Nous développons une théorie de la diffusion définitive en espace physique pour l'équation scalaire d'onde dans la région extérieure de la métrique de Kerr dans le cas sous-extrémal général
We develop a definitive physical-space scattering theory for the scalar wave equation
DOI : 10.24033/asens.2358
Keywords: Scattering theory, wave equation, Kerr solution, black holes.
Mot clés : Théorie de la diffusion, équation d'onde, solution de Kerr, trous noirs.
@article{ASENS_2018__51_2_371_0, author = {Dafermos, Mihalis and Rodnianski, Igor and Shlapentokh-Rothman, Yakov}, title = {A scattering theory for the wave equation on {Kerr} black hole exteriors}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {371--486}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {2}, year = {2018}, doi = {10.24033/asens.2358}, mrnumber = {3798305}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2358/} }
TY - JOUR AU - Dafermos, Mihalis AU - Rodnianski, Igor AU - Shlapentokh-Rothman, Yakov TI - A scattering theory for the wave equation on Kerr black hole exteriors JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 371 EP - 486 VL - 51 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2358/ DO - 10.24033/asens.2358 LA - en ID - ASENS_2018__51_2_371_0 ER -
%0 Journal Article %A Dafermos, Mihalis %A Rodnianski, Igor %A Shlapentokh-Rothman, Yakov %T A scattering theory for the wave equation on Kerr black hole exteriors %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 371-486 %V 51 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2358/ %R 10.24033/asens.2358 %G en %F ASENS_2018__51_2_371_0
Dafermos, Mihalis; Rodnianski, Igor; Shlapentokh-Rothman, Yakov. A scattering theory for the wave equation on Kerr black hole exteriors. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 371-486. doi : 10.24033/asens.2358. https://www.numdam.org/articles/10.24033/asens.2358/
Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math., Volume 182 (2015), pp. 787-853 (ISSN: 0003-486X) | DOI | MR
Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., Volume 12 (2015), pp. 689-743 (ISSN: 0219-8916) | DOI | MR
, London Mathematical Society Lecture Note Series, 374, Cambridge Univ. Press, Cambridge, 2010, 118 pages (ISBN: 978-0-521-12822-3) | MR | Zbl
Dynamics of scalar fields in the background of rotating black holes II: A note on superradiance, Phys. Rev. D, Volume 58 (1998) (087503) | DOI
Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds, J. Funct. Anal., Volume 263 (2012), pp. 2770-2831 (ISSN: 0022-1236) | DOI | MR | Zbl
Global uniqueness theorems for linear and nonlinear waves, J. Funct. Anal., Volume 269 (2015), pp. 3458-3499 (ISSN: 0022-1236) | DOI | MR
Unique continuation from infinity for linear waves, Adv. Math., Volume 286 (2016), pp. 481-544 (ISSN: 0001-8708) | DOI | MR
Klein paradox and superradiance for the charged Klein-Gordon field, Sémin. Équ. Dériv. Partielles (2004) (exp. 23) | Numdam | MR | Zbl
Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential, J. Math. Pures Appl., Volume 83 (2004), pp. 1179-1239 (ISSN: 0021-7824) | DOI | MR | Zbl
Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Ann. Inst. H. Poincaré Phys. Théor., Volume 54 (1991), pp. 261-320 (ISSN: 0246-0211) | Numdam | MR | Zbl
Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric, Ann. Inst. H. Poincaré Phys. Théor., Volume 61 (1994), pp. 411-441 (ISSN: 0246-0211) | Numdam | MR | Zbl
Scattering of scalar fields by spherical gravitational collapse, J. Math. Pures Appl., Volume 76 (1997), pp. 155-210 (ISSN: 0021-7824) | DOI | MR | Zbl
The Hawking effect, Ann. Inst. H. Poincaré Phys. Théor., Volume 70 (1999), pp. 41-99 (ISSN: 0246-0211) | Numdam | MR | Zbl
Radiation fields on Schwarzschild spacetime, Comm. Math. Phys., Volume 331 (2014), pp. 477-506 (ISSN: 0010-3616) | DOI | MR | Zbl
Hamilton-Jacobi and Schrödinger separable solutions of Einstein's equations, Comm. Math. Phys., Volume 10 (1968), pp. 280-310 http://projecteuclid.org/euclid.cmp/1103841118 (ISSN: 0010-3616) | DOI | MR | Zbl
, International Series of Monographs on Physics, 69, The Clarendon Press, Oxford Univ. Press, New York, 1983, 646 pages (ISBN: 0-19-851291-0) | MR | Zbl
, Annals of Math. Studies, 146, Princeton Univ. Press, Princeton, NJ, 2000, 319 pages (ISBN: 0-691-04956-4; 0-691-04957-2) | MR | Zbl
The interior of charged black holes and the problem of uniqueness in general relativity, Comm. Pure Appl. Math., Volume 58 (2005), pp. 445-504 (ISSN: 0010-3640) | DOI | MR | Zbl
A scattering theory construction of dynamical black hole spacetimes (preprint arXiv:1306.5534, to appear in J. Diff. Geom ) | MR
The linear stability of the Schwarzschild solution to gravitational perturbations (preprint arXiv:1601.06467 ) | MR
Scattering for the wave equation on the Schwarzschild metric, Gen. Relativity Gravitation, Volume 17 (1985), pp. 353-369 (ISSN: 0001-7701) | DOI | MR | Zbl
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric II, J. Math. Phys., Volume 27 (1986), pp. 2520-2525 (ISSN: 0022-2488) | DOI | MR | Zbl
Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Physics, Volume 175 (1987), pp. 366-426 (ISSN: 0003-4916) | DOI | MR | Zbl
The interior of dynamical vacuum black holes I: The
Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes, Mem. Amer. Math. Soc., Volume 247 (2017), 113 pages (ISBN: 978-1-4704-2376-6; 978-1-4704-3701-5, ISSN: 0065-9266) | MR
A note on energy currents and decay for the wave equation on a Schwarzschild background (preprint arXiv:0710.0171 )
Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: The cases
A proof of Price's law for the collapse of a self-gravitating scalar field, Invent. math., Volume 162 (2005), pp. 381-457 (ISSN: 0020-9910) | DOI | MR | Zbl
The red-shift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math., Volume 62 (2009), pp. 859-919 (ISSN: 0010-3640) | DOI | MR | Zbl
, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, pp. 421-432 | DOI | MR | Zbl
A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. math., Volume 185 (2011), pp. 467-559 (ISSN: 0020-9910) | DOI | MR | Zbl
The black hole stability problem for linear scalar perturbations, Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (Damour, T. et al., eds.), World Scientific (2011), pp. 132-189
, Evolution equations (Clay Math. Proc.), Volume 17, Amer. Math. Soc., Providence, RI, 2013, pp. 97-205 | MR | Zbl
Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case
Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes, Comm. Math. Phys., Volume 350 (2017), pp. 985-1016 (ISSN: 0010-3616) | DOI | MR
Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Comm. Math. Phys., Volume 306 (2011), pp. 119-163 (ISSN: 0010-3616) | DOI | MR | Zbl
, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2009, 192 pages (ISBN: 978-0-521-11210-9) | MR | Zbl
A rigorous treatment of energy extraction from a rotating black hole, Comm. Math. Phys., Volume 287 (2009), pp. 829-847 (ISSN: 0010-3616) | DOI | MR | Zbl
Über die Spektralzerlegung eines Integraloperators, Math. Ann., Volume 115 (1938), pp. 249-272 (ISSN: 0025-5831) | DOI | JFM | MR | Zbl
Radiation fields and hyperbolic scattering theory, Math. Proc. Cambridge Philos. Soc., Volume 88 (1980), pp. 483-515 (ISSN: 0305-0041) | DOI | MR | Zbl
Asymptotic completeness for superradiant Klein-Gordon equations and applications to the de Sitter–Kerr metric, J. Eur. Math. Soc. (JEMS), Volume 19 (2017), pp. 2371-2444 (ISSN: 1435-9855) | DOI | MR
, Oxford Univ. Press, London, 1923, 316 pages |Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Math. (Rozprawy Mat.), Volume 421 (2003), 102 pages (ISSN: 0012-3862) | MR | Zbl
Creation of fermions by rotating charged black holes, Mém. Soc. Math. Fr., Volume 117 (2009), 158 pages (ISBN: 978-2-85629-284-6, ISSN: 0249-633X) | Numdam | MR | Zbl
, Quantum field theory and gravity, Birkhäuser, 2012, pp. 121-136 | MR | Zbl
Particle creation by black holes, Comm. Math. Phys., Volume 43 (1975), pp. 199-220 http://projecteuclid.org/euclid.cmp/1103899181 (ISSN: 0010-3616) | DOI | MR
, Cambridge Monographs on Mathematical Physics, 1, Cambridge Univ. Press, 1973, 391 pages | MR | Zbl
Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys., Volume 16 (2004), pp. 29-123 (ISSN: 0129-055X) | DOI | MR | Zbl
Scattering theory and perturbation of continuous spectra, Actes du Congrès International des Mathématiciens (Nice, 1970), t. 1, Gauthier-Villars, Paris (1971), pp. 135-140 | MR | Zbl
Instability of enclosed horizons, Gen. Relativity Gravitation, Volume 47 (2015) (ISSN: 0001-7701) | MR | Zbl
Remark on the asymptotic behavior of the Klein-Gordon equation in
, Pure and Applied Mathematics, 26, Academic Press, New York-London, 1967 | MR | Zbl
Superradiance or total reflection, Relativity and Gravitation (Springer Proceedings in Physics), Volume 157 (2014), pp. 119-127 | DOI | Zbl
Weak null singularities in general relativity, J. Amer. Math. Soc., Volume 31 (2018), pp. 1-63 (ISSN: 0894-0347) | MR | Zbl
Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes, Ann. PDE, Volume 2 (2016), pp. Art. 5 (ISSN: 2199-2576) | DOI | MR | Zbl
The degenerate redshift effect (in preparation)
General properties of the characteristic matrix in the theory of elementary particles. I, Kgl. Danske Vid. Selsk. Mat.-Fys. Medd., Volume 23 (1945), pp. 2-48 | MR
Conformal scattering on the Schwarzschild metric, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 1175-1216 http://aif.cedram.org/item?id=AIF_2016__66_3_1175_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Scattering of linear Dirac fields by a spherically symmetric black hole, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995), pp. 145-179 (ISSN: 0246-0211) | Numdam | MR | Zbl
, A K Peters, Ltd., Wellesley, MA, 1995, 381 pages (ISBN: 1-56881-019-9) | , A K Peters, 1997, 572 pages (ISBN: 1-56881-069-5) |Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. Roy. Soc. London Ser. A, Volume 427 (1990), pp. 221-239 (ISSN: 0962-8444) | DOI | MR | Zbl
, Academic Press, 1979, 463 pages (ISBN: 0-12-585003-4) |Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, Volume 8 (2015), pp. 1379-1420 (ISSN: 2157-5045) | DOI | MR | Zbl
Decay of linear waves on higher-dimensional Schwarzschild black holes, Anal. PDE, Volume 6 (2013), pp. 515-600 (ISSN: 2157-5045) | DOI | MR | Zbl
Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes, Comm. Math. Phys., Volume 329 (2014), pp. 859-891 (ISSN: 0010-3616) | DOI | MR | Zbl
Quantitative mode stability for the wave equation on the Kerr spacetime, Ann. Henri Poincaré, Volume 16 (2015), pp. 289-345 (ISSN: 1424-0637) | DOI | MR | Zbl
Amplification of waves during reflection from rotating black hole, Zh. Eksp. Teor. Fiz., Volume 64 (1973), pp. 48-57
Perturbations of a rotating lack hole III. Interaction of the hole with gravitational and electromagnetic radiation, Astrophys. J., Volume 193 (1974), pp. 443-451 | DOI
A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not., Volume 2011 (2011), pp. 248-292 (ISSN: 1073-7928) | MR | Zbl
, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994, 205 pages (ISBN: 0-226-87025-1; 0-226-87027-8) | MR | Zbl
On the mathematical description of light nuclei by the method of resonating group structure, Phys. Rev., Volume 52 (1937), pp. 1107-1122 | DOI | JFM
Mode stability of the Kerr black hole, J. Math. Phys., Volume 30 (1989), pp. 1301-1305 (ISSN: 0022-2488) | DOI | MR | Zbl
Generating of Waves by a Rotating Body, Zh. Eksp. Teor. Fiz., Volume 14 (1971), pp. 180-181
- Linear Waves on the Expanding Region of Schwarzschild-de Sitter Spacetimes: Forward Asymptotics and Scattering from Infinity, Communications in Mathematical Physics, Volume 406 (2025) no. 1 | DOI:10.1007/s00220-024-05194-1
- Some aspects of spectral and microlocal methods in Mathematical General Relativity, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 1 | DOI:10.5802/crmeca.273
- A scattering theory for linearised gravity on the exterior of the Schwarzschild black hole II: The full system, Advances in Mathematics, Volume 452 (2024), p. 109785 | DOI:10.1016/j.aim.2024.109785
- Strong cosmic censorship in the presence of matter: the decisive effect of horizon oscillations on the black hole interior geometry, Analysis PDE, Volume 17 (2024) no. 5, p. 1501 | DOI:10.2140/apde.2024.17.1501
- The scattering map on collapsing charged spherically symmetric spacetimes, Classical and Quantum Gravity, Volume 41 (2024) no. 6, p. 065015 | DOI:10.1088/1361-6382/ad259a
- Asymptotics and Scattering for Massive Maxwell–Klein–Gordon Equations, Communications in Mathematical Physics, Volume 405 (2024) no. 5 | DOI:10.1007/s00220-024-05023-5
- On global behavior of classical effective field theories, Journal of Hyperbolic Differential Equations, Volume 21 (2024) no. 01, p. 85 | DOI:10.1142/s0219891624500036
- Late-time tails and mode coupling of linear waves on Kerr spacetimes, Advances in Mathematics, Volume 417 (2023), p. 108939 | DOI:10.1016/j.aim.2023.108939
- Scattering theory for Dirac fields near an extreme Kerr–de Sitter black hole, Annales de l'Institut Fourier, Volume 73 (2023) no. 3, p. 919 | DOI:10.5802/aif.3553
- Conformal scattering theories for tensorial wave equations on Schwarzschild spacetime, Classical and Quantum Gravity, Volume 40 (2023) no. 24, p. 245002 | DOI:10.1088/1361-6382/ad079d
- Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 01, p. 155 | DOI:10.1142/s0219891623500066
- The Case Against Smooth Null Infinity I: Heuristics and Counter-Examples, Annales Henri Poincaré, Volume 23 (2022) no. 3, p. 829 | DOI:10.1007/s00023-021-01108-2
- On the Scattering of Waves inside Charged Spherically Symmetric Black Holes, Annales Henri Poincaré, Volume 23 (2022) no. 9, p. 3191 | DOI:10.1007/s00023-022-01176-y
- The Case Against Smooth Null Infinity III: Early-Time Asymptotics for Higher
-Modes of Linear Waves on a Schwarzschild Background, Annals of PDE, Volume 8 (2022) no. 2 | DOI:10.1007/s40818-022-00129-2 - On the relation between asymptotic charges, the failure of peeling and late-time tails, Classical and Quantum Gravity, Volume 39 (2022) no. 19, p. 195006 | DOI:10.1088/1361-6382/ac8863
- A Scattering Theory for Linearised Gravity on the Exterior of the Schwarzschild Black Hole I: The Teukolsky Equations, Communications in Mathematical Physics, Volume 393 (2022) no. 1, p. 477 | DOI:10.1007/s00220-022-04372-3
- A large data theory for nonlinear wave on the Schwarzschild background, Journal of Differential Equations, Volume 335 (2022), p. 120 | DOI:10.1016/j.jde.2022.07.009
- Conformal scattering theory for the linearized gravity fields on Schwarzschild spacetime, Annals of Global Analysis and Geometry, Volume 60 (2021) no. 3, p. 589 | DOI:10.1007/s10455-021-09789-y
- Scattering from Infinity of the Maxwell Klein Gordon Equations in Lorenz Gauge, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1747 | DOI:10.1007/s00220-021-04105-y
- The Goursat problem at the horizons for the Klein–Gordon equation on the de Sitter–Kerr metric, Journal of Hyperbolic Differential Equations, Volume 18 (2021) no. 03, p. 609 | DOI:10.1142/s0219891621500193
- Scattering theory for Dirac fields inside a Reissner–Nordström-type black hole, Journal of Mathematical Physics, Volume 62 (2021) no. 8 | DOI:10.1063/5.0055920
- Mode Stability for the Teukolsky Equation on Extremal and Subextremal Kerr Spacetimes, Communications in Mathematical Physics, Volume 378 (2020) no. 1, p. 705 | DOI:10.1007/s00220-020-03796-z
- A Non-degenerate Scattering Theory for the Wave Equation on Extremal Reissner–Nordström, Communications in Mathematical Physics, Volume 380 (2020) no. 1, p. 323 | DOI:10.1007/s00220-020-03857-3
- A Scattering Theory for Linear Waves on the Interior of Reissner–Nordström Black Holes, Annales Henri Poincaré, Volume 20 (2019) no. 5, p. 1583 | DOI:10.1007/s00023-019-00760-z
- Boundedness and Decay for the Teukolsky Equation on Kerr Spacetimes I: The Case
, Annals of PDE, Volume 5 (2019) no. 1 | DOI:10.1007/s40818-018-0058-8
Cité par 25 documents. Sources : Crossref