scalar perturbations, Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (Damour, T. et al., eds.), World Scientific (2011), pp. 132-189
, Evolution equations (Clay Math. Proc.), Volume 17, Amer. Math. Soc., Providence, RI, 2013, pp. 97-205 | MR | Zbl
Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case , Ann. of Math., Volume 183 (2016), pp. 787-913 (ISSN: 0003-486X) | DOI | MR
Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes, Comm. Math. Phys., Volume 350 (2017), pp. 985-1016 (ISSN: 0010-3616) | DOI | MR
Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Comm. Math. Phys., Volume 306 (2011), pp. 119-163 (ISSN: 0010-3616) | DOI | MR | Zbl
, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2009, 192 pages (ISBN: 978-0-521-11210-9) | MR | Zbl
A rigorous treatment of energy extraction from a rotating black hole, Comm. Math. Phys., Volume 287 (2009), pp. 829-847 (ISSN: 0010-3616) | DOI | MR | Zbl
Über die Spektralzerlegung eines Integraloperators, Math. Ann., Volume 115 (1938), pp. 249-272 (ISSN: 0025-5831) | DOI | JFM | MR | Zbl
Radiation fields and hyperbolic scattering theory, Math. Proc. Cambridge Philos. Soc., Volume 88 (1980), pp. 483-515 (ISSN: 0305-0041) | DOI | MR | Zbl
Asymptotic completeness for superradiant Klein-Gordon equations and applications to the de Sitter–Kerr metric, J. Eur. Math. Soc. (JEMS), Volume 19 (2017), pp. 2371-2444 (ISSN: 1435-9855) | DOI | MR
, Oxford Univ. Press, London, 1923, 316 pages |Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Math. (Rozprawy Mat.), Volume 421 (2003), 102 pages (ISSN: 0012-3862) | MR | Zbl
Creation of fermions by rotating charged black holes, Mém. Soc. Math. Fr., Volume 117 (2009), 158 pages (ISBN: 978-2-85629-284-6, ISSN: 0249-633X) | Numdam | MR | Zbl
, Quantum field theory and gravity, Birkhäuser, 2012, pp. 121-136 | MR | Zbl
Particle creation by black holes, Comm. Math. Phys., Volume 43 (1975), pp. 199-220 http://projecteuclid.org/euclid.cmp/1103899181 (ISSN: 0010-3616) | DOI | MR
, Cambridge Monographs on Mathematical Physics, 1, Cambridge Univ. Press, 1973, 391 pages | MR | Zbl
Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys., Volume 16 (2004), pp. 29-123 (ISSN: 0129-055X) | DOI | MR | Zbl
Scattering theory and perturbation of continuous spectra, Actes du Congrès International des Mathématiciens (Nice, 1970), t. 1, Gauthier-Villars, Paris (1971), pp. 135-140 | MR | Zbl
Instability of enclosed horizons, Gen. Relativity Gravitation, Volume 47 (2015) (ISSN: 0001-7701) | MR | Zbl
Remark on the asymptotic behavior of the Klein-Gordon equation in , Comm. Pure Appl. Math., Volume 46 (1993), pp. 137-144 (ISSN: 0010-3640) | DOI | MR | Zbl
, Pure and Applied Mathematics, 26, Academic Press, New York-London, 1967 | MR | Zbl
Superradiance or total reflection, Relativity and Gravitation (Springer Proceedings in Physics), Volume 157 (2014), pp. 119-127 | DOI | Zbl
Weak null singularities in general relativity, J. Amer. Math. Soc., Volume 31 (2018), pp. 1-63 (ISSN: 0894-0347) | MR | Zbl
Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes, Ann. PDE, Volume 2 (2016), pp. Art. 5 (ISSN: 2199-2576) | DOI | MR | Zbl
The degenerate redshift effect (in preparation)
General properties of the characteristic matrix in the theory of elementary particles. I, Kgl. Danske Vid. Selsk. Mat.-Fys. Medd., Volume 23 (1945), pp. 2-48 | MR
Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 1175-1216 http://aif.cedram.org/item?id=AIF_2016__66_3_1175_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Scattering of linear Dirac fields by a spherically symmetric black hole, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995), pp. 145-179 (ISSN: 0246-0211) | Numdam | MR | Zbl
, A K Peters, Ltd., Wellesley, MA, 1995, 381 pages (ISBN: 1-56881-019-9) | , A K Peters, 1997, 572 pages (ISBN: 1-56881-069-5) |Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. Roy. Soc. London Ser. A, Volume 427 (1990), pp. 221-239 (ISSN: 0962-8444) | DOI | MR | Zbl
, Academic Press, 1979, 463 pages (ISBN: 0-12-585003-4) |Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, Volume 8 (2015), pp. 1379-1420 (ISSN: 2157-5045) | DOI | MR | Zbl
Decay of linear waves on higher-dimensional Schwarzschild black holes, Anal. PDE, Volume 6 (2013), pp. 515-600 (ISSN: 2157-5045) | DOI | MR | Zbl
Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes, Comm. Math. Phys., Volume 329 (2014), pp. 859-891 (ISSN: 0010-3616) | DOI | MR | Zbl
Quantitative mode stability for the wave equation on the Kerr spacetime, Ann. Henri Poincaré, Volume 16 (2015), pp. 289-345 (ISSN: 1424-0637) | DOI | MR | Zbl
Amplification of waves during reflection from rotating black hole, Zh. Eksp. Teor. Fiz., Volume 64 (1973), pp. 48-57
Perturbations of a rotating lack hole III. Interaction of the hole with gravitational and electromagnetic radiation, Astrophys. J., Volume 193 (1974), pp. 443-451 | DOI
A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., Volume 2011 (2011), pp. 248-292 (ISSN: 1073-7928) | MR | Zbl
, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994, 205 pages (ISBN: 0-226-87025-1; 0-226-87027-8) | MR | Zbl
On the mathematical description of light nuclei by the method of resonating group structure, Phys. Rev., Volume 52 (1937), pp. 1107-1122 | DOI | JFM
Mode stability of the Kerr black hole, J. Math. Phys., Volume 30 (1989), pp. 1301-1305 (ISSN: 0022-2488) | DOI | MR | Zbl
Generating of Waves by a Rotating Body, Zh. Eksp. Teor. Fiz., Volume 14 (1971), pp. 180-181
Cité par Sources :