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A SCATTERING THEORY FOR THE WAVE EQUATION
ON KERR BLACK HOLE EXTERIORS

 M DAFERMOS, I RODNIANSKI
 Y SHLAPENTOKH-ROTHMAN

A. – We develop a definitive physical-space scattering theory for the scalar wave equa-
tion �g D 0 on Kerr exterior backgrounds in the general subextremal case jaj < M . In partic-
ular, we prove results corresponding to “existence and uniqueness of scattering states” and “asymp-
totic completeness” and we show moreover that the resulting “scattering matrix” mapping radiation
fields on the past horizonH� and past null infinity I� to radiation fields onHC and IC is a bounded
operator. The latter allows us to give a time-domain theory of superradiant reflection. The bounded-
ness of the scattering matrix shows in particular that the maximal amplification of solutions associ-
ated to ingoing finite-energy wave packets on past null infinity I� is bounded. On the frequency side,
this corresponds to the novel statement that the suitably normalized reflection and transmission coeffi-
cients are uniformly bounded independently of the frequency parameters. We further complement this
with a demonstration that superradiant reflection indeed amplifies the energy radiated to future null
infinity IC of suitable wave-packets as above. The results make essential use of a refinement of our re-
cent proof [30] of boundedness and decay for solutions of the Cauchy problem so as to apply in the
class of solutions where only a degenerate energy is assumed finite. We show in contrast that the anal-
ogous scattering maps cannot be defined for the class of finite non-degenerate energy solutions. This is
due to the fact that the celebrated horizon red-shift effect acts as a blue-shift instability when solving
the wave equation backwards.

R. – Nous développons une théorie de la diffusion définitive en espace physique pour
l’équation scalaire d’onde dans la région extérieure de la métrique de Kerr dans le cas sous-extrémal
général jaj < M . En particulier, nous prouvons des résultats qui correspondent à « l’existence et
l’unicité des états de diffusion » et la « complétude asymptotique » et nous montrons de plus que la
matrice de diffusion qui envoie les champs de radiation sur l’horizon passé et l’infini nul passé aux
champs sur l’horizon futur et l’infini nul futur est un opérateur borné. Ce dernier point nous permet
de donner une théorie de réflexion superradiante dans le domaine temporel. Le fait que la matrice
de diffusion est bornée montre en particulier que l’amplification maximale de solutions associées aux
paquets d’ondes entrants d’énergie finie sur l’infini nul passé est bornée. En fréquence, cela correspond
à l’affirmation nouvelle que les coefficients de réflexion et de transmission, convenablement normalisés,
sont bornés uniformément, indépendamment des paramètres de fréquence. Nous complétons ceci de
plus avec une démonstration que la réflexion superradiante amplifie effectivement l’énergie rayonnée
à l’infini nul futur, pour les paquets d’ondes appropriés comme ci-dessus. Les résultats font usage
essentiel d’un raffinement de notre démonstration récente [30] de la bornitude et de la décroissance

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/02/© 2018 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2358



372 M. DAFERMOS, I. RODNIANSKI AND Y. SHLAPENTOKH-ROTHMAN

des solutions du problème de Cauchy de façon à s’appliquer à la classe de solutions où seulement
une énergie dégénérée est supposée finie. Nous montrons en contraste que l’application de diffusion
analogue ne peut pas être définie pour la classe de solutions d’énergie finie non dégénérée. C’est dû au
fait que le célèbre effet de décalage vers le rouge agit comme une instabilité de décalage vers le bleu
quand on résout l’équation d’onde rétrograde.

1. Introduction

Black holes play a central role in our present general relativistic picture of the universe.
At the same time, however, they are perhaps the example par excellence of a physical object
which cannot be observed “directly”. An effective approach to infer both the very presence
but also the finer properties of black holes proceeds through the study of the scattering
of waves on their exterior. Hence, a theoretical understanding of scattering theory in this
context is of paramount importance.

The bulk of the now classical black hole scattering-theory literature concerns only the
fixed-frequency study of solutions u.!;m;`/.r�/ to the radial o.d.e.

(1) u00 C !2u D V u;

where V D V.!;m;`/.r
�/, resulting from Carter’s remarkable separation [15] of the linear

scalar wave equation

(2) �g D 0

on Kerr black hole backgrounds .M; ga;M /. One can also consider more complicated
systems like the Maxwell Equations or the equations of linearised gravity. See Chan-
drasekhar’s monumental [16] and the monograph [40].

Beyond formal fixed-frequency statements concerning (1), true scattering results in the
“time-domain,” describing actual finite-energy solutions of (2) and related equations, have
only been obtained in various special cases. Let us already mention the pioneering results of
Dimock and Kay [33, 35, 34] in the Schwarzschild a D 0 case. See also [8, 9]. In the case
of rotating Kerr black holes with a ¤ 0, on the other hand, despite recent progress on the
Cauchy problem, first for the jaj � M case [28, 4, 69] and then, for the full subextremal
range jaj < M in [30], the most basic questions of scattering theory for (2) have remained to
this day unanswered. In particular:

(a) Can one associate a finite-energy solution of (2) to every suitable finite-energy
past/future asymptotic state? (Existence of scattering states.)

(b) Is the above association unique, i.e., do two finite-energy solutions having the same
asymptotic state necessarily coincide? (Uniqueness of scattering states.)

(c) Do the above solutions parametrised by finite-energy past/future asymptotic states
describe the totality of finite-energy solutions  to (2)? (Asymptotic completeness.)
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A SCATTERING THEORY FOR THE WAVE EQUATION ON KERR 373

See the classic [62] for a general introduction to the scattering theory framework in physics.
At the conceptual level, one of the most interesting new phenomena of black hole scat-

tering which arises when passing from the Schwarzschild a D 0 to the rotating a ¤ 0 Kerr
case is that of superradiance. This already can be seen at the level of the fixed-frequency
o.d.e. (1). We review this very quickly for the benefit of the reader familiar with the classical
physics literature [16]. (1) For each fixed frequency triple .!;m; `/ with ! 2 R, one can define
two complex-valued solutions Uhor.r

�/ and Uinf.r
�/ of (1) so that

Uhor � e
�i.!�¨Cm/r

�

as r� ! �1; Uinf � e
i!r� as r� !1;

corresponding to the asymptotic behavior of the potential V , which is itself real. Here ¨C is
related to the Kerr parameters a;M by the formula 2M¨C.MC

p
M 2 � a2/ D a. The linear

independence of Uhor and Uinf is the statement of mode stability on the real axis and was
proven recently by one of us [67], extending the transformation theory of [73]. By dimensional
considerations, this linear independence at one go answers the “fixed frequency” analog of
questions (a)–(c) in the affirmative. It follows that since Uinf also solves (1), we may write

(3) �
!T

.! � ¨Cm/
Uhor D RUinf C Uinf;

where T D T.!;m; `/ andR D R.!;m; `/ are known as the transmission and reflexion coef-
ficients. Formally, these coefficients describe the proportion of “energy” at fixed frequency
.!;m; `/ transmitted to the horizon and reflected to infinity, respectively, of purely incoming
wave from past infinity. With the precise normalization of (3), which will be in fact motivated
by the considerations of this paper, the energy identity associated to (1) yields

(4) jRj2 C
!

! � ¨Cm
jTj2 D 1:

Superradiance, first discussed by Zeldovich [74], corresponds to the fact that, for the
frequency range

(5) !.! � ¨Cm/
�1 < 0;

the transmission coefficient T is weighted with a negative sign in (4) allowing thus the
reflection coefficient R to have norm strictly greater than 1

(6) jR.!;m; `/j > 1:

That is to say, there is a nontrivial energy amplification factor at fixed frequency. The first
estimates for the maximum reflection coefficient in various frequency regimes go back to
pioneering work of Starobinskii [68] (see also [70]), but even the statement of the uniform
boundedness of R.!;m; `/ over all superradiant frequencies (5) has remained an open
problem.

In passing from a fixed-frequency scattering theory to a true time-domain scattering
theory, the absence of an obvious quantitative frequency-independent control of the coef-
ficient R.!;m; `/ presents itself as a fundamental difficulty. Moreover, an additional diffi-
culty is identifying the correct notion of “energy” with respect to which solutions should be
defined. In particular, one requires a notion of energy which controls solutions of (2) not

(1) All notations here will be explained in detail in the paper. The reader for which this is unfamiliar can skip directly
to the next paragraph!
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374 M. DAFERMOS, I. RODNIANSKI AND Y. SHLAPENTOKH-ROTHMAN

only in the forward but also in the backward direction, i.e., an energy not subject to the local
red-shift effect associated to the event horizon, which when solving backwards appears as a
blue-shift instability.

The purpose of this paper is to overcome these difficulties and develop a definitive
finite-energy scattering theory for (2) on general subextremal Kerr exteriors .M; ga;M /

with jaj < M , showing in particular:

The answer to (a), (b) and (c) is yes. Existence and uniqueness of scattering
states as well as asymptotic completeness indeed hold for the space of solutions
to (2) and scattering states defined by the finiteness of a natural energy flux.

We will understand scattering states in the sense of Friedlander [38] (for the Schwarzschild
case in this context, see [59]), and our approach to both constructing and estimating the
scattering maps can be thought of as a combination of what in the traditional literature are
known as “stationary” and “time-dependent” methods [49, 53]. We will depend heavily on
our recent boundedness results [30] for the Cauchy problem for (2), as well as certain decay
results of [30], which indeed succeeded in giving a first version of quantitative physical-space
control over superradiance, independent of frequency, and also showed that a suitable class
of solutions of (2) can be indeed understood as superpositions of solutions of (1) over real
frequencies !. Our argument crucially relied on the fact that the difficulties of superradiance
and trapping are disjoint. We will in fact, however, here require a certain refinement of the
estimates of [30] so as to apply to a degenerate energy not subject to the backwards blue-
shift instability. This notion of energy lies behind the particular choice of normalization of
the reflection coefficient R in (3). Along the way, we shall in particular provide the missing
frequency-independent bound on R over all superradiant frequencies (5):

(7) sup
.!;m;`/

jR.!;m; `/j D S.a;M/ <1

by a finite constant S.a;M/ depending only on the Kerr parameters, with S.a;M/ > 1 if
a ¤ 0.

Our asymptotic completeness results will allow us to define (in the language of
Wheeler [72]) an S -matrix S whose boundedness in the operator norm replaces the usual
unitarity property. A suitable restriction of S will be related to a generalization of the
inverse-Fourier transform applied to multiplication by the coefficients R and T defined
by (3). Through this, we will give a definitive physical space (i.e., time-domain) interpreta-
tion of superradiant reflection, in particular, showing:

Superradiant reflection indeed strictly amplifies the energy radiated to
infinity of suitably constructed purely ingoing finite-energy wave packets.
The maximum amplification factor, however, is bounded precisely by the
constant S.a;M/ of (7).

Our results leave open the extremal case ga;M for a D M (see [7]). In particular, it is not
known whether the limit limjaj!M S.a;M/ is finite.
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1.1. Brief overview of the main theorems

We introduce briefly the main theorems of the paper in what follows below. (We will
give a more detailed overview together with precise statements of all theorems listed here in
boldface type in Section 2.)

1.1.1. From Schwarzschild to Kerr: the T -energy theory and superradiance. – The first diffi-
culty in constructing a physical-space scattering theory is identifying what constitutes the
“correct” class of finite energy solutions and asymptotic states. In the Schwarzschild case, as
admissible solutions to (2) it is natural to consider the class of  which have finite conserved
energy (i.e., finite energy corresponding to the stationary Killing vector field T ) on a Cauchy
hypersurface. This in turn suggests a corresponding notion of asymptotic states defined in
terms of the completion (with respect to the natural T -energy flux) of the set of Friedlander
radiation fields r on IC (see [38]), complemented by the analogous completion of the set of
traces of  on the event horizon HC. See Nicolas [59] for a recent formulation of Schwarz-
schild scattering theory in precisely these terms. This theory can be constructed entirely in
the time-domain, i.e., using “time-dependent” methods. (We will in fact give our own self-
contained version of the Schwarzschild theory in Section 9.6.)

Turning to the Kerr case, the above conserved energy corresponding to T is clearly unsuit-
able for a scattering theory, because the inner product it defines is now indefinite, in view of
the existence of the well-known ergoregion where T is spacelike. (2) This is the physical-space
origin of the phenomenon of superradiance discussed with respect to (4). Recent progress
on understanding the Cauchy problem for (2) on Schwarzschild and Kerr has rested in part
on the realization (see [23, 26, 27]) that a more natural energy quantity for understanding
forward evolution is that defined by aT -invariant everywhere-timelike vector fieldN (see (41)
in Section 3.4). Even though this N -energy is not conserved, it remains, as proven in our
recent work [30] (for the full sub-extremal range of Kerr parameters jaj < M ), uniformly
bounded through a suitable spacelike foliation†�s of the exterior region and controls in fact
a spacetime integral quantity. The good divergence properties of the vector fieldN are related
to the celebrated red-shift effect associated to the horizon HC.

1.1.2. The N -energy theory and the backwards blue-shift instability. – Despite its success
in the context of the Cauchy problem on Kerr, the above N -energy is again unsuitable for
defining a scattering theory, because the helpful red-shift transforms into a lethal blue-
shift when trying to associate admissible solutions to their natural asymptotic states, which
requires solving the wave equation backwards. See the discussion in [20, 64] and also the more
recent comments in [59]. (Note that the appearance of a blue-shift instability in this context
is familiar from the phenomenon of Hawking radiation [47, 10, 11, 44, 45]. See also [50].)
The first two results of our paper are dedicated to making explicit this obstruction. Our
Theorems 1 and 2 together show that while one can naturally associate (using our results

(2) Let us note that, in contrast to the wave equation (2), for the Dirac equation, one still has a coerciveL2-conserva-
tion law despite the absence of a globally timelike Killing field. Using this, Häfner and Nicolas [46] have constructed
a scattering theory for the Dirac equation on Kerr backgrounds, generalizing [58]. This has been extended to Kerr-
Newman-de Sitter backgrounds by Daudé and Nicoleau [32]. In this context, see also Häfner [43] for scattering
results concerning a non-superradiant class of solutions of the Klein-Gordon equation for fixed azimuthal modem.
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376 M. DAFERMOS, I. RODNIANSKI AND Y. SHLAPENTOKH-ROTHMAN

of [30]) asymptotic states to finiteN -energy solutions, this map is not surjective, and thus, one
cannot define a one-sided inverse map embodying the existence of scattering states (cf. (a)).

1.1.3. The V -energy theory. – The correct setting for a scattering theory on Kerr would then
appear to be an energy quantity defined by a vector field V which (like T in Schwarzschild)
is null on the horizon and timelike outside. With the help of the additional axisymmetric
Killing fieldˆ, one can in fact construct such a vector field V which can be chosen moreover
Killing in a neighborhood of both HC and IC (though not globally Killing!). Even the
question of uniform boundedness of solutions assumed to lie only in the energy space defined
by V (see (42) in Section 3.4), however, has not previously been answered. (See however,
the very related higher-order weighted estimates of Andersson-Blue [4] in the very slowly
rotating jaj �M case.)

The main results of the present paper (Theorems 3 and 4) succeed in constructing a
bounded invertible map FC associating a unique future asymptotic state to each solution
with initially bounded V -energy, with two-sided inverse B� satisfying

(8) B� ıFC D Id; FC ıB� D Id:

I
�

I CH
C

H
�

†B

The boundedness of the map FC requires a refinement of our previous boundedness results
on the Cauchy problem (see [30]) so as to apply for admissible solutions defined by the
finiteness of a suitable V -energy as above. This will require us to revisit the fixed frequency
o.d.e. estimates on (1) proven in [30]. What will be the inverse map B� is constructed
explicitly via the frequency domain by an appropriate superposition of solutions to the fixed
frequency o.d.e (1). Again, to infer the boundedness of B� one needs to exploit quantitative
estimates on (1) adapted from [30], again referring only to the V -energy flux. One may define
similar maps F�, BC associating solutions to past asymptotic states.

In the traditional language of scattering theory, let us note that existence of scattering
states (cf. (a)) corresponds to the existence of B�, uniqueness of scattering states (cf. (b)) to
the injectivity of F˙, and asymptotic completeness (cf. (c)) to the surjectivity of B�. These
three statements of course all follow from (8).

1.1.4. The scattering map S , superradiant reflection R and applications. – The asymptotic
completeness results allow us in particular to define a scattering map (S -matrix)

S D FC ıBC
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A SCATTERING THEORY FOR THE WAVE EQUATION ON KERR 377

taking asymptotic past states to asymptotic future states

I
�

I CH
C

H
�

which is moreover bounded in the operator norm with respect to the spaces defined by the
flux of the V -energy (see Theorem 5).

To connect with the usual discussion of superradiant scattering, we may also define a
reflection map R and a transmission map T which restricts S to past asymptotic states
with no trace on the past event horizon H� and returns only the radiation to future null
infinity IC or the future event horizonHC respectively. It follows in particular that R and T

are also bounded (see Theorem 6). On the other hand, we show that the operator norm of R

satisfies kRk > 1 (see Theorem 7), and thus there exist wave packets corresponding to past
asymptotic states supported only on I� such that the energy radiated to IC is strictly greater
than the energy flux on I�. As discussed above, this gives a physical space interpretation of
superradiance (cf. the numerical [6]). Next, we will show that T ˚ R is pseudo-unitary in
that it preserves an indefinite inner product associated to the T -energy (Theorem 8). Upon
restricting to “non-superradiant” data alongH� and I� the map S becomes unitary in the
standard sense (Theorem 9).

We finally give a “unique continuation” result that finite V -energy solutions are uniquely
characterized by their scattering data on any of the “ill-posed” pairs H� [ HC, IC [ I�,
H� [ IC or HC [ I� (see Theorem 10). This has the interpretation that for this improper
notion of asymptotic states, uniqueness of scattering states (b) holds without existence (a).

1.1.5. Back to the fixed-frequency theory. – We have already noted that our results
will require revisiting the estimates proven in [30] for the radial o.d.e. (1) appearing in
Carter’s classical separation of (2). In this sense, our work makes contact back with the
formal scattering theory literature [40] concerning (1) at fixed frequency. In particular, our
o.d.e. results will yield the uniform boundedness of the reflection and transmission coeffi-
cients (Theorem 11), in particular, giving (7). This complements the work of Starobinskii
and others (see [68, 70]) aimed at numerically estimating the maximum of these for low fixed
values of m, `. Our transmission and reflection maps T and R can in fact be represented
as a generalized inverse Fourier transform of multiplication by T and R (Theorem 12). In
particular, a posteriori, the boundedness statements of Theorems 6 and 11 are equivalent.
This connects the fixed frequency and physical space scattering theories in a very explicit
way.

Though our approach to asymptotic completeness will only require us to study the reflec-
tion and transmission coefficients for real frequencies, it is also interesting to study the mero-
morphic continuation ofR and T in appropriate subsets of the complex plane. The work of
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Whiting [73] referred to above shows that there are no poles in the upper half plane while the
poles in the lower half plane correspond to “quasi-normal modes,” e.g., see [36].

1.2. Related work, future directions of study and further reading

Let us specifically mention here a related recent important advance by Georgescu, Gérard
and Häfner [41] which proves scattering results for fixed-azimuthal mode (i.e., fixedm) solu-
tions of the Klein-Gordon equation in the very slowly rotating Kerr-de Sitter case jaj�M;ƒ.
This is in part based on work on the Cauchy problem due to Dyatlov [36]. For an earlier
work concerning superradiant scattering involving a charged Klein-Gordon field in an
electrostatic potential, see Bachelot [13, 12]

For additional background on the Cauchy problem on other black hole spacetimes,
besides references mentioned previously, we refer the reader to the lecture notes [27].

It would be of significant interest to see if appropriately modified versions of the asymp-
totic completeness results established in this paper can be extended to other matter models
of interest, for example, Maxwell’s equations (see [5] for the state of the art on the corre-
sponding Cauchy problem), and possibly most interestingly, to the equations of linearised
gravity (see [19]).

It is worth emphasizing that the understanding of scattering theory for a massive scalar
field will require significant modifications due to both the existence of eigenvalues in the
upper half-plane [66] and to the inadequacy for massive fields of the Friedlander radiation
field notion.

We note finally that the classical scattering theory developed here has applications to
quantum field theory on curved backgrounds and the phenomenon of Hawking radiation.
See [47, 71, 10, 11, 44, 45].

1.3. Acknowledgements

MD acknowledges support through NSF grant DMS-1405291. IR acknowledges support
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2. Detailed overview and statements of the main theorems

In this section, we will give a more detailed overview of the main results of this paper. We
begin in Section 2.1 with the basic setup for our “time-domain” scattering theory. We shall
then briefly turn in Section 2.2 to a discussion first of the Schwarzschild a D 0 case based on
spaces defined by the conserved T -energy, and then of the problem of superradiance in Kerr
for a ¤ 0 which makes this approach impossible. With these preliminaries, we present in
Section 2.3 the statements of the main theorems of our scattering theory in the time domain
for Kerr in the general subextremal range jaj < M . We shall relate this back to the fixed-
frequency theory in Section 2.4, stating two additional theorems. In Section 2.5, we make
a brief comparison with non-linear scattering problems involving black holes, in particular
referring to a recent scattering construction of solutions to the Einstein equations themselves
which asymptote in time to the Kerr family [20]. Finally, we shall give in Section 2.6 a section
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by section outline of the remainder of the paper, identifying in particular where each of the
main theorems is proven.

2.1. The setup for scattering theory in the time-domain

We begin with the basic setup describing our “time-domain” scattering theory in the Kerr
black-hole context.

2.1.1. The exterior region of Kerr. – We will fix subextremal Kerr parameters jaj < M

and consider the Kerr metric ga;M defined on a “domain of outer communication” D. See
Section 3.2 for an explicit representation of this manifold with stratified boundary.

H
�

I
�

I C
H
C

B
D

The boundary componentsH˙ correspond to past and future event horizons and meet in the
so-called bifurcation sphereB. (Our convention will be thatH˙ do not containB.) Moreover,
one can define the two “asymptotic” boundary components future and past null infinity I˙,
which, in an auxiliary topology, can indeed be attached to D as boundary. See Section 4.2.

2.1.2. Hypersurfaces and forward evolution of smooth data. – We begin by considering
smooth solutions  of (2) arising from compactly supported initial data on a suitable
hypersurface. We will in fact consider three distinct classes of such data.

When we are only interested in future scattering, it is more natural to focus on solutions
parametrised by compactly supported data .§†�

0
; §0

†�
0

/ on a hypersurface

†�0 D ft
�
D 0g;

defined as the level set of a future-horizon penetrating t�-coordinate. See Section 3.2. Here
†�0 is understood as a manifold-with-boundary, so the support of the data can in principle
contain the boundary †�0 \HC. By general theory, such data give rise to a unique smooth
solution  of (2) on R�0 D DC.†0/. We shall call the map from smooth initial data to
solution forward evolution:

(9) .§;§0/ 7!  :

See Proposition 3.6.1.
When we are interested in defining the S -matrix, we need to parameterise solutions  by

data which determine  globally onD. It is in fact natural to distinguish between two cases.
Defining

V† D ft D 0g; † D V† [ B;
where t is the usual Boyer-Lindquist coordinate defined only on the interior of D, we can
consider smooth compactly supported data .§†; §

0

†
/ on †, or the more restrictive class of
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smooth compactly supported data .§
V†
; §0
V†
/ on V†. (The latter, thought of as a special case

of the former, must vanish in a neighborhood of B.) We can now associate in either case a
global smooth solution  on D. See Proposition 3.6.2. We will again refer to the map (9) as
forward evolution.

The significance of considering the restricted data (i.e., data whose support as a subset
of V† is compact) is that the support of the resulting  in D is disjoint from an open neigh-
borhood of B. This will be useful technically in defining the backwards map in the frequency
domain. It will also facilitate comparison with other results where it has often been this scat-
tering theory that has been implicitly or explicitly considered.

2.1.3. Radiation fields and horizon traces. – The most natural formulation of a scattering
theory from the point of view of the present problem describes asymptotic states by an
appropriate Hilbert space completion (see below) of the future and past radiation fields
on I˙ augmented by radiation fields on the horizons.

The notion of radiation field along IC is due to Friedlander [38] and in our context is
given by the following proposition:

P 1. – If data .§;§0/ are smooth of compact support on †�0 , V† or †, then the
solution r extends to a smooth function ¥ defined on IC.

We shall infer the above as an essentially trivial consequence of the rp estimates of [24].
See Proposition 3.8.1 and Corollary 4.2.1.

The radiation field on the horizon is just the usual restriction of  as a smooth function.
Let us introduce the notation HC�0 D R�0, and HC D HC [ B. Since  arising from
compactly supported data .§†�

0
; §0

†�
0

/ is only defined onR�0, we may define in this case only

§jHC
�0

:
D  jHC

�0

. In the case of solutions arising from compactly supported data on V† and†,

respectively, is of course defined on all ofHC; nonetheless, we shall refer to§HC
:
D  HC in

the former case and §HC
:
D  HC in the latter case. This notation reminds us (cf. the remark

at the end of Section 2.1.2 above) that in the former case, the support of§HC is disjoint from
a neighborhood of B in D, whereas, in the latter case, the support of §HC may contain B.

To summarize, forward evolution (9) gives rise to a map on smooth compactly supported
initial data

.§j
†�
0
; V†; or †

; §0j
†�
0
; V†; or †

/ 7!  

7! .§jHC
�0
;HC; or HC

:
D  jHC

�0
;HC; or HC ; ¥jIC

:
D r jIC/

(10)

defined by solving the initial value problem for (2) and restricting to the radiation fields. The
forward maps of our scattering theory will be constructed by completing the above map with
respect to suitably defined energies.
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2.1.4. Vector fields, energies and asymptotic states. – The states defining scattering theory
are associated to energies which are in turn defined by vector fields.

Recall that a general vector field X defines an energy current JX Œ � and an energy flux

(11)
Z
S

JX Œ �

through an arbitrary hypersurface S. (See Section 3.1.)

For appropriate vector fields X for which (11) is nonnegative, the square root of the
expression (11) can in turn be used as a norm to define a space

(12) EX
†�
0
; EX

V†
; EX

†

by completion of the set of smooth compactly supported data .§;§0/ on †�0 , V†, †, respec-

tively. (See Section 8.1.) Recall that “compactly supported on V†” is a more restrictive
assumption than “compactly supported on †” and thus EX

V†
� EX

†
.

Similarly, the flux (11) defines asymptotic spaces

(13) EX
HC
�0

˚ EXIC EXHC ˚ E
X
IC ; EX

HC
˚ EXIC ;

via completion of the space of radiation fields arising from (10). Here we have that EX
HC
�0

embeds (non-uniquely) into EXHC , and also, EXHC � E
X

HC
.

In this picture, the problems (a)–(c) of scattering theory translate into finding bijective maps
between (12) and (13) induced by the completion of forward evolution (10) of smooth data, for
a suitable choice of the vector field X . We will not discuss the construction of wave operators
in the spirit of [39, 55] as there is no compelling global “reference dynamics” with which to
compare; see [59] for a nice discussion of how to construct the latter if desired.

2.2. The T -energy theory and its limitations

Before turning to our main theorems, we briefly review the Schwarzschild a D 0 case,
as well as the physical space manifestation of the difficulty of superradiance, discussed
previously, which arises upon passing to rotating Kerr with a ¤ 0.

2.2.1. The Schwarzschild a D 0 case. – In the Schwarzschild case a D 0, the stationary
Killing field T is timelike in the interior ofD becoming null onHC[H� and vanishing on B.
Thus the energy defined by T degenerates pointwise. Nonetheless, the completions ET

V†
, ETHC

and ETIC define Hilbert spaces and one can obtain a unitary isomorphism

(14) ET
V†
Š ETHC ˚ E

T
IC :

In our notation, this is the content of the previously known Schwarzschild scattering
theory [33, 35, 59].

We will give our own self-contained treatment in Section 9.6. One obtains with no addi-
tional difficulty the alternative unitary isomorphisms ET

†�
0

Š ET
HC
�0

˚ ETIC and ET
†
Š ET

HC
˚ ETIC .
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2.2.2. The case a ¤ 0 and the ergoregion. – Turning to the Kerr case a ¤ 0, there is
now a non-empty subset S of D known as the ergoregion where T is spacelike. In particular,
the energy-fluxes

R
V†

JT Œ �,
R
HC JT Œ � defined by T fail to be positive definite. This is the

physical space origin of the phenomenon of superradiance, discussed in the fixed-frequency
theory in the context of (4) and (5).

Part of the conceptual difficulty of formulating a scattering theory in the Kerr case is thus
to find the correct notion of asymptotic states which replaces those based on ET . At the same
time, one must understand what property replaces the notion of unitarity in (14) as a means
of quantifying the good properties of the scattering map. We turn now to the statements of
the main results of this paper that give a definitive resolution of this problem.

2.3. A scattering theory for Kerr: the main theorems

In this section, we will present in detail the main theorems of our paper concerning
physical-space (time-domain) scattering theory for the wave equation (2) on Kerr in the
general subextremal case jaj < M .

2.3.1. The N -energy forward map. – The first candidate replacement for the (degenerate)
Schwarzschild T -energy is the so-called N -energy. Here, N is a globally timelike vector field
which is T -invariant outside a neighborhood of the bifurcation sphere B and moreover such
that N D T in a neighborhood of IC. The energies (12) associated to this vector field are
indeed manifestly positive-definite and pointwise non-degenerate.

The first main theorem defines asymptotic states for all solutions arising from finite
N -energy data on the hypersurface†�0 , i.e., in the notation (12), for all solutions parametrised
by EN

†�
0

.

T 1. – Forward evolution (10) with data on †�0 extends to a bounded map
FC W EN†�

0

! EN
HC
�0

˚ ETIC .

H
�

I
�

I CH
C
�
0

R

†�
0

See Theorem 8.2.1. (Note that ENIC D ETIC .) For the hard analysis behind the above, the
proof relies in particular on a uniform boundedness statement for the energy

R
†�s

JN through
a foliation †�s defined by future-translating †�0 by the flow of T , as well as a weak decay
statement, both of which follow from the results of [30] mentioned previously, here quoted
as Theorem 3.7.1.
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2.3.2. A blue-shift instability and the non-existence of an N -energy backwards map. – Satis-
factory though the forward theory may be, it turns out that the above N -energy is ill-suited
for defining the asymptotic states of a scattering theory. The fundamental origin of this is
the red-shift effect on the horizon (so favorable for controlling forward evolution!), which for
backwards evolution is now seen as a blue-shift. See [20] and Section 3.1.2 of Sbierski [64].
It turns out that one can show explicitly that the map of Theorem 1 fails to be surjective:

T 2. – Already in the Schwarzschild a D 0 case, the map FC of Theorem 1 fails
to be surjective.

It follows that there does not exist even a one-sided inverse B� satisfying FC ıB� D Id;
thus, existence of scattering states (cf. (a)) does not hold in the N -theory. (As we shall see in
Section 2.3.4, the above map FC is however injective.)

The above theorem in fact applies in the general Kerr case, (3) but in the present paper, we
shall give an elementary purely physical space proof for the case a D 0which exploits mono-
tonicity satisfied by the spherical mean under spatial evolution. Though essentially indepen-
dent of the rest of the paper, the precise statement proven (Theorem 11.1) is deferred to the
end (Section 11), so that it can be interpreted both as a non-surjectivity result with respect
to our N -energy scattering theory (Corollary 11.4) and also constructively (Corollary 11.1)
using Theorem 4 of our V -energy scattering theory to be discussed below. Let us already
remark, however, that the non-surjectivity statement we obtain in Corollary 11.4 is more
precise than what we have just stated above. We elaborate briefly below.

First let us note that with the notations of the present paper, the considerations of
Section 1.1.6.1 of [20] show that by introducing sufficiently high exponential weights in the
spaces defining the scattering data, i.e., considering the spaces Ee˛vNHC and Ee˛uTIC , then there
indeed exists a bounded one-sided inverse

(15) B� W Ee
˛vN

HC
�0

˚ Ee˛uTIC ! EN
†�
0

such that FC ıB� D id . Thus, we do have existence of a restricted class of future scattering
states.

With this setting, our Theorem 11.1 in fact shows (see Corollary 11.4) that e˛v above
cannot be replaced by jvjp no matter how large p is taken, i.e., the map FC of Theorem 1
is not surjective as a map F�1C .E jvj

pN

HC
�0

˚ f0g/ ! E jvj
pN

HC
�0

˚ f0g. The question of precise

characterization of the range of FC remains open. We shall return to this issue in Section 2.5.

2.3.3. The V -energy forward map. – To define a forward map which one can indeed hope to
show is invertible, we must pass to a degenerate energy class which does not see the red-shift
at the horizon.

Recall that gM;a admits an additional Killing vector field ˆ corresponding to axisym-
metry. Although for a ¤ 0, the vector field T fails to be globally timelike in the inte-
rior of D, the span of T and ˆ does form a timelike plane, and the Killing combination
K D T C ¨Cˆ is timelike in a neighborhood ofHC, becoming null onHC itself. (Note that
if a D 0, thenK D T , but if a ¤ 0, thenK is spacelike away from the axis of symmetry near

(3) See our more recent [31] for the more general case.
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IC.) We define a T -invariant vector field V with the property that V D K near HC and
V D T near IC and V is timelike in the interior of D. The energy associated to this vector
field is manifestly non-negative definite, though degenerate analogous to the T -energy in
the Schwarzschild case. In the case a ¤ 0, there is necessarily a region where V fails to be
Killing.

Our third main theorem is a degenerate V -energy analog of Theorem 1 given by

T 3. – Forward evolution (10) extends to bounded maps

FC W EV†�
0
! EK

HC
�0

˚ ETIC ; FC W EV
V†
! EKHC ˚ E

T
IC ; FC W EV† ! EK

HC
˚ ETIC :

See Theorems 8.2.1, 8.2.3 and 8.2.4. The above theorem requires a new version of the
boundedness part of Theorem 3.7.1 of [30], depending only on the degenerate energy. This
result, which is of independent interest, is stated as Theorem 7.1 and proven in Section 7.
The reader can compare with the higher-order weighted boundedness result of Andersson
and Blue [4] for the jaj � M case, whose degenerate horizon weights are similar to the
V -energy. Note that it is an immediate consequence of finite-in-time energy estimates and
Theorem 1 that upon replacing both V and K with N , the analogs of all three of the maps
in Theorem 3 are bounded. (Recall, however, that N is not T -invariant in a neighborhood
of the bifurcation sphere. See Remark 3.4.2 for an expression for EN

†�
0

.) Finally, we note that

it is the second of the maps in Theorem 3 which corresponds to the classical inverse wave
operators.

Let us note that the proof of Theorem 7.1 will require us to revisit the quantitative study of
the o.d.e. (1) at fixed frequency, on which the original results of [30] were based, in particular
in the form of Theorem 6.3.1, and a new result, Theorem 6.2.1, which we will prove here by
adapting the proof of [30]. In particular, from these statements, one can already infer novel
results on the fixed-frequency scattering; we defer specific discussion of these till Section 2.4.

2.3.4. The V -energy backwards map. – Our degenerate-energy class is indeed suitable to
construct a bounded inverse of the map of Theorem 3 and thus infer the existence of a
satisfactory scattering theory satisfying (a)–(c).

T 4. – There exist bounded maps

(16) B� W EKHC
�0

˚ETIC ! EV
†�
0
; B� W EKHC˚E

T
IC ! EV

V†
; B� W EKHC˚E

T
IC ! EV

†
;

which are two-sided inverses to the maps of Theorem 3, i.e., B� ıFC D Id and FC ıB� D Id.

H
�

I
�

I CH
C
�
0

†0

H
�

I
�

I CH
C

V†

I
�

I CH
C

H
�

†B
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See Theorems 9.2.1, 9.1.1 and 9.3.1. As explained in Section 1.1.3, it is the existence of the
map B� which gives the existence of future scattering states (a), the injectivity of FC which
gives the uniqueness of future scattering spaces (b), and the surjectivity of B� corresponds to
asymptotic completeness of future scattering states (c). We note that the map of Theorem 1 is
in fact the restriction of the first map of Theorem 3. Thus a corollary of the above is that
the map F of Theorem 1 is injective. In this sense, for the N -energy theory, one still has
uniqueness (b)–but not existence (a)!–of scattering states. Cf. the discussion of the ill-posed
problems of Section 2.3.8.

Let us note that in our proof, we construct B� with the help of the frequency domain,
again using our o.d.e. result Theorem 6.2.1, together with a decomposition first given in [30]
and which exploits the fact that the span of T and ˆ is timelike (See Section 9.1.2), to give
us the quantitative statement of boundedness. Due to this use of the frequency domain, it is
in fact the map B� W EKHC ˚ E

T
IC ! EV

V†
which is most natural to construct first.

It is perhaps worth explicity noting that even to show the existence of B�, we require
appeal to an o.d.e. result which in essence already embodies the totality of the quantitative
decay statement for the Cauchy problem (2). This should emphasize how intricately tied in
the Kerr case the problem of boundedness is to the problem of quantitative decay. This is in
contrast to many usual problems in scattering theory where “existence of scattering states”
(cf. (a)) is a relatively soft result, which can be proven independently of the structure necessary
to obtain asymptotic completeness-type statements.

2.3.5. Existence and boundedness of the S -matrix. – We will base our discussion here on
the scattering theory associated to V† or†. First, note that applying a discrete isometry ofD
which interchanges the future and past of V†, we infer analogously to Theorems 3 and 4 the
existence of bounded past forward maps,

F� W EV
V†
! EKH� ˚ ETI� ; F� W EV† ! EKH� ˚ E

T
I� ;

and the corresponding bounded two-sided inverses

BC W EKH� ˚ ETI� ! EV
V†
; BC W EKH� ˚ E

T
I� ! EV

†
:

We thus have both existence and uniqueness for past scattering states as well as past asymp-
totic completeness.

The following is then an immediate corollary

T 5. – The composition of S D FC ıBC defines bounded invertible maps

(17) S W EKH� ˚ ETI� ! EKHC ˚ E
T
IC ; S W EKH� ˚ E

T
I� ! EK

HC
˚ ETIC :
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I
�

I CH
C

H
�

The boundedness kS k � C of the map S in the operator norm should be viewed as the
quantitative replacement for the usual unitarity property.

2.3.6. A physical space theory of superradiant reflection. – Given the scattering map S ,
we can now give an account of superradiant reflection in physical space, i.e., in the “time
domain”.

Recall the standard physical set-up: One wishes to study the scattering of waves with no
ingoing contribution from the past event horizon H� and we are interested only in the part
of the wave reflected to future null infinity IC. We thus pass from S to the transmission map
T and reflection map R defined by

(18) T D �EK
HC
ıS j

f0g˚ETI�
; R D �ET

IC
ıS j

f0g˚ETI�

where

�ET
IC
W EKHC ˚ E

T
IC ! ETIC ; �EK

HC
W EKHC ˚ E

T
IC ! EKHC

are the natural projections. Note that this map does not depend on whether we consider the
domain of S to be either of the choices in (17). The map

R W ETI� ! ETIC

takes an asymptotic state corresponding to an incoming wave packet supported solely on
past infinity I� (i.e., with no incoming radiation from H�) and maps it to the part of the
asymptotic state which is reflected to future null infinity IC (i.e., projecting out the part
transmitted to the future horizon HC). Similarly, the map

T W ETI� ! EKHC

takes an asymptotic state corresponding to an incoming wave packet supported solely on
past infinity I� and maps it to the part of the asymptotic state which is transmitted to the
future event horizon HC.

Since S j
f0g˚ETI�

D T ˚R, the boundedness of S above immediately yields the strictly
weaker statement

T 6. – The reflection and transmission maps R and T are bounded, i.e.,
kRk; kT k � C .
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See the first statement of Theorem 10.1.1. In view of the relation with the fixed-frequency
theory to be discussed in Section 2.4 below, we have

(19) sup
.!;m;`/

jR.!;m; `/j D kRk;

and thus, a posteriori, Theorem 6 gives in particular (7). We note however that in the logic
of the proof, we will have essentially already used (7) in proving the boundedness of both the
maps FC and B�.

Let us here already mention a further application of the relationship (19) to our physical-
space scattering theory. First, note that general soft o.d.e. theory is sufficient to show that
the reflection coefficient satisfies jR.!;m; `/j > 1 for any superradiant frequency triple (see
Corollary 5.3.1). Thus, one immediately obtains from (19) the statement

T 7. – For a¤0, the reflection map R has norm strictly greater than 1, i.e., kRk >1.

See the second statement of Theorem 10.1.1. The above theorem can be viewed as the
definitive physical-space interpretation of the phenomenon of superradiant reflection. To
connect with the numerical setting often studied (e.g., [6, 52]) in which it is difficult to
implement past scattering data on I�, we will extract in addition the following somewhat less
natural statement concerning Cauchy data on V† via a density argument (see Theorem 10.1.2):
There exists a smooth solution  with the property that its T -energy flux through IC is greater
than its T -energy flux through V† and moreover, the support of the solution on V† is compact
and can be made arbitrarily close to spatial infinity. Cf. [37]. This addresses in particular some
questions raised in [52].

2.3.7. Pseudo-unitarity and non-superradiant unitarity. – As we have already discussed,
when a ¤ 0 one does not have a unitary scattering theory; however, one still expects to
recover the conservation of the indefinite inner product associated to the T -energy, provided
this inner product is finite.

The T -energy is not finite on the full domain of the scattering matrix S of (17). It is,
however, finite if one for instance restricts to past scattering data supported only on I�.
Recalling the notation (18), one statement of “pseudo-unitarity” is then captured by the
following theorem.

T 8. – The map T ˚R preserves the T -energy:Z
HC

JT� ŒT ¥� n
�

HC C

Z
IC

JT� ŒR¥� n
�

IC D

Z
I�

JT� Œ¥� n
�
I� :

In particular, if the right hand side above is bounded, then the first term on the left hand
side, which is unsigned, is integrable. See Theorem 10.2.1.

Note that in the context of quantum field theory on curved backgrounds, one is also
interested in the conservation of particle current under the map T ˚R; see [71]. A version
of Theorem 8 holds also in this setting. See Remark 10.2.3.

If we restrict to past scattering data onH�[I� that are non-superradiant, i.e., supported
in frequency space outside the superradiant range, then our scattering map S will indeed be
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unitary in the usual sense. For this we define Hilbert spaces ET;\
H˙
˚ ET;\

I˙
by the completion

under the inner product

(20) h.§1; ¥1/ ; .§2; ¥2/i D

Z 1
�1

X
m`

h
! .! � ¨Cm/Re

�
O§1 O§2

�
C !2Re

�
O¥1 O¥2

�i
of scattering data whose Fourier transforms are supported in the non-superradiant range

f.!;m; `/ W !.! � ¨Cm/ > 0g:

We then have

T 9. – The restriction of the first map of (17) extends to a unitarity isomorphism
S W ET;\H� ˚ E

T;\
I� ! ET;\H� ˚ E

T;\
I� with respect to the positive definite inner product (20).

See Theorem 10.2.2. Note that the above theorem retrieves in particular the unitarity of
the first map of (17) in the Schwarzschild case a D 0 (which we in fact provide an independent
treatment of; see Theorem 9.6.2) as well as the unitarity of S restricted to axisymmetric data
in the full jaj < M case.

2.3.8. Uniqueness of scattering states for ill-posed scattering data. – Finally, we note that
our scattering theory allows us to make the following injectivity statements which can be
understood as statements just of uniqueness of scattering states (cf. (b)) for scattering data
determined on any of the four “ill-posed” pairs of asymptotic boundariesHC[H�, IC[I�,
HC [ I� and H� [ IC.

T 10. – The maps

F W EV
†
! EK

HC
˚ EKH� ; F W EV

†
! ETIC ˚ E

T
I� ;

F W EV
†
! EK

HC
˚ ETI� ; F W EV

†
! EKH� ˚ E

T
IC

are all injective.

I
�

I CH
C

H
�

†

I
�

I CH
C

H
�

†
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I
�

I CH
C

H
�

†

I
�

I CH
C

H
�

†

See Corollary 10.3.1. Together with the previous results, the above implies that finite
V -energy solutions are uniquely determined by their fluxes to any pair of the
set fHC;H�; IC; I�g. In contrast, however, to the forward maps of Theorem 3, it follows
already from general local ill-posedness type results for the wave equation (see e.g., the
classic textbook [42]) that the above maps F are not surjective. Thus, one does not have
the analog of “existence of scattering states” (cf. (a)) for scattering states parameterized as
above. (4)

2.4. Applications to fixed frequency scattering theory

As we have discussed, the proofs of our theorems of physical space scattering theory
required us to revisit our quantitative fixed frequency study of the o.d.e. (1) conducted in [30].
Thus, along the way, we have in fact obtained new results for the fixed-frequency scattering
theory initiated by Chandrasekhar [16], as well as a precise connection of the two through
the scattering matrix S . We collect these statements in this section.

2.4.1. Uniform boundedness of the coefficients R and T. – We begin with the statement of
the uniform boundedness of the transmission and reflection coefficients.

T 11. – The reflection and transmission coefficients as normalized in (3) are
uniformly bounded over all frequencies:

(21) sup
.!;m;`/

jR.!;m; `/j � C; sup
.!;m;`/

jT.!;m; `/j � C:

We in fact have a statement for the complete set of coefficients where we also allow for
waves normalized to the past horizon. See Theorem 6.2.2.

We will infer the above theorem as an immediate corollary of our o.d.e. estimate
Theorem 6.2.1, which itself is an easy adaptation of an estimate of our previous [30].
We emphasize again that this result requires in particular appeal to the real-mode stability
theorem of [67].

To connect with the pioneering heuristic work of Starobinski [68], we may define the
following constant depending only on the Kerr parameters

S.a;M/
:
D sup
.!;m;`/

jR.!;m; `/j;

(4) This is of course in sharp distinction to the fixed-frequency theory, for which “existence of scattering states”
associated toHC[ H� and IC[I�, respectively, corresponds precisely to the existence and linear independence
of the pairs Uhor, U hor (or alternatively Uinf, U inf) described in the beginning of this introduction, on which the
whole theory is based.
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and by Theorem 11, together with the soft statement Corollary 5.3.1 (mentioned already in
the context of Theorem 7), we have

1 < S.a;M/ <1; 0 < jaj < M:

(For a D 0 we have of course S.0;M/ � 1 and in fact, by an easy high angular frequency `
estimate given by Corollary 6.4.1, S.0;M/ D 1.) It would be very interesting from the point
of view of applications, following [68], to find effective upper and lower bounds for S.a;M/,
and to understand in particular the limit

(22) lim
jaj!M

S.a;M/:

2.4.2. Connection with physical-space theory. – The full scattering map S defined in
Section 2.3.5 can be represented as a generalized Fourier transform involving the trans-
mission and reflection coefficients T and R defined via (3), together with coefficients QT
and QR associated to analogously defined solutions U of (1) normalized to the past event
horizon H�. So as not to define the latter here, for convenience, let us simply state the
relations for the physical space transmission and reflection maps T and R defined in
Section 2.3.6:

T 12. – We may represent

R Œ¥� D
1
p
2�

Z 1
�1

X
m`

aI�R e
�it!eim�Sm`.a!; cos �/ d!

and

T Œ¥� D �
1

p
4M�rC

Z 1
�1

X
m`

�
!

! � ¨Cm

�
aI�T e

�it!eim�Sm`.a!; cos �/ d!:

Here

�i!aI�
:
D

1
p
2�

Z 1
�1

Z
S2
@t¥ e

it!e�im�Sm`.a!; cos �/ sin � dt d� d�:

In particular, (19) holds.

See Theorem 9.5.3 for the full statement concerning S .

In fact, a posteriori, in view of Theorem 9.5.3, the statement of Theorem 6.2.2 is equiv-
alent to the boundedness of the map S of Theorem 6. We note in contrast that the bound-
edness of the maps FC and BC individually (already asserted) does not have an obvious
natural interpretation purely in terms of the formal fixed frequency scattering theory. Simi-
larly, the boundedness statement of Theorem 1 (and the boundedness statement of [30]
quoted here as Theorem 3.7.1 which concerns boundedness through a spacelike foliation)
cannot be directly interpreted purely in terms of the formal fixed frequency scattering
theory. These are all distinct manifestations of ways that the phenomenon of “superradi-
ance” allowed by the presence of an ergoregion can be quantified. As with the question of
the finiteness of (22), it is a completely open question which if any of these boundedness
statements survives in the extremal case jaj DM . See [7].
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2.5. Nonlinear problems and scattering constructions of dynamical black holes

We make a few comments on scattering theory for non-linear generalizations of (2).
Perhaps the ultimate nonlinear such generalization is provided by the Einstein vacuum
equations

(23) Ric.g/ D 0

themselves, where the background geometry is now itself unknown.
The problem of characterizing all “admissible” solutions by appropriate asymptotic states

may turn out to be too ambitious for equations as nonlinear as (23). The mere constructing of
some, however, in the spirit of the map (15), can serve as an important way of obtaining non-
trivial examples of solution spacetimes which cannot otherwise easily be inferred to exist. A
result in that direction has recently been provided by

T ([20]). – Consider asymptotic data on HC [ IC for the Einstein vacuum equa-
tions (23), decaying towards Kerr data corresponding to ga;M with jaj � M at a sufficiently
fast exponential rate. Then there exists a vacuum spacetime .M; g/ attaining the data.

The spacetimes .M; g/ constructed in the above are in fact the first known examples of
dynamical vacuum black holes settling down to Kerr.

The above theorem can be thought of as a non-linear analog of the map (15) (for energies
which have additional weights in r however!). In fact, proving the above requires capturing a
complicated rp-hierarchy of decay of various components of curvature which in turn allows
one to identify a null condition in the implicit non-linearities in (23). (We note in contrast that
without additional special structure, the analog of the above theorem does not hold even say
for the general scalar semilinear equation of the form �g D Q.r ;r /.) We refer the
reader to [20].

In the context of our present paper, let us simply remark that the degenerate V -scattering
theory developed here, together with the blow-up result Theorem 11.1 and the upcoming [21],
gives further support to the following conjecture of [20]:

C ([20]). – Consider asymptotic data on HC [ IC as above but which decay
to ga;M only at a sufficiently fast inverse polynomial rate. Then there exists a vacuum space-
time .M; g/ attaining the data. For generic such data, HC is a “weak null singularity” across
which the metric extends continuously but with Christoffel symbols which fail to be locally square
integrable.

See the discussion of Section 11.3 and [54].

2.6. Outline

The logic of the paper will depart slightly from the order we have presented the main
results above. We thus close this introduction with a brief section by section outline of the
contents of the remainder of the paper, highlighting in bold where each of the main theorems
above are actually proven. (More detailed outlines will be given in the body of the paper at
the beginning of each individual section.)

In Section 3, we briefly review the structure of the Kerr spacetime, introduce various
conventions, and quote some previous results on forward evolution which will be important,
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in particular, we will state general well-posedness results (Propositions 3.6.1–3.6.4), precise
versions of our previous boundedness and integrated local decay results of [30] (quoted as
Theorem 3.7.1 and the higher order Theorem 3.7.2) as well as a general rp weighted estimate
(Proposition 3.8.1) which we will derive from [24].

In Section 4, we define and establish some basic properties of the radiation fields and
energy fluxes along HC�0 (or HC) and IC for solutions  to (2) arising from smooth initial
data along †�0 (or †) which are compactly supported. The main result is Proposition 4.2.1,
which is the precise statement of Proposition 1 above.

In Section 5, we first review Carter’s separation of variables for the wave equation and then
define the radial o.d.e., recalling also some results from its basic asymptotic analysis. This will
allow us to define the reflection and transmission coefficients (Definition 5.3.2), deduce fixed-
frequency superradiant amplification in the form of Corollary 5.3.1, and define the so-called
microlocal radiation fields (Definition 5.4.1) and fluxes (Definition 5.4.2).

In Section 6 we establish various estimates for the radial o.d.e. and give some useful appli-
cations. We start by proving Theorem 6.2.1, an estimate for general solutions to the homo-
geneous radial o.d.e. The proof of Theorem 6.2.1 will heavily rely on our o.d.e. estimates
from [30]. Next, in Section 6.3 we establish an important estimate forUhor in the superradiant
regime (Proposition 6.3.1). We then use related ideas in Section 6.4 to prove Proposition 6.4.1
which states that for fixed ! and m, T vanishes in the large-` limit. In Section 6.5 we show
that for each m and `, the reflection coefficient R is not identically 0 as a function of !. In
Section 6.6 we prove Proposition 6.6.1, which is the microlocal version of the rp estimates
of [24] (cf. Proposition 3.8.1). The goal of Section 6.7 is to prove Proposition 6.7.1 which
establishes uniform estimates, over all frequency parameters, for the rate of convergence of
solutions to the radial o.d.e. to their microlocal radiation fields. Finally, in Section 6.8 we
prove Propositions 6.8.1 and 6.8.2 which establish that for suitable solutions  to the wave
equation, the microlocal radiation fields are essentially the Fourier transform of the physical
space radiation fields defined in Section 4.

In Section 7, we prove Theorem 7.1, the statement that the total flux to null infinity IC
and the degenerate K-flux to the horizon HC of a solution  to the wave equation may be
controlled by the V -energy of  along †�0 . The theorem is stated in Section 7.1, after which
the reader impatient to proceed to the construction of our scattering theory may skip to
Section 8 below. The proof of Theorem 7.1, which occupies Sections 7.3 is a modification of
the proof of Theorem 3.7.1 quoted from [30]. In a brief aside in Section 7.2, we shall state
Theorem 7.2, which is the full degenerate-energy analog of our results of [30], quoted as
Theorem 3.7.1 above. We emphasize that Theorem 7.2 is not in fact necessary for the rest
of the paper, and we defer its proof to Section 9.4, where we can make use of the backwards
maps of our scattering theory.

In Section 8, we introduce the EV
V†

and EN
V†

spaces, etc., and define the various “forward”

maps and establish their boundedness. Theorem 8.2.1, the precise version of Theorem 1, is
independent of Section 7, as it relies directly on Theorem 3.7.1 of [30]. Theorem 8.2.2, on
the other hand, which together with its corollaries Theorems 8.2.3 and 8.2.4 embodies the
precise version of Theorem 3, uses in a fundamental way Theorem 7.1.

In Section 9, we prove first Theorem 9.1.1, then Theorem 9.2.1, then Theorem 9.3.1.
This obtains all statements in Theorem 4. As an aside in Section 9.4, we obtain the proof
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of Theorem 7.2 referred to above. Next, we construct the “scattering” map S and show
that it is a bounded invertible map from data along H� [ I� to data along HC [ IC
(Theorem 9.5.2, the precise version of Theorem 5). We then prove Theorem 9.5.3 which
establishes a formula for the scattering map S explicitly exhibiting the roles of the reflexion
and transmission coefficients. This formula will in particular establish the relationship
between physical space and fixed frequency scattering theories embodied by Theorem 12.
Finally, as an additional aside in Section 9.6, we give an alternative self-contained treatment
for the Schwarzschild case where it is possible to exploit purely physical space arguments.

In Section 10, we begin by interpreting our scattering results for the reflection operator R.
Theorem 10.1.1 combines the statements of Theorems 6 and 7. We also infer the related
Theorem 10.1.2. Following this, we study the pseudo-unitarity properties of S and prove the
corresponding Theorems 10.2.1 and 10.2.2 (cf. Theorems 8 and 9). Finally, our “uniqueness
of improper scattering states” results are stated as Theorem 10.3.1, giving Theorem 10.

In Section 11, we prove Theorem 11.1, the statement that solutions  of (2) on Schwarz-
schild whose radiation fields on the horizon HC have a precise polynomial tail and whose
radiation fields on IC vanish must necessarily have infinite N -energy on the hypersur-
face †�0 . This statement can be understood independently of the results concerning our
scattering maps, and indeed, Sections 11.1 and 11.2 can be read independently of the rest of
the paper. In Sections 11.3 and 11.4 we will then return to the scattering framework of our
paper. We first use the backwards map of our V -scattering theory to infer the existence (See
Corollary 11.1) of solutions satisfying the assumptions of Theorem 11.1. Finally, we infer
Theorem 2 as Corollary 11.4.

For the convenience of the reader, we have provided an index of notation at the end of the
paper.

3. Preliminaries

We begin in this section with various preliminaries.

After reviewing our notations for energy currents associated to vector fields in Section 3.1,
we will define carefully in Section 3.2 the ambient spacetimeD (and related subsets) on which
we will consider the Kerr metric ga;M for subextremal values jaj < M . Our conventions
for constants depending only on the Kerr parameters will be reviewed in Section 3.3. These
follow our conventions from [30]. Some auxilliary useful vector fields will be presented in
Section 3.4.

It will be useful to define a hyperboloidal-type foliation S� of R and we shall do this
in Section 3.5. The form of the T energy-flux through such a foliation is recorded in
Lemma 3.5.1. Section 3.6 states general well posedness results (Propositions 3.6.1–3.6.4)
for the wave equation (2) on the Kerr exterior. We shall then quote our boundedness and
integrated decay statement from [30] in Section 3.7, as Theorem 3.7.1 and the higher order
Theorem 3.7.2. The foliation of Section 3.5 will then allow us in Section 3.8 to easily quote
the rp hierarchy of estimates (introduced in [24]) in the form of Proposition 3.8.1 and the
higher order Proposition 3.8.2.
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3.1. Currents

Given a general Lorentzian manifold .M; g/, let ‰ be a sufficiently regular complex
function. We define

T�� Œ‰�
:
D Re

�
@�‰@�‰

�
�
1

2
g��g

˛ˇRe
�
@˛‰@ˇ‰

�
:

Given a sufficiently regular vector field X on M, we define the currents

JX� Œ‰� D T�� Œ‰�X� ;

KX Œ‰� D T�� Œ‰�r�X� D
1

2
T��.X/��� ;

EX Œ‰� D �Re
�
.�g‰/X�‰;�

�
:

Here .X/���
:
D r�X� C r�X� is the deformation tensor of X . In particular, KX D 0

where X is Killing.
Recall the fundamental identity:

r
�JX� Œ‰� D KX Œ‰� � EX Œ‰�:

Then the divergence identity between two homologous spacelike hypersurfaces S�, SC,
bounding a region C, with SC in the future of S�, yields

(24)
Z
SC

JX� Œ‰�n
�

SC
C

Z
C
.KX Œ‰� � EX Œ‰�/ D

Z
S�

JX� Œ‰�n
�
S� ;

where nS˙ denotes the future directed timelike unit normal, and the induced volume forms
are to be understood.

R 3.1.1. – In general, in integrals we will either write explicitly a volume form or
it is to be understood that the integration is with respect to the induced volume form. In the
case of a null hypersurface, the volume element depends on the choice of a null generator and is
defined so that the divergence theorem holds.

We direct the reader unfamiliar with the use of energy currents to the concise introductory
book [3]. See [17] for a systematic discussion.

3.2. The ambient differentiable structure and the Kerr metric

In this section we will briefly review the background differentiable structure and various
convenient coordinate systems for the Kerr spacetime. We direct the reader to [28] and [30]
for a more thorough discussion of our conventions and to the books [48] and [61] for a proper
introduction to Kerr.

As is well known, the Kerr spacetimes .M; ga;M / are a 2-parameter family of spacetimes
which in the parameter range jaj < M may be thought of as the maximal Cauchy develop-
ment of a Cauchy hypersurface with two asymptotically flat ends. The spacetimeM possesses
a bifurcate Killing horizon separating two asymptotically flat exterior regions from a black
hole and a white hole region (in the case a ¤ 0, thenM is further extendible beyond a smooth
Cauchy horizon to a larger spacetime which fails however to be globally hyperbolic and is
thus not uniquely determined by initial data). In this paper, we will work on the subregionD
which is the closure of one of the exterior regionsM. The boundary of the regionD consists
of the union of two null hypersurfacesHC andH�, the future event horizon and the past event
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horizon, along with B, the bifurcate sphere. Our convention will be that B is not included
in H˙ and HC [ B [H� is a bifurcate null hypersurface.

We proceed to describe explicitly the underlying structure and metric. We start with the
smooth manifold with boundary

(25) R D R�0 � R � S2;

parameterized by y� 2 R�0, t� 2 R and a choice of standard spherical coordinates
.��; ��/ 2 S2. This coordinate system will be known as “Kerr-star coordinates”. Let us
denote the coordinate vector field T D @t� and ˆ D @�� and let us denote by �1, �2, �3
a basis of standard angular momentum operators corresponding to the S2 factor of (25). (5)

In particular, the �i span the tangent space of S2.

We define what shall be the future event horizonHC byHC D @R D fy� D 0g. It will be
useful to adopt the conventions:

HC�s
:
D HC \ ft� � sg;

HC.s1; s2/
:
D HC \ ft� 2 Œs1; s2�g;

R�s
:
D ft� � sg;

VR :
D int.R/ D R nHC;

VR�s
:
D R�s nHC�s :

Next, given a choice of parameters .a;M/ satisfying jaj < M , we define a new coordinate
function r D r.y�/ on R (with1 > C > dr

dy�
� c > 0) so that r jHC D rC.a;M/ where

r˙
:
DM ˙

p
M 2 � a2. It is often convenient to replace r with yet another rescaled version,

r� D r�.r/, defined in VR, by

(26)
dr�

dr
D
r2 C a2

�
; r�.3M/ D 0;

where

(27) � D r2 � 2Mr C a2 D .r � rC/.r � r�/:

Since r� < rC, it follows that� vanishes to first order onHC, and thus the coordinate range
1 > r > rC covering VR corresponds to the range1 > r� > �1. It will also be useful
to sometimes employ what will be an “approximately null” coordinate system . Qu; Qv; �; �/

defined by

Qu D
1

2
.t � r�/; Qv D

1

2
.t C r�/:

Next, we introduce the new coordinates

(28) t .t�; r/
:
D t� � Nt .r/; �.��; r/

:
D �� � N�.r/ mod 2�; �

:
D ��

where Nt .r/ and N�.r/ are appropriately chosen smooth functions depending on a and M
(see [28] and [30] for details) which vanish for sufficiently large r .

(5) We may take�1 D ˆ for instance.
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In these “Boyer-Lindquist coordinates” .t; r; �; �/, we finally define the Kerr metric by

ga;M D �
�

�2

�
dt � a sin2 �d�

�2
C
�2

�
dr2 C �2d�2 C

sin2 �
�2

�
a dt � .r2 C a2/d�

�2
;(29)

where �2
:
D r2 C a2 cos2 � . Though a priori (29) is only defined in VR, by examining the

expression of the metric in Kerr-star coordinates y� and t� (see [28] for the computation),
one checks easily that ga;M extends smoothly toHC making .R; ga;M / a smooth Lorentzian
manifold-with-boundary. Let us note moreover that T and ˆ defined previously can be
expressed again as coordinate vector fields T D @t and ˆ D @� , whence it follows from (29)
that T and ˆ are Killing on R. These are the so-called stationary and axisymmetric Killing
vector fields.

Recall that when a ¤ 0 the vector field T is not everywhere timelike. The region S where
T is spacelike is known as the “ergoregion”. Explicitly, we have

(30) S D f� � a2 sin2 � < 0g:

Note that
S � fr < 2M g:

Let us also recall that in [28] and [30] we chose the function Nt of (28) so that the hypersur-
faces t� D s, denoted by †�s , are spacelike with respect to the Kerr metric as just defined.
Furthermore, we will have R�s D DC.†�s /. Let us introduce the notation

(31) V†
:
D ft D 0g:

We have that V† is also spacelike and a Cauchy hypersurface for VR.
Some additional notation from [30]: Note that the definition @r is ambiguous since it

depends on the choice of coordinate system. Thus, we define

Z�
:
D @r with respect to coordinates .t�; r; ��; ��/;(32)

Z
:
D @r with respect to coordinates .t; r; �; �/:(33)

Note that Z� is well defined inR and is transversal toHC while Z is only well defined in VR.
Finally, we will use r= to denote the induced covariant derivative on the S2 factor of R.

Though all explicit computations will take place on the manifold-with-boundary R
defined above, it is of fundamental importance to understand the existence and properties
of a further smooth extension to D D R [ H� [ B, which will represent precisely the D
described at the beginning of this section. We will be brief in our presentation; we direct the
reader to [61] for a very careful and detailed exposition.

We begin by attaching H�. Starting with Boyer-Lindquist coordinates .t; r; �; �/, one
defines a new coordinate system .�t; ��; r; ��/ by

�t .t; r/
:
D t � Nt .r/; ��.t; r/

:
D � � N�.r/ mod 2�; ��

:
D �;

where Nt and N� are as above. A straightforward computation shows that the metric naturally
extends smoothly so as to be defined also at r D rC in this chart. We may thus use
this coordinate chart to extend R to a larger manifold-with-boundary R [ H� where H�
corresponds to the hypersurface r D rC of this new chart. We shall refer to H� as the past
event horizon.
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One may easily check that the Boyer-Lindquist coordinate defined map

(34) .t; �/ 7! .�t;��/

is an isometry of VRwhich smoothly extends to an isometry ofR[H� and furthermore sends
HC to H�.

Finally, one may even further extendR[H� to a larger Lorentzian manifold fM so that the
boundary ofR (as a subset) in fM consists of a bifurcate null hypersurfaceB[H�[HC, with
B � fM a sphere. Our region of interestD described at the beginning of this section is simply
then the manifold-with-stratified boundary D D R [H� [ B. We remark that D admits a
globally regular coordinate system (6) .UC; V C; �; �/ 2 Œ0;�1/� Œ0;1/� S2 so thatHC D
fUC D 0; V C 2 .0;1/g, H� D fV C D 0; UC 2 .�1; 0/g and B D f.UC; V C/ D .0; 0/g.
Moreover, along B we have

(35) gUCUC D gUC� D gUC� D gVCVC D gVC� D gVC� D 0:

We shall not here require the form of the explicit coordinate transformations defining UC

and V C in terms of our previously described charts on R [H� but we remark that

(36) †
:
D B [ V†

is a smooth manifold-with-boundary (with boundary B) and interior V†. Note that smooth
functions .§;§0/ “compactly supported on V†” extend to smooth compact supported func-
tions on†which moreover vanish in a neighborhood of B. On the other hand, smooth func-
tions compactly supported on † do not restrict to compactly supported functions on V†.

It will be convenient to introduce the notation

H˙ :
D H˙ [ B;(37)

HC��
:
D HC \ .ft� � �g/ [ B/:(38)

These are again smooth hypersurfaces-with-boundary, with boundary B for H˙ and
boundary B [

�
†�0 \HC

�
for HC�0. The reader should in particular again contrast the

distinct notions of “compactly supported” on HC and H˙.

We have already noted that the vector fields T andˆ are Killing. The event horizonHC is
also a Killing horizon: the Killing field given by the linear combination

(39) K
:
D T C ¨Cˆ;

where ¨C
:
D

a
2MrC

is the “angular velocity” of the event horizon. The vector field K is null

and normal to HC; thus, HC is in particular a null hypersurface. In integrals associated to
energy currents we will denote K by n�HC . It will be useful to recall that the vector field K
restricted toHC coincides with the smooth extension of the coordinate vector field @r� of the
.r�; t; �; �/ coordinate system.

The past event horizon H� is also a Killing horizon with a Killing field also given by K.
Note however that the restriction of K to H� coincides with the smooth extensions of the
coordinate vector field �@r� of the .r�; t; �; �/ coordinate system.

(6) It is globally regular up to the usual degeneration of spherical coordinates.
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Note finally that the vector fields T and ˆ and the discrete isometry (34) both extend
smoothly to all of D and

(40) KjB D 0:

3.3. Dependence on a and M and conventions on constants

In all propositions to follow, unless otherwise stated, jaj < M are fixed parameters and
everything refers to the Kerr metric gM;a on D as described in the previous section.

Let us briefly review our conventions from [28] and [30] regarding constants depending on
the parameters a and M . Large positive constants will be denoted by B, and small positive
constants by b. Both constants B and b depend only on M and a lower bound for M � jaj,
and this dependence is always to be understood even when not mentioned explicitly. Often
these constants will blow up B !1, b�1 !1 in the extremal limit jaj !M .

We recall the usual arithmetic properties of b and B:

b C b D b; B C B D B; B � B D B; B�1 D b; : : :

The statement f � g will mean
bg � f � Bg:

The statement “for R sufficiently large,” etc., without further qualification, will mean “there
exists a constant R0.a;M/ such that for R � R0”.

Lastly, if the constantB or b depends on the value of a yet to be fixed parameter, then that
dependence will be explicitly noted. For example, if B depends on a parameter c which has
not been fixed, we shall denote it by B.c/. Once the constant c is fixed, we then write B.

3.4. Useful vector fields

We recall the following two lemmas proved in [30].

L 3.4.1. – The vector field

T C
2Mar

.r2 C a2/
2
ˆ

is a smooth vector field in D, is timelike in VR and null on H˙.

L 3.4.2. – There exists a constant �0 D �0.a;M/ > 0 such that the vector fieldK (39)
is timelike for r 2 .rC; rC C �0/.

These lemmas allow us to make the following definition.

D 3.4.1. – Let �0 > 0 be from Lemma 3.4.2. Let ˛.r/ be a function such that
V
:
D T C ˛.r/ˆ is a smooth vector field in D, timelike in VR and which satisfies

V D K; when r 2 ŒrC; rC C �0=2�;

V D T C
2Mar

.r2 C a2/
2
ˆ; when r 2

24rC C �0; M
�
7C
p
2
�

4

35 ;
V D T; when r �

M
�
3C
p
2
�

2
:
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R 3.4.1. – This vector field will be useful because it is manifestly T -invariant, it is
timelike (hence the associated energy fluxes JV are positive definite) and because it is Killing
for r � rCC�0=2 and r �M.3C

p
2/=2 (hence the error terms KV from the energy identity (24)

are supported in rC C �0=2 � r �M.3C
p
2/=2).

It will be useful to observe the following immediate corollary of Lemmas 3.4.1 and 3.4.2.

C 3.4.1. – For every � > 0 sufficiently small and any r0 2 .rC;1/, there exists
a vector field QV D QV .r0; �/ of the form T C Q̨ .r/ˆ for an appropriate function Q̨ .r/ such that
QV is a smooth vector field on D, is timelike in VR, is Killing in the region

r 2 .min .rC; r0 � �/ ; r0 C �� ;

and is equal to V for r sufficiently close to rC and r sufficiently large.

We shall apply the above corollary, for finitely many distinct choices of r0, in the context
of Section 9.1.2.

In order for our non-degenerate energies to have a fixed meaning, it is useful to fix once
and for all a choice of a globally defined smooth timelike vector field on D.

D 3.4.2. – LetN denote any fixed choice of a smooth timelike vector field onD
which is invariant under the flow of T on the complement of a compact set containing the
bifurcate sphere B, (7) and satisfies N D T for sufficiently large r .

Finally, we note the following easy calculations.

R 3.4.2. – Fix an open set U � D containing the bifurcate sphere B � U . Then,
for s such that †�s \ U D ; we have
(41)Z
†�s

JN� Œ �n
�

†�s
� k k2

PH1.†�s /
C kn†�s k

2
L2.†�s /

�

Z
�;��

Z 1
rC

�
j@t� j

2
C j@r j

2
C jr= j2

g=

�
dr dVg=

with respect to coordinates .t�; r; ��; ��/.

R 3.4.3. – We have

(42)
Z
†�s

JV� Œ �n
�

†�s
�

Z
�;��

Z 1
rC

�
j@t� j

2
C

�
1 �

rC

r

�
j@r j

2
C jr= j2

g=

�
dr dVg=

with respect to coordinates .t�; r; ��; ��/. We note that the relation (42) would also hold with
V replaced by the vector field from Lemma 3.4.1.

(7) Note that in view of the vanishing of T on B, one cannot define such a timelikeN which is invariant on all ofD.
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3.5. A foliation by hyperboloidal hypersurfaces

It will be convenient to have the following explicit foliation of R by a family of hyper-
boloidal hypersurfaces.

D 3.5.1. – For every � 2 R we set

S�
:
D

(
t� D � r � 5M

t� � r� C 10M
r
D � � .5M/� C 2 r > 5M:

(This hypersurface could be smoothed out, but this does not in fact make a difference.)
Some straightforward, if tedious, calculations yield the following lemma.

L 3.5.1. – For every � 2 R, S� is a spacelike hypersurface, R D
S
�2R S� , and, for

sufficiently large R,Z
S�\fr�Rg

JT� Œ �n
�
S�
�

Z
S�\fr�Rg

h
j@Qv j

2
C r�2 j@ Qu j

2
C jr= j2

i
r2 sin � dv d� d�:

In comparing the way these two integrals are written, we recall our convention that if no
volume form is written explicitly (as on the left hand side of the above), the integration is
with respect to the induced volume form.

Later, when r is sufficiently large we will often work in the coordinate system .�; r; �; �/

associated to the foliation fS�g�2R. We will in fact use this coordinate system to define our
notion of null infinity IC in Section 4.2.

3.6. Well-posedness

Let us briefly recall some basic well-posedness statements.
First we consider the case of initial data prescribed on†�0 . Recall thatR�0 D ft� � 0g D

DC.†�0/. In the propositions below the H s and C k spaces will refer to complex valued
functions.

P 3.6.1. – Let .§;§0/ 2 H s
loc.†

�
0/ � H

s�1
loc .†

�
0/. Then there exists a unique

solution  to the wave equation (2) on R�0 such that

 2 C 0�2Œ0;1/.H
s
loc.†

�
� // \ C

1
�2Œ0;1/.H

s�1
loc .†

�
� // \H

s
loc.H

C
�0/;

 j†�
0
D §, and n†�

0
 j†�

0
D §0. Furthermore, the solution map depends continuously on the

initial data. Finally, we note that if the initial data .§;§0/ are smooth, then the solution  will
be smooth.

Next we consider the case of initial data along †. Let us define Q†� to be the image of †
at time � of the flow map associated to the vector field N from Definition 3.4.2.

P 3.6.2. – Let .§;§0/ 2 H s
loc.†/ � H

s�1
loc .†/. Then there exists a unique

solution  to the wave equation (2) in D such that

 2 C 0�2.�1;1/.H
s
loc.
Q†� // \ C

1
�2.�1;1/.H

s�1
loc .

Q†� // \H
s
loc.H

C/ \H s
loc.H

�/;

 j† D §, and n† j† D §
0. Furthermore, the solution map depends continuously on the initial

data. Finally, we note that if the initial data .§;§0/ are smooth, then the solution  will be
smooth.
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R 3.6.1. – In the case when the initial data .§;§0/ are compactly supported along V†,
then a JK energy estimate immediately implies that bifurcate sphereB lies outside the support of
the solution  produced by Proposition 3.6.2. Also note that if .§;§0/ are compactly supported
on †, then . j†�

0
; n†�

0
 j†�

0
/ are compactly supported on †�0 .

It will also be useful to consider the following two mixed characteristic-spacelike initial
value problems. For convenience these will both be stated in the smooth category. The
following two propositions can be deduced from the work of Rendall [63]. First we have

P 3.6.3. – Let §
HC
�0

be a smooth function on HC�0 and .§†�
0
; §0

†�
0

/ be a pair

of smooth functions on †�0 such that there exists a smooth function Q‰ on D satisfying

Q‰j
HC
�0

D §
HC
�0

; . Q‰j†�
0
; n†�

0

Q‰j†�
0
/ D .§†�

0
; §0

†�
0
/:

Then there exists a unique smooth solution  to the wave equation (2) in the past of †�0 such
that

 j
HC
�0

D §
HC
�0

; . j†�
0
; n†�

0
 j†�

0
/ D .§†�

0
; §0

†�
0
/:

See

I
�

I C

H
C
�
0 †�

0

Before giving the next proposition, it is useful to define a function r.�; s/: Let � > �1.
Then, for each s > 0 sufficiently large we define the value r.�; s/ to be the largest solution to

s � r� .�; s/C
10M

r .�; s/

:
D � � .5M/� C 2:

Observe that the hypersurface ft D sg will intersect the hypersurface S� along the surface
where .t; r/ D .s; r.�; s//. Refer to

(43)

I
�

I C
S� t D

s
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We have

P 3.6.4. – Let � <1, let§
HC��

be a smooth function onHC�� which vanishes in

a neighborhood of S� \HC and letˆftDsg\fr�r.�;s/g be a smooth compactly supported function
on ft D sg \ fr � r.�; s/g which vanishes in a neighborhood of ft D sg \ fr D r.�; s/g.
Then there exists a unique smooth solution  to the wave equation (2) in the past of
HC�� [ .S� \ fr � r.�; s/g/ [ .ft D sg \ fr � r.�; s/g/ such that

 j
HC��
D §

HC��
;

. jS�\fr�r.�;s/g; nS� jS�\fr�r.�;s/g/ D .0; 0/;

r jftDsg\fr�r.�;s/g D ˆftDsg\fr�r.�;s/g:

In accordance with our conventions (recall Section 3.3), the above propositions refer
always to the Kerr metric with fixed parameters jaj < M . Let us remark that we have defined
the differentiable structure in [30] so that we can assert also the smooth dependence of  on
our parameters a and M ; this, however, shall play no role in the current paper.

3.7. The non-degenerate boundedness and integrated energy decay statements

In this section, we shall recall the precise boundedness and integrated energy decay state-
ments proved in [30].

First we recall a few additional notations from [30]:

D 3.7.1. – Given s� satisfying rC < 3M � s� <1, let us define a cutoff func-
tion �.r/ such that � D 1 for r � 3M � s� and � D 0 for r � .rC C 3M � s�/=2. We then
set

QZ� D �Z C .1 � �/Z�:

D 3.7.2. – Given s� and sC satisfying rC < 3M � s� < 3M C sC < 1 we
define

(44) �.r/
:
D .1 � 3M=r/2.1 � �Œ3M�s�;3MCsC�.r//;

where � is the indicator function.

The main result of [30] was

T 3.7.1 ([30]). – There exist parameters s�.a;M/ and sC.a;M/ satisfying
rC < 3M � s

� < 3M C sC <1 such that for all ı > 0, all sufficiently regular solutions  
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to (2) on R�0 satisfy the following estimates:Z
R�0

�
r�1�jr= j2 C r�1�ı� jT j2 C r�1�ı

ˇ̌
QZ� 

ˇ̌2
C r�3�ı j �  1j

2
�

� B.ı/

Z
†�
0

JN� Œ �n
�

†�
0

;(45) Z
HC
�0

�
JN� Œ �n

�

HC C j �  1j
2
�
� B

Z
†�
0

JN� Œ �n
�

†�
0

;(46) Z
†�s

JN� Œ �n
�

†�s
� B

Z
†�
0

JN� Œ �n
�

†�
0

; 8s � 0;(47)

where 4� 21 D limr 0!1

R
†�
0
\frDr 0g

r�2 j j2.

R 3.7.1. – We remind the reader that due to the existence of trapped null geodesics,
the estimate (45) would be false if the cut-off � was removed. Furthermore, the fact that one can
indeed prove an estimate with this degeneration relies on the fact that the trapping is sufficiently
unstable. See the discussion in [30].

We also proved the following higher order version of Theorem 3.7.1:

T 3.7.2 ([30]). – With s˙.a;M/ as above, then for all ı > 0, j � 1, all sufficiently
regular solutions  to (2) on R�0 satisfy the following estimates:Z

R�0
r�1�ı�

X
1�i1Ci2Ci3�j

jr= i1T i2. QZ�/i3 j2 C r�1�ı(48)

X
1�i1Ci2Ci3�j�1

�
jr= i1T i2. QZ�/i3C1 j2 C jr= i1T i2.Z�/i3 j2

�
� B.ı; j /

Z
†�
0

X
0�i�j�1

JN� ŒN
i �n

�

†�
0

;Z
HC
�0

X
0�i�j�1

JN� ŒN
i �n

�

HC � B.j /

Z
†�
0

X
0�i�j�1

JN� ŒN
i �n

�

†�
0

;(49) Z
†�s

X
0�i�j�1

JN� ŒN
i �n

�

†�s
� B.j /

Z
†�
0

X
0�i�j�1

JN� ŒN
i �n

�

†�
0

; 8s � 0:(50)

R 3.7.2. – Sufficiently regular may be taken to mean that the initial data lies
in H s

loc

�
†�0
�

for s suitably large and that the right hand sides of each inequality are finite.

R 3.7.3. – Recall that a straightforward elliptic estimate would yield

(51)
Z
†�s

X
0�i�j�1

JN� ŒN
i �n

�

†�s
�

X
1�i�j

k k2
PH i .†�s /

C kn†�s k
2
PH i�1.†�s /

:

R 3.7.4. – In view of the discrete isometry (34), one immediately obtains versions of
Theorem 3.7.1 and Theorem 3.7.2 for solutions defined in the past of the hypersurface �t D 0.
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3.8. The rp estimates

It will be useful to exploit the hierarchy of “rp estimates” from [24]. For our purposes, it
is convenient to apply these estimates in the following form.

P 3.8.1. – Let R be sufficiently large. Then for all �1 < �2, p 2 Œ0; 2�, and
all  sufficiently regular solutions to (2) on D.�1; �2/

:
D JC.S�1/ \ J

�.S�2/, then setting
'
:
D .r2 C a2/1=2 and keeping Remark 3.1.1 in mind, we haveZ

S�2\fr�Rg

h
rp j@Qv'j

2
C rp�2 jr= 'j2 C r�2 j@ Qu'j

2
i

sin � dv d� d�

C

Z
D.�1;�2/\fr�Rg

h
prp�1 j@Qv'j

2
C
�
.2 � p/rp�1 C r�1

�
jr= 'j2 C rp�4 j'j2

C r�2 j@ Qu'j
2
i

sin � du dv d� d�

� B

Z
D.�1;�2/\fR�r�RC1g

rp
h
jT 'j2 C jZ'j2 C jr= 'j2

i
sin � du dv d� d�

C B

Z
S�1\fr�Rg

h
rp j@Qv'j

2
C rp�2 jr= 'j2 C r�2 j@ Qu'j

2
i

sin � dv d� d�:

Proof. – One combines the estimates of [24] with an energy estimate, Hardy inequalities,
and a Morawetz estimate. This is a special case of a more general computation done in detail
in [56] for the general setting of asymptotically flat spacetimes.

R 3.8.1. – Note that one may easily check that the boundary terms of the p D 1

estimate relate to the spacetime terms of the p D 2 estimate in such a way as to allow one to
combine Theorem 3.7.2 with the iterated pigeon hole argument of [24] in order to conclude for
instance that Z

S�

JN� Œ �n
�
S�
� B��2E0 Œ � 8� > 0;

where E0 Œ � denotes a weighted second order energy of  along †�0 .

Note that we will not require such quantitative decays results in this paper.

We will also need to commute with angular momentum operators �.˛/. We obtain

P 3.8.2. – For every multi-index ˛, let �.˛/ denote an arbitrary product of
angular momentum operators as defined in Section 3.2, and set '.˛/ :

D �.˛/.r2 C a2/1=2 .
For all sufficiently large R, multi-indices ˛, �1 < �2, and p 2 Œ0; 2�, we obtain the estimate of
Proposition 3.8.1 with ' replaced by '.˛/.

Proof. – If a D 0, this is of course immediate since then
�
�.˛/;�g

�
D 0. Otherwise, one

proceeds inductively in j˛j and observes that the error terms arising from
�
�.˛/;�g

�
have

sufficiently strong r decay so as to be either absorbed by good bulk terms on the left hand
side of the estimate or controlled by the previous step.
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4. Radiation fields and energy fluxes

In this section, we will define the radiation fields alongHC�0 orHC and IC for solutions 
to the wave equation (2) arising from smooth initial data along†�0 or†which are compactly

supported. Since V† � †, this a fortiori defines the radiation field for solutions with compactly
supported data along V†.

The considerations at the horizon are straightforward and will be given in Section 4.1.
The finiteness of both the non-degenerate and degenerate radiation fluxes follows as a soft
application of Theorem 3.7.1 quoted in the previous section.

Null infinity will be handled in Section 4.2. We will first have to explicitly define IC as an
additional boundary which can be attached toD (Definition 4.2.1). The main result is Propo-
sition 4.2.1, which gives the statement of Proposition 1 of Section 2.1.3. We shall then relate
the radiation field as defined to the limiting energy flux of along IC. Theorem 3.7.1 imme-
diately implies the latter is finite (see Theorem 4.2.1), and according to Proposition 4.2.2 it
can be computed from the radiation field.

4.1. The horizon

4.1.1. The radiation field along HC�0 and HC. – We begin with the radiation field along the
horizon.

D 4.1.1. – Given a solution  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, the radiation field of  along HC�0 is simply defined
to be the restriction of  to the horizon HC�0.

Similarly, we have

D 4.1.2. – Given a solution  to (2) on R arising from smooth initial data
along † which are compactly supported, the radiation field of  along HC is simply defined
to be the restriction of  to the horizon HC.

R 4.1.1. – Note that it follows immediately from Proposition 3.6.2 that the radia-
tion field is smooth along the horizon.

R 4.1.2. – If the initial data for  is compactly supported on V†, then Remark 3.6.1
implies that the radiation field for  is supported in HC.

R 4.1.3. – Of course, given a solution  to (2) defined in the past of f�t D 0g, one
may make an analogous definition for the radiation field along H��0. Similarly, one may define
the radiation field along H� for a solution  to (2) arising from smooth initial data along †.
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4.1.2. The energy flux through HC�0 and HC. – We next define the non-degenerate energy
flux along the horizon.

D 4.1.3. – Given a solution  to (2) on R�0 arising from smooth initial data
along†�0 which are compactly supported, the non-degenerateN -energy flux of  throughHC�0
is defined by Z

HC
�0

JN� Œ �n
�

HC :

R 4.1.4. – Note that Theorem 3.7.1 implies that this energy flux is finite.

Observe that a straightforward computation shows thatZ
HC
�0

JN� Œ �n
�

HC �

Z
HC
�0

h
jK j2 C jr= j2

i
:

In particular, all of the derivatives are tangent to the horizon; thus one may think of the non-
degenerate flux as depending only on the radiation field.

Finally, we define the degenerate flux along the horizon.

D 4.1.4. – Given a solution  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, the degenerate K-energy flux of  through HC�0 is
defined by Z

HC
�0

JK� Œ �n
�

HC :

A straightforward computation shows thatZ
HC
�0

JK� Œ �n
�

HC D

Z
HC
�0

jK j2 :

Similarly,

D 4.1.5. – Given a solution  to (2) on R arising from smooth initial data
along † which are compactly supported, the degenerate K-energy flux of  through HC is
defined by Z

HC
JK� Œ �n

�

HC :

A straightforward computation shows thatZ
HC

JK� Œ �n
�

HC D

Z
HC
jK j2 :
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4.2. Null infinity

We first define IC as a suitable additional boundary which can be attached to our space-
time.

D 4.2.1. – As a differentiable manifold we define

IC :
D R � S2

and parameterize IC in the standard fashion by coordinates .�; �; �/. Next, we extend our
background differentiable structure R to a manifold with boundary

QR :
D R [ IC

by declaring that for every sufficiently large R and open set U � IC, the set

UR
:
D f.�; r; �; �/ W r > R and .�; �; �/ 2 Ug

is open (where .�; r; �; �/ are the coordinates associated to the foliation fS�g�2R which we defined
in Section 3.5), identifying IC with the points .�;1; �; �/, and then covering the sets UR by a
coordinate chart .�; s; �; �/ 2 R � Œ0; 1/ � S2 via the map

.�; s; �; �/ 7!
�
�; Rs�1; �; �

�
:

R 4.2.1. – Note that for every fixed .�; �; �/ there exists a unique limit
limr!1.�; r; �; �/ 2 IC, and, if we denote these limits by .�;1; �; �/, then the map
.�; �; �/ 7! .�;1; �; �/ is a diffeomorphism from R � S2 to IC.

R 4.2.2. – The above “pedestrian” definition of IC is completely equivalent to the
usual one involving a conformal compactification (see [48]).

D 4.2.2. – Apply the discrete isometry .t; �/ 7! .�t;��/ to the foliation fS�g
to define a new foliation f QS�g:

QS�
:
D

(
��t D � r � 5M

��t � r� C 10M
r
D � C �.5M/C 2 r > 5M:

Repeating the construction above with respect to this new foliation then defines past null
infinity I�. Proceeding in an analogous fashion to Definition 4.2.1, I� may be glued to QR as a
suitable boundary.

Lastly, it will be useful to introduce the notations

IC�s
:
D f.�; �; �/ W � � sg; IC�s

:
D f.�; �; �/ W � � sg:
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4.2.1. The radiation field along IC. – Recall that given a function  , in Section 3.8 we
introduced the notation

'
:
D .r2 C a2/1=2 ;

'.˛/
:
D �.˛/':

We now have the following straightforward corollary of Propositions 3.8.1 and 3.8.2.

P 4.2.1. – For all solutions  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, and each .�; �; �/ 2 R � S2, the function

'.�;1; r; �/
:
D lim
r!1

'.�; r; �; �/ D lim
r!1

.r2 C a2/1=2 .�; r; �; �/

is well defined, and is in fact a smooth function on IC.

Proof. – Let r2 > r1. The fundamental theorem of calculus, Cauchy-Schwarz, and a
Sobolev inequality on S2 imply

j'.�; r2; �; �/ � '.�; r1; �; �/j
2

� B

0@X
j˛j�2

Z
S2

ˇ̌̌
'.˛/.�; r2; �; �/ � '

.˛/.�; r1; �; �/
ˇ̌̌

sin � d� d�

1A2

� B
X
j˛j�2

�Z
S�\fr�r1g

hˇ̌̌
@Qv'

.˛/
ˇ̌̌
C r�2

ˇ̌̌
@ Qu'

.˛/
ˇ̌̌i

sin � dr d� d�
�2

� Br�21

X
j˛j�2

Z
S�\fr�r1g

�
r2
ˇ̌̌
@Qv'

.˛/
ˇ̌̌2
C r�2

ˇ̌̌
@ Qu'

.˛/
ˇ̌̌2�

sin � dr d� d�:

In the second inequality we have used the fundamental theorem of calculus along S� and
expressed the resulting derivative in terms of @Qv and @ Qu.

Now we conclude the proof of existence of the function '.�;1; �; �/ by observing that
Proposition 3.8.2 implies that this last quantity is bounded by B.�/r�21 .

Smoothness of ' as a function on IC follows in a straightforward manner by applying the
above argument to @i��

.˛/', for i 2 Z�0 and j˛j 2 Z�0.

R 4.2.3. – If we combine the proof of Proposition 4.2.1 with Theorem 3.7.1 we may
easily conclude that for any �0 2 R, .r2 C a2/1=2 converges to its limit 'jrD1 in L1R��0�S2

.

Following [38] and using the previous proposition, we may now define the radiation field
along IC.

D 4.2.3. – Given a solution  to (2) on R�0 arising from smooth initial data
along†�0 which are compactly supported, the radiation field of  along IC is defined to be the
function '.�;1; �; �/.

R 4.2.4. – Note that any solution  to (2) on D arising from smooth initial data
along † which are compactly supported is, a fortiori, a solution to (2) on R�0 arising from
smooth initial data along †�0 which are compactly supported (cf. Remark 3.6.1). Thus, this
definition of the radiation field may be applied to such solutions.
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R 4.2.5. – Of course, given a solution  to (2) defined in the past of f�t D 0g, one
may analogously define the radiation field along I�. In particular, smooth compactly supported
data on † give rise to radiation fields along both IC and I�.

R 4.2.6. – In passing, we observe that the weighted estimates of Proposition 3.8.2
would allow us to easily show that the radiation field decays along null infinity:

j'.�;1; �; �/j � B��1=2
p
E0 Œ � 8� > 0;

where E0 is a weighted higher order energy along †�0 . Again, we emphasize that we shall not
need to use such quantitative decay rates in this paper.

R 4.2.7. – Finally, it is worth remarking that in the case of a massive scalar field, the
radiation field for any solution arising from regular localized initial data will always vanish [51].
Thus one clearly needs a different approach in that setting.

4.2.2. The energy flux through IC. – In this section we will define the energy flux to future
null infinity IC for solutions to the wave equation (2) arising from smooth initial data
along†�0 which are compactly supported. Recall that†�s denotes the hypersurface ft� D sg.
We begin with the following lemma:

L 4.2.1. – Given a solution to (2) onR�0 arising from smooth initial data along†�0
which are compactly supported, then for every � > 0, the following limit exists:

(52) lim
s!1

Z
†�s\J

�.S� /

JT� Œ �n
�

†�s
:

Proof. – First of all, observe that for sufficiently large s, depending on � , the integration
in (52) occurs far outside the ergoregion (30), so that in particular, T is a timelike Killing
vector field in the region under consideration. With this in mind, a JT energy estimate implies
that Z

S�

JT� Œ �n
�
S�
<1:

Consequently,

lim
s!1

Z
S�\JC.†

�
s /

JT� Œ �n
�
S�
D 0:

Let s1 < s2 both be sufficiently large. Refer to the figure below:

I
�

I C
S�

†
s2

†s1

It now suffices to observe the following immediate consequence of a JT energy estimate:ˇ̌̌̌
ˇZ†s2\J�.S� / JT� Œ �n

�
†s2
�

Z
†s1\J

�.S� /

JT� Œ �n
�
†s1

ˇ̌̌̌
ˇ � ZS�\JC.†s1 / JT� Œ �n

�
S�
:
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R 4.2.8. – Observe that this lemma holds for essentially any asymptotically flat
spacetime possessing a suitable notion of future null infinity; in particular, we do not appeal
to Theorem 3.7.1.

R 4.2.9. – We observe that one may easily check that if one considers smooth
solutions which satisfy

R
†\fr�Rg

JT� Œ �n
�

†
< 1 for all sufficiently large R, but are not

necessarily compactly supported, then an easy modification of the proof of Lemma 4.2.1 shows
that for all �0 < �1, the limit

lim
s!1

Z
†�s\J

�.S�1 /\J
C.S�0 /

JT� Œ �n
�

†�s

exists.

Lemma 4.2.1 allows us to make the following definitions.

D 4.2.4. – Given a solution  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, and � > �1, the energy flux of  through IC�� is
defined by

(53)
Z
IC��

JT� Œ �n
�

IC
:
D lim
s!1

Z
†�s\J

�.S� /

JT� Œ �n
�

†�s
:

R 4.2.10. – There is, of course, great flexibility in the choice of the hypersurfacesS0
and †�0 , but we will forgo a systematic treatment of which choice of hypersurfaces leaves the
limit (53) unchanged.

Since �1 < �2 implies that J�.S�1/ � J
�.S�2/, it immediately follows that

R
IC��

JT� Œ �n
�

IC

is an increasing function of � . Thus, we can make the following definition.

D 4.2.5. – Given a solution  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, the (total) flux of  through null infinity IC is
defined by

(54)
Z
IC

JT� Œ �n
�

IC
:
D lim
�!1

lim
s!1

Z
†�s\J

�.S� /

JT� Œ �n
�

†�s
2 R�0 [ f1g:

R 4.2.11. – As with Definition 4.2.4, we note that this definition also makes sense
for essentially any spacetime possessing a suitable notion of future null infinity.

Now we observe the following immediate consequence of Definition 4.2.5 and
Theorem 3.7.1.

T 4.2.1. – All sufficiently regular solutions  to (2) on R�0 satisfyZ
IC

JT� Œ �n
�

IC � B

Z
†�
0

JN� Œ �n
�

†�
0

:

In particular, in the case of smooth compactly supported initial data of †�0 or †, the total flux
to null infinity (54) is finite.

Finally, the next proposition establishes the expected connection between the radiation
field along null infinity with the energy flux to null infinity
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P 4.2.2. – Given a solution  to (2) on R�0 arising from smooth initial data
along †�0 which are compactly supported, we haveZ

.�1;�/�S2
j@�'.1; �; �; �/j

2 sin � d� d� d� D
Z
IC��

JT� Œ �n
�

IC 8� 2 .�1;1�:

Proof. – First of all, a straightforward computation givesZ
†�s\J

�.S� /

JT� Œ �n
�

†�s
D

Z
†�s\J

�.S� /

j@�'j
2 sin � dv d� d�

CO

�Z
†�s\J

�.S� /

�
j@Qv'j

2
C jr= 'j2

�
sin � dv d� d�

�
as s !1:

Now we simply observe that Proposition 3.8.1 (with any choice of p 2 .0; 2�) implies that
we can find a (dyadic) sequence (8) fsig

1
iD1 such that limi!1 si D1 and

lim
i!1

Z
†si\J

�.S� /

�
j@Qv'j

2
C jr= 'j2

�
sin � dv d� d� D 0:

5. Carter’s separation and the microlocal radiation fields

As in our previous work [30], estimates obtained by exploiting Carter’s separation of the
wave equation (2) will play a fundamental role in our analysis. In this section, we quote a
number of results from [67] and [30] concerning the theory of the radial o.d.e (1) for real
frequencies ! and its relation to (2). (In Section 6 to follow, we will then obtain various
refinements of the quantitative o.d.e. estimates of [30] which will be fundamental for our
arguments.)

We begin in Section 5.1 by reviewing our relevant formalism based on the Fourier trans-
form of “sufficiently integrable” solutions (Definition 5.1.1); the reader should consult [30]
for more details.

We shall then quote in Section 5.2 some results from [67] concerning the asymptotics
of solutions of (1), which in particular allow us to define the special solutions Uhor, Uinf

referred to in the introduction. We state Proposition 5.2.2, the microlocal version of the
energy identity (we will consider more general currents in Section 6.1 below).

The Wronskian W, as well as the reflection R and transmission coefficients T referred
to already (together with their dual coefficients QR and QT), are all defined in Section 5.3,
appealing to the real-mode stability theorem of [67]. We then obtain Corollary 5.3.1 which
gives that the strict inequality (6) indeed holds for any superradiant frequency and establish
a fundamental solution formula for the radial o.d.e. in Proposition 5.3.1.

Finally, our separation will allow us to define the “microlocal” radiation fields and
fluxes in Section 5.4. (Later, in Section 6.8, these will be related to the radiation fields and
degenerate-energy fluxes defined in physical space.)

(8) The point being that
R1
1
jf.x/j
x

dx < 1 implies that there exists a sequence fxi g1iD1 with xi 2 Œ2i ; 2iC1�
such that limi!1 f .xi / D 0.
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5.1. Separating the wave equation

We begin by recalling the following definition.

D 5.1.1. – We say that a smooth function‰ W VR! C is “sufficiently integrable”
if for every j � 1, we haveX

0�j1Cj2Cj˛j�j

Z 1
�1

Z
S2

ˇ̌̌
r= ˛@

j1
r�T

j2‰
ˇ̌̌2

sin � dt d� d� 2 L1loc

�
r�
�
:

R 5.1.1. – We note that this definition is in fact weaker than that given in [30].

R 5.1.2. – Observe that it follows immediately from Proposition 3.6.2, Theo-
rem 3.7.1 and Remark 3.7.4 that any solution to the wave equation arising from smooth
compactly supported initial data along † is sufficiently integrable in the sense of Defini-
tion 5.1.1 (cf. Remark 3.6.1).

Next, we recall the oblate spheroidal harmonics

fSm`.�; cos �/eim�gm`; � 2 R;

which are the eigenfunctions of the self-adjoint operator

P.�/ f D �
1

sin �
@

@�

�
sin �

@

@�
f

�
�
@2f

@�2
1

sin2 �
� �2 cos2 �f

on L2.sin � d� d�/. We denote the corresponding eigenvalues by �.�/
m`
2 R where m 2 Z

and l � jmj. The labeling is uniquely determined by requiring that �.�/
m`

depends smoothly

on � and setting �.0/
m`
D ` .`C 1/. (9) These satisfy

(55) �
.�/

m`
C �2 � jmj.jmj C 1/;

(56) �
.�/

m`
C �2 � 2 jm�j :

Because of the above relations, it is often convenient to work with

ƒm`.�/
:
D �m`.�/C �

2:

Let ‰ be sufficiently integrable in the sense of Definition 5.1.1. Then, setting � D a!,
where a is the Kerr parameter, for each ! 2 R, we decompose

‰.t; r; �; �/ D
1
p
2�

Z 1
�1

X
m`

e�i!t‰
.a!/

m`
.r/Sm`.a!; cos �/eim�d!:

The sufficiently integrable assumption implies that for each fixed r , this equality may be
interpreted in L2tL

2
S2 . Now define

(57) F D �g‰:

The sufficiently integrable assumption implies that we may define the coefficients�
�2F

�.a!/
m`

.r/ as above (recall that �2 D r2 C a2 cos2 � ).
Carter’s formal separation [15] of the wave operator yields:

(9) See Proposition B.1 of [66] for a proof that this does indeed uniquely determine f�.�/
m`
g.
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P 5.1.1. – Let‰ be sufficiently integrable in the sense of Definition 5.1.1, and
let F be defined by (57). Then

�
d

dr

 
�
d‰

.a!/

m`

dr

!
C
�
a2m2 C .r2 C a2/2!2 � 4Mra!m ��ƒm`

�
‰
.a!/

m`
D �

�
�2F

�.a!/
m`

:

(58)

Note that the sufficiently integrable assumption allows us to interpret this equality for each r
in L2!l

2
m`

.

R 5.1.3. – It will turn out to suffice that we study smooth solutions to the o.d.e. (58).
See the discussion in Definition 5.4.1.

Using the Definition (26) of r� and setting

u
.a!/

m`
.r/ D .r2 C a2/1=2‰

.a!/

m`
.r/;(59)

H
.a!/

m`
.r/ D

�
�
�2F

�.a!/
m`

.r/

.r2 C a2/3=2
;(60)

we obtain

(61)
d2

.dr�/2
u
.a!/

m`
C .!2 � V

.a!/

m`
.r//u D H

.a!/

m`
;

where

(62) V
.a!/

m`
.r/ D

4Mram! � a2m2 C�ƒm`

.r2 C a2/2
C
�.3r2 � 4Mr C a2/

.r2 C a2/3
�

3�2r2

.r2 C a2/4
:

We will often refer to (61) as the “radial o.d.e.”

As in [30], we shall often suppress the dependence of u, H and V on a!, m, ` in our
notation. We will also use the notation

(63) 0
D

d

dr�
:

Note that

r 0 D
�

r2 C a2
:

5.2. Asymptotic analysis of the radial o.d.e.

In this section we will collect various facts concerning the asymptotic analysis of the
radial o.d.e. (61). In view of our applications and Remark 5.1.3, all results stated will concern
smooth solutions. We will omit proofs as the material is standard (see, e.g., [60]).

P 5.2.1. – Fix parameters .!;m; `/ 2 R � Z � Z�jmj with ! ¤ 0 and
! ¤ ¨Cm, and let u be a smooth solution of the radial o.d.e. (61)

u00 C .!2 � V /u D H;

whereH.r/ smoothly extends to r D rC and vanishes for large r (of course, by using the relation
d
dr
D

r2Ca2

�
d
dr�

, the smoothness condition at r D rC can be translated to a condition on the
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limits of dkH

d.r�/k
as r� ! �1). Then there exist unique complex numbers aHC , aH� , aIC , and

aI� , depending on u, such that

(64) u D aICe
i!r�
C aI�e

�i!r�
CO.r�1/ as r !1;

(65) u D aHCe
�i.!�¨Cm/r

�

C aH�e
i.!�¨Cm/r

�

CO.r � rC/ as r ! rC:

Here the O.r�1/ and O.r � rC/ are both preserved upon differentiation in r�.

Next, we turn to the “microlocal energy identity”.

P 5.2.2. – Fix parameters .!;m; `/ 2 R � Z � Z�jmj with ! ¤ 0 and
! ¤ ¨Cm, and let u be a smooth solution of the radial o.d.e. (61) with H.r�/ compactly
supported in r�. Then, we have

!2jaIC j
2
� !2jaI� j

2
C !.! � ¨Cm/jaHC j

2
� !.! � ¨Cm/jaH� j

2
D !

Z 1
�1

Im .Hu/ dr�:

Proof. – We recall the microlocal energy current from [30]:

QT :
D !Im.u0u/;

which satisfies
.QT /0 D !Im .Hu/ :

(The above is of course the most basic energy current associated to (61). We will discuss this
and several other currents in Section 6.1). The proposition then follows immediately from
the fundamental theorem of calculus and the expansions (64) and (65).

It will be useful to introduce the following definitions.

D 5.2.1. – Let .!;m; `/ 2 R � Z � Z�jmj. Then we define Uhor.r
�; !;m; l/ to

be the unique function satisfying

1. U 00hor C
�
!2 � V

�
Uhor D 0.

2. Uhor � e
�i.!�¨Cm/r� near r� D �1. (10)

3. jUhor .�1/j
2
D 1.

R 5.2.1. – Note that this definition makes sense even when!�¨Cm D 0 or! D 0;
see, e.g., the discussion in Appendix C.1 of [66].

R 5.2.2. – The physical space interpretation of Uhor is that the expression
e�it!eim�Sm` .�/ Uhor.r

�/ corresponds to an amplitude normalized solution of the wave
equation “frequency localized” to .!;m; `/, with a vanishing energy flux alongH� and a finite
energy flux on any compact subset of HC.

D 5.2.2. – For ! ¤ 0, define Uinf.r
�; !;m; l/ to be the unique function satis-

fying

1. U 00inf C
�
!2 � V

�
Uinf D 0.

2. Uinf � e
i!r� near r� D1. (11)

(10) More precisely, the requirement is that Uhore
i.!�¨Cm/r� extends to r D rC as a smooth function of r .

(11) More precisely, this means that Uinf exhibits a (generally divergent) asymptotic expansion Uinf D

ei!r
�P1

iD0
Ai
ri

as r !1.
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3. jUinf .1/j
2
D 1.

R 5.2.3. – The physical space interpretation of Uinf is that e�it!eim�Sm` .�/ Uinf.r
�/

corresponds to a an amplitude normalized solution of the wave equation “frequency localized”
to .!;m; `/, with a vanishing energy flux along I� and a finite energy flux on any compact
subset of IC.

R 5.2.4. – When H D 0, by exploiting the linear independence of the pairs
fUhor; Uhorg and fUinf; Uinfg, one may easily check that expansions (64) and (65) may be written
as the identities

u D aICUinf C aI�Uinf;

u D aHCUhor C aH�Uhor:

Cf. footnote (4).

R 5.2.5. – In the usual language of scattering theory, one would refer
to fUhor; Uhor; Uinf; Uinfg as Jost functions [62].

P 5.2.3. – The constructions of Uhor and Uinf imply that for each k � 0,ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ dk

d.r�/k
Uhor

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
L1
r�

� B .!;m; `; k/ ;

and dk

d.r�/k
Uhor depends analytically on !. Similarly, if we additionally assume that ! ¤ 0, we

also have ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ dk

d.r�/k
Uinf

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
L1
r�

� B .!;m; `; k/ ;

and dk

d.r�/k
Uinf depends analytically on ! 2 R n f0g.

5.3. The Wronskian and the reflection and transmission coefficients

D 5.3.1. – For ! ¤ 0, we define W.!;m; `/ to be the Wronskian of Uhor

and Uinf:

W
:
D U 0infUhor � UinfU

0
hor:

R 5.3.1. – Note that one may easily check that W does not depend on r� and
vanishes if and only if Uhor and Uinf are linearly dependent.

Using the transformation theory of Whiting from [73], in [67], the following was shown:

T 5.3.1 ([67]). – For all .!;m; `/ 2 R � Z � Z�jmj with ! ¤ 0 we have

W .!;m; `/ ¤ 0;

and thus the functions Uhor and Uinf are linearly independent.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



416 M. DAFERMOS, I. RODNIANSKI AND Y. SHLAPENTOKH-ROTHMAN

R 5.3.2. – In the language of spectral theory the non-vanishing of the Wronskian
rules out embedded resonances on the real axis; it can then be used to establish a suitable
“limiting absorption principle,” see [67]. Previously, Whiting showed that there do not exist
eigenvalues in the upper half-plane [73]. His result can be recovered from Theorem 5.3.1 and
a continuity argument in the parameter a. Similarly, our proof of Theorem 3.7.1 in [30], which
exploits a continuity argument in the parameter a, also appeals directly only to Theorem 5.3.1.
It is this continuity principle that allows our spectral analysis to only concern real frequencies.

The non-vanishing of the Wronskian will allow us to define the reflection and transmission
coefficients. First we need the following lemma which follows immediately from Remark 5.3.1
and the non-vanishing of the Wronskian.

L 5.3.1. – For ! ¤ 0 and ! ¤ ¨Cm, there exists a unique set of complex numbers
R.!;m; `/, QR.!;m; `/, T.!;m; `/ and QT.!;m; `/ which satisfy

T

�i.! � ¨Cm/
Uhor D

R

i!
Uinf C

Uinf

i!
;(66)

QT

i!
Uinf D

QR

�i.! � ¨Cm/
Uhor C

Uhor

�i.! � ¨Cm/
;(67)

Now we can define the reflection and transmission coefficients.

D 5.3.2. – The complex numbersR and QR are called the reflection coefficients,
and T and QT are called the transmission coefficients.

R 5.3.3. – If one considers a solution to the wave equation which is “sourced” with
a flux along I� equal to 1 and no energy along H� and which is furthermore approximately
localized to the frequency .!;m; `/, thenRmeasures the amount of energy “reflected” back to
future null infinity IC, andTmeasures the energy “transmitted” to the future event horizonHC.
There is a similar interpretation for QR and QT. Our Theorem 9.5.3 will make these interpretations
rigorous.

R 5.3.4. – One often sees the reflection and transmission coefficients R and T
defined so that they measure the amplitude transmitted to the future event horizon and reflected
to future null infinity of a wave of amplitude 1 along I�, see e.g., Section 28 of [16]. However,
in the context of scattering theory for finite energy solutions, one does not expect to control the
radiation fields§ and ¥ inL2 alongH˙ and I˙, hence an energy normalization is most natural.

Applying Proposition 5.2.2 immediately yields

C 5.3.1. – Fix a frequency triple .!;m; `/ which satisfy ! ¤ 0 and ! ¤ ¨Cm.
Then

jRj2 C
!

! � ¨Cm
jTj2 D 1:

In particular, if

(68) !.! � ¨Cm/ < 0;

i.e., the parameters are superradiant, then

jRj2 > 1:
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Proof. – For the second statement, it suffices to note that the basic local existence theory
for the radial o.d.e. implies that T ¤ 0 (see [60]).

Though the reflection and transmission coefficient have a nice interpretation in terms of
the scattering of waves coming from H� and I�, for technical reasons they are not always
the most convenient way to parameterize solutions to the radial o.d.e. Instead we shall often
use the following quantities.

D 5.3.3. – For ! ¤ 0 and ! ¤ ¨Cm, we define the complex numbers
AIC.!;m; `/, AI�.!;m; `/, AHC.!;m; `/, and AH�.!;m; `/ by

Uhor D AICe
i!r�
C AI�e

�i!r�
CO

�
r�1

�
as r� !1;

Uinf D AHCe
�i.!�¨Cm/r

�

C AH�e
i.!�¨Cm/r

�

CO .r � rC/ as r ! rC:

Observe thatAIC.!;m; `/,AI�.!;m; `/,AHC.!;m; `/, andAH�.!;m; `/must obey the
following constraints.

L 5.3.2. – We have

AICAHC C AI�AH� D 1;

AICAHC C AI�AH� D 1;

AICAH� C AI�AHC D 0;

AI�AHC C AH�AIC D 0:

Proof. – We may write

Uhor D AICUinf C AI�U inf(69)

D AIC
�
AHCUhor C AH�U hor

�
C AI�

�
AHCU hor C AH�Uhor

�
D

�
AICAHC C AI�AH�

�
Uhor C

�
AICAH� C AI�AHC

�
U hor:

Similarly,

Uinf D

�
AHCAIC C AI�AH�

�
Uinf C

�
AHCAI� C AICAH�

�
U inf:

The lemma follows immediately.

The following relationships may be easily verified in a similar fashion to Lemma 5.3.2.

L 5.3.3. – We have

W D 2i!AI� ; W D 2i .! � ¨Cm/AH� ;

R D �AHC .AH�/
�1 ; T D �

.! � ¨Cm/

!
.AI�/

�1 ;

QR D �AIC .AI�/
�1 ; QT D �

!

.! � ¨Cm/
.AH�/

�1 :

We close the section with a final remark:
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R 5.3.5. – By exploiting the underlying analyticity (cf. Corollary 6.5.1), one can in
fact define the reflection and transmission coefficients almost everywhere without the real mode
stability result of [67], quoted here as Theorem 5.3.1. Given this, we see that Theorem 5.3.1
is equivalent to the statement that the reflection and transmission coefficients are bounded
on any compact set of frequencies, with a bound depending however on the set. The fact the
reflection and transmission coefficients are uniformly bounded over all frequencies is the content
of Theorem 6.2.2, to be proven in Section 6.2.

We end this section with a final corollary of Theorem 5.3.1 which concerns a fundamental-
solution representation of solutions u of (61) with vanishing aH� D aI� D 0.

P 5.3.1. – Let u be a smooth solution to the radial o.d.e. (61) with a right hand
side H such that H.r/ smoothly extends to r D rC and vanishes for large r , and such that u
satisfies aH� D aI� D 0. Then u is given by the following explicit formula:

u.r�/ D W�1

 
Uinf.r

�/

Z r�

�1

Uhor.x
�/H.x�/dx� C Uhor.r

�/

Z 1
r�

Uinf.x
�/H.x�/dx�

!
:

(70)

Proof. – Given the non-vanishing of the Wronskian (Theorem 5.3.1), this is a trivial
computation.

R 5.3.6. – In the language of spectral theory, (70) is simply a formula for the
continuous extension of the resolvent to the real axis.

5.4. The microlocal radiation fields and fluxes

We are now ready to define the microlocal radiation fields. As the name suggests, the
definition of the microlocal radiation fields relies on the Fourier transform; hence, we will
only be able to define the microlocal radiation fields for a solution  if it is defined on all
of VR, not just VR�0.

D 5.4.1. – For all solutions to (2) on VR, which are sufficiently integrable in the
sense of Definition 5.1.1, we may apply Carter’s separation to  and define the corresponding
function u. An easy argument (one can slightly modify the proof of Lemma 5.4.1 of [30])
implies that for almost every ! and every .m; `/, u will be a smooth solution to the radial
o.d.e. (61) with H D 0. In particular, we may apply Proposition 5.2.1 and easily show that the
corresponding aI˙ .!;m; `/ and aH˙ .!;m; `/ are measurable functions of .!;m; `/.

The microlocal radiation field along I˙ associated to  is then defined almost everywhere
by the measurable function

aI˙.!;m; `/ W R � Z � Z�jmj ! C;

and the microlocal radiation field along H˙ associated to  is defined almost everywhere by
the measurable function

aH˙.!;m; `/ W R � Z � Z�jmj ! C:

We also have the corresponding total fluxes.
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D 5.4.2. – For all solutions to (2) on VR, which are sufficiently integrable in the
sense of Definition 5.1.1, the total microlocal energy flux through I˙ associated to  is given
by Z 1

�1

X
m`

!2jaI˙ j
2 d! 2 R�0 [ f1g;

and the total microlocal (degenerate) energy flux through H˙ associated to  is given byZ 1
�1

X
m`

.! � ¨Cm/
2
jaH˙ j

2 d! 2 R�0 [ f1g:

These latter fluxes will be related in Section 6.8 below to the flux to IC and the degenerate
K-energy flux to HC defined previously in Sections 4.2.2 and 4.1.2, respectively.

6. Estimates for the radial o.d.e. and applications

In this section we will produce estimates for the radial o.d.e. (61) and give some useful
applications. These estimates are refinements of estimates originally proven in [30].

In Section 6.1 we review the separated current template from [25] and [30]. These currents
form the essential ingredients for all of the o.d.e. estimates of this section.

In Section 6.2 we start by proving Theorem 6.2.1 which is a general estimate for solutions
to the radial o.d.e. with a vanishing right hand side; the proof of Theorem 6.2.1 will heavily
rely on Theorem 8.1 from [30]. As a corollary we will obtain the uniform boundedness of all
reflexion and transmission coefficients (Theorem 6.2.2). This gives in particular Theorem 11
of Section 2.4.1. We will also obtain a Wronskian bound (Proposition 6.2.1) which will be
used in Section 7.

In Section 6.3 we will prove Proposition 6.3.1 which gives asymptotic control ofUhor in the
superradiant regime as r ! rC independent of the frequency parameters. Proposition 6.3.1
plays an important role in Section 7. The proof of Proposition 6.3.1 will require us to quote
a special case of Theorem 8.1 from [30] (here given as Theorem 6.3.1).

Next, using closely related ideas, in Section 6.4 we will prove Proposition 6.4.1 which states
that for fixed ! and m, the large-` limit of T must vanish. As a corollary, we deduce that
lim`!1 jRj D 1.

In Section 6.5 we will approve Proposition 6.5.1 which states that for each fixed m and `,
the reflection coefficientR is not identically 0 as a function of !. Using analyticity ofR, one
corollary will be that R can only vanish at isolated points.

In Section 6.6 we will interpret the weighted rp hierarchy of estimates of [24] (given
previously as Proposition 3.8.1 of Section 3.8) directly at the level of the o.d.e. (1). The main
result is Proposition 6.6.1. We will then use this in Section 6.7 to give a quantitative estimate
on the rate of convergence of the microlocal radiation field (Proposition 6.7.1). Using these
results, in Section 6.8, we will succeed in relating the microlocal radiation fields of Section 5.4
with the physical-space definitions given previously in Section 4.
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6.1. The separated current templates

In this section we will recall the separated current template from [25] and [30]. All of our
o.d.e. estimates will be based on suitable combinations of these currents.

P 6.1.1. – Fix parameters .!;m; `/ 2 R�Z�Z�jmj with ! ¤ 0, and let u be
a smooth solution of the radial o.d.e. (61)

u00 C .!2 � V /u D H:

Let h.r�/ be a C 2 function, y.r�/ be a C 1 function and z.r/ a C 1 function of r .
Set QV D V � V jrDrC . Then we define the Qh current

QhŒu�
:
D hRe.u0 Nu/ �

1

2
h0juj2;

the Ky current

Ky Œu�
:
D y

�ˇ̌
u0
ˇ̌2
C
�
!2 � V

�
juj2

�
;

the microlocal redshift current

Qz
redŒu�

:
D z

ˇ̌
u0 C i.! � ¨Cm/u

ˇ̌2
� z QV juj2 ;(71)

the microlocal rp current

Qz
rp Œu�

:
D z

ˇ̌
u0 � i!u

ˇ̌2
� zV juj2 ;(72)

the microlocal T -energy current

QT Œu�
:
D !Im

�
u0u

�
(73)

and the microlocal K-energy current

QK Œu�
:
D .! � ¨Cm/ Im

�
u0u

�
:(74)

We have

.QhŒu�/0 D h
�
ju0j2 C .V � !2/juj2

�
�
1

2
h00juj2 C hRe.u NH/;(75) �

Ky Œu�
�0
D y0

�ˇ̌
u0
ˇ̌2
C
�
!2 � V

�
juj2

�
� yV 0 juj2 C 2yRe

�
u0H

�
;(76) �

Qz
redŒu�

�0
D z0

ˇ̌
u0 C i.! � ¨Cm/u

ˇ̌2
�
�
z QV
�0
juj2 C 2zRe

�
Hu0 C i .! � ¨Cm/u

�
;(77) �

Qz
rp Œu�

�0
D z0

ˇ̌
u0 � i!u

ˇ̌2
� .zV /0 juj2 C 2zRe

�
Hu0 � i!u

�
;(78) �

QT Œu�
�0
D !Im .Hu/ ;�

QK Œu�
�0
D .! � ¨Cm/Im .Hu/ :(79)

The identities above follow by direct computation. Note that we have already used the
QT current (73) in Proposition 5.2.2.

R 6.1.1. – Note that the microlocal rp current appears for the first time in this
paper. The reader may find it illuminating to compare (71) with (72).
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6.2. The microlocal ILED estimate and applications

Recall that the microlocal radiation fields aI˙ and aH˙ were defined in Definition 5.4.1.
With this notation, in our previous work [30], estimates for the radial o.d.e. (61), in all
frequency ranges, with a non-zero right hand sideH and u satisfying aH� D aI� D 0 played
a fundamental role in the proof of Theorem 3.7.1. Besides depending on Theorem 3.7.1 as
stated, in the present paper we will also require Theorem 6.2.1, which is a variant of the
o.d.e. estimates of [30], concerning now solutions to the homogeneous radial o.d.e. (61) where
we do not however assume that aH� D aI� D 0. We will thus prove this latter theorem in
the present section, referring to constructions in our [30]. We will close the section with two
corollaries of Theorem 6.2.1: Theorem 6.2.2 which gives the boundedness of the reflection
and transmission coefficients and Proposition 6.2.1 which gives a uniform bound on the
Wronskian.

6.2.1. The microlocal ILED estimate for the homogeneous radial o.d.e. We will prove here
the following variant of Theorem 8.1 of [30] which applies to solutions of the homogeneous
o.d.e. (61) (with H D 0) but allows general asymptotics aH˙ ¤ 0, aI˙ ¤ 0.

T 6.2.1. – There exist parameters s� and sC satisfying rC < 3M � s� <

3M C sC <1 such that for all �1 < R�� < R�C < 1, the following is true. Given .!;m; `/
satisfying ! ¤ 0 and ! ¤ ¨Cm, there exists a parameter rtrap .!;m; `/ with

rtrap D 0 or rtrap 2 Œ3M � s�; 3M C sC�;

such that for all smooth solutionsu to the radial o.d.e. (61) with vanishing right hand sideH D 0,

(80)

.!�¨Cm/
2
jaH� j

2
C!2jaI� j

2
C

Z R�
C

R��

hˇ̌
u0
ˇ̌2
C

��
1 � rtrapr

�1
�2
.!2 Cƒ/C 1

�
juj2

i
dr�

� B.R��; R
�
C/
�
.! � ¨Cm/

2
jaHC j

2
C !2jaIC j

2
�
:

R 6.2.1. – Recall that the degeneration due to the .1 � rtrapr
�1/2 term arises

because of trapping. See the discussion in [30].

R 6.2.2. – Note that applying the theorem to u yields the same statement with the
roles of aH� and aI� interchanged with aHC and aIC .

R 6.2.3. – Let us emphasize that even though we require ! ¤ 0 and ! ¤ ¨Cm

in order to define aH˙ and aI˙ , the constant B.R��; R
�
C/ is according to our conventions in

Section 3.3 independent of the frequency parameters and in particular does not blow up in either
of the limits ! ! 0 or ! ! ¨Cm. The fact that we have a uniform estimate as ! ! 0 does
not follow from Theorem 5.3.1; a separate low-frequency argument is necessary, see [30].

Proof. – We recall that in [30] we studied solutions to radial o.d.e. (61) with a non-zero
right hand side H and u satisfying aH� D aI� D 0, whereas here H D 0 but all aH˙ , aI˙
are in general nontrivial.

We begin with the important observation that in (version 2! of) [30] in the proof of
Theorem 8.1 we used microlocal currents (see Section 6.1) where the functions f , h, etc.
were all bounded as r� !˙1. The currents which led to the positive bulk of the microlocal
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ILED statement produced (1) a term associated to the inhomogeneity H and (2) boundary
terms which were proportional to .! � ¨Cm/2 ju.�1/j

2 and !2 ju.1/j2. These boundary
terms were eventually controlled with suitable applications of (cut-off versions of) the QT

and QK currents. In order for this to work, one key point was that under the assumptions
aH� D aI� D 0 we haveˇ̌̌

QT
jrDrC

ˇ̌̌
D j!.! � ¨Cm/ ju.�1/jj

2 ; QT
rD1 D !

2
ju.1/j2 ;(81)

QK
rDrC

D .! � ¨Cm/
2
ju.�1/j2;

ˇ̌̌
QK
rD1

ˇ̌̌
D j!.! � ¨Cm/ ju.1/jj

2 :(82)

Now we consider the case of a solution u to the radial o.d.e. (61) with a vanishing right
hand sideH but where we make no assumption about the vanishing or non-vanishing of aH˙
and aI˙ . Since all of the multipliers discussed above are bounded, we immediately observe
that we may apply all the currents from (version 2 of) [30] to u.

The term associated to the inhomogeneity in the resulting identity, of course, now vanishes
since H D 0.

However, every application of the microlocal energy currents QK and QT will yield now
various boundary terms each of which will be proportional to one of .! � ¨Cm/2jaH� j2,
.! � ¨Cm/

2jaHC j
2, !2jaIC j

2, or !2jaI� j
2. Furthermore, the term proportional

to .! � ¨Cm/2jaH� j2 will always enter with the opposite sign of the term proportional
to .! �¨Cm/2jaHC j

2. An analogous relation holds for the terms proportional to !2jaIC j
2

and !2jaI� j2. In particular, we do not have (81) and (82) and we cannot hope to prove
an estimate with all of the microlocal radiation fields on the left hand side (12). We are thus
forced to always put the boundary terms associated to one of the pairs .aH� ; aI�/ and
.aHC ; aIC/ on the right hand side.

Given these observations, the following estimate immediately follows from the proof of
Theorem 8.1 of [30]:

.! � ¨Cm/
2
jaH� j

2
C !2jaI� j

2
C

Z R�
C

R��

hˇ̌
u0
ˇ̌2
C

��
1 � rtrapr

�1
�2
.!2 Cƒ/C 1

�
juj2

i
dr�

(83)

� B.R��; R
�
C/
h
.! � ¨Cm/

2
jaHC j

2
C !2jaIC j

2

C 1
f!low�j!j�!highg\fƒ��

�1
width!

2
highg
jaH� j

2
i
;

for a parameter rtrap.!;m; `/ satisfying

rtrap D 0 or rtrap 2 Œ3M � s�; 3M C sC�;

where 1
f!low�j!j�!highg\fƒ��

�1
width!

2
highg

denotes the indicator function for the set

F[
:
D f.!;m; `/ W !low � j!j � !high and fƒ � ��1width!

2
highgg:

The !low, !high and �width are fixed constants which arise during the proof of Theorem 8.1.
Thus we have established (80) for frequencies .!;m; `/ 62 F[.

(12) This is not so surprising of course, because if we could prove such an estimate we would deduce that u had to
vanish!
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In order to finish the proof we need to show that .!;m; `/ 2 F[ implies

jaH� j
2
� B

h
.! � ¨Cm/

2
jaHC j

2
C !2 jaIC j

2
i
:

Consider the solution u� to the radial o.d.e. defined by

u� D
�
aICW

�1.2i!/
�
Uhor C

�
aHCW

�1.2i .! � ¨Cm//
�
Uinf;

and let a�HC and a�IC denote the microlocal radiation fields of u�.

Observe that Lemma 5.3.3 implies that

a
�

HC D aHC ; a
�

IC D aIC :

Thus, applying Theorem 5.3.1 and Remark 5.3.1 to u � u� implies that u D u�. Using the
explicit definition of u�, appealing to Theorem 5.3.1 again and using the compactness of F[,
we immediately conclude that

jaH� j
2
D

ˇ̌̌
a
�
H�

ˇ̌̌2
� BW�2

h
!2 jaIC j

2
C .! � ¨Cm/

2
jaHC j

2
i

� B
h
!2 jaIC j

2
C .! � ¨Cm/

2
jaHC j

2
i
:

6.2.2. Uniform boundedness of R and T. – Applying Theorem 6.2.1 to the solutions Uhor

and Uinf immediately implies that the reflection and transmission coefficients are bounded
uniformly in .!;m; `/.

T 6.2.2. – The reflection and transmission coefficients are uniformly bounded:

jRj2 C
ˇ̌̌
QR
ˇ̌̌2
C jTj2 C

ˇ̌̌
QT
ˇ̌̌2
� B:

Proof. – We simply note that by the definition ofR and T, there exists a solution u to the
radial o.d.e. such that

aHC D
T

�i .! � ¨Cm/
; aH� D 0; aIC D

R

iw
; aI� D

1

i!
:

Theorem 6.2.1 immediately yields

jTj2 C jRj2 D .! � ¨Cm/
2
jaHC j

2
C !2 jaIC j

2
� B

h
.! � ¨Cm/

2
jaH� j

2
C !2 jaI� j

2
i
� B:

An analogous argument applies for QR and QT.

The above in particular already yields Theorem 11 of Section 2.4.1.
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6.2.3. A bound for the WronskianW. – We close the section with a uniform bound on the
Wronskian which will be useful in Section 7.

P 6.2.1. – For all .!;m; `/ 2 R n f0g � Z � Z�jmj we have

!2 C ¨2Cm
2

jWj2
� B:

Proof. – We first apply Theorem 6.2.1 with u D U hor. In this case we have

aH� D 1; aHC D 0; aI� D AIC ; aIC D AI� D �
W

2i!
:

In the last equality we have appealed to Lemma 5.3.3. Theorem 6.2.1 then implies

.! � ¨Cm/
2
C !2 jAIC j

2
� B jWj2 :

Dividing through byW2 implies

(84)
.! � ¨Cm/

2

jWj2
� B:

Next we apply Theorem 6.2.1 with u D U inf. In this case we have

aH� D AHC ; aHC D AH� D �
W

2i .! � ¨Cm/
;

aI� D AIC D 0; aIC D AI� D 1:

Again we have appealed to Lemma 5.3.3. Theorem 6.2.1 then implies

.! � ¨Cm/
2
jAHC j

2
C !2 � B jWj2 :

Dividing through byW2 yields

(85)
!2

jWj2
� B:

Since
¨2Cm

2
D .! � ¨Cm � !/

2
� B

h
.! � ¨Cm/

2
C !2

i
;

it is clear that (84) and (85) conclude the proof.

6.3. Superradiant estimates for Uhor

The frequency range defined below will play an important role in our arguments.

D 6.3.1. – For every � > 0 we define the set F .�/
]

by

F .�/
]

:
D f.!;m; `/ 2 R � Z � Z�jmj W am! > 0 and j!j � j¨Cmj < � jmj :g

R 6.3.1. – Observe that if we set � D 0, then F .�/
]

would exactly correspond to the

superradiant frequencies (68). When � > 0 is small, thenF .�/
]

contains all frequencies which are
“close” to being superradiant. These frequencies will later pose the most serious difficulties in
the analysis of Section 7.

R 6.3.2. – Note that for frequencies in F .�/
]

we have ƒ � b.�/
�
1C !2

�
.
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In this section, we shall prove

P 6.3.1. – Let Ehor be defined by

Uhor.r
�/ D e�i.!�¨Cm/r

�

CEhor.r
�/:

Then .!;m; `/ 2 F .�/
]

for a sufficiently small � > 0 and ƒ sufficiently large imply

(86) jEhorj �
B.�/ jWj
p
ƒ

p
r � rC;

for sufficiently small r � rC.

R 6.3.3. – Note that the
p
ƒ factor above represents a “gain of a derivative” over

what one would expect to prove if we were not restricting to .!;m; `/ 2 F .�/
]

.

This proposition will be of fundamental importance in Section 7. To prove it, we will need
again to return to our o.d.e theory for (61). We begin with some preliminaries reviewing some
additional results and notation from [30]. The proof proper will be contained in Section 6.3.4.

6.3.1. An inhomogeneous ILED in the superradiant regime. – The following estimate is a
special case of Theorem 8.1 from [30]. (13)

T 6.3.1 ([30]). – Let � > 0 be sufficiently small and �1 < R�� < R�C < 1,
then there exists a constant B

�
R��; R

�
C; �

�
such that for all smooth solutions u to the radial

o.d.e. (61) with a smooth compactly supported right hand sideH , u satisfying aH� D aI� D 0,
and frequencies .!;m; `/ 2 F .�/

]
with ƒ sufficiently large, we have

.! � ¨Cm/
2
jaHC j

2
C !2jaIC j

2
C

Z R�
C

R��

hˇ̌
u0
ˇ̌2
Cƒ juj2

i
dr�(87)

� B.R��; R
�
C; �/

Z 1
�1

�ˇ̌
Hu0

ˇ̌
C
p
ƒ jHuj

�
dr�:

R 6.3.4. – Note that the integrand on the right hand side of (87) does not degenerate
(cf. (80) below). This is because the (�-enlarged) superradiant frequency range F .�/

]
is not

trapped. See the discussion in [30] regarding the fortuitous disjointness of the difficulties of
superradiance and trapping.

(13) Note that we have strengthened the statement of Theorem 8.1 in version 2 of [30] with Theorems 6.3.1 and 6.2.1
in mind.
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6.3.2. Properties of the potential V in the superradiant regime. – We recall the following two
propositions proved in [30].

P 6.3.2. – Let .!;m; `/ 2 F .�/
]

for a sufficiently small � > 0. Then there exists
a unique r value rmax where the potential V of (62) achieves its maximum. Furthermore, there
exists ı > 0, independent of the frequency parameters, such that�

V � !2
�
jr2Œrmax�ı;rmaxCı� � bƒ:

Furthermore, rmax is uniformly bounded away from rC and1.

P 6.3.3. – Let .!;m; `/ 2 F .�/
]

for a sufficiently small � > 0, then there exists
ı1 > 0, independent of the frequency parameters, such that

r 2 ŒrC; rC C ı1�)
dV

dr
� b.�/ƒ:

6.3.3. An improved estimate in the superradiant regime. – We begin by applying Theorem 6.2.1
to Uhor and refer to Lemma 5.3.3 concerning the Wronskian. We obtain

C 6.3.1. – For all frequencies .!;m; `/ 2 F .�/
]

for a sufficiently small � > 0 and
sufficiently large ƒ, and for any constants �1 < R�� < R

�
C <1, we have

.! � ¨Cm/
2
� 1C !2 jAIC j

2
C

Z R�
C

R��

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� � B.R��; R

�
C; �/ jWj

2 :

(88)

Proposition 6.3.2 allows us to “gain a derivative” in comparison with Corollary 6.3.1 in
the following lemma.

L 6.3.1. – There exists r�1 > �1 such that for all frequencies .!;m; `/ 2 F .�/
]

with
a sufficiently small � > 0 and ƒ sufficiently large, and r�0 < r

�
1 , we haveZ r�

1

r�
0

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� � B.r�0 ; �/

jWj2

ƒ
:(89)

Proof. – Let u be an arbitrary smooth solution to the homogeneous radial o.d.e. (61),
with .!;m; `/ 2 F .�/

]
for a sufficiently small � > 0 and ƒ sufficiently large. Let Qh be a

smooth positive function supported in Œrmax � ı; rmax C ı� which is identically 1 within
Œrmax � ı=2; rmax C ı=2�. Then set h

:
D ƒ Qh. Using (75), we obtain

ƒ

Z rmaxCı=2

rmax�ı=2

hˇ̌
u0
ˇ̌2
Cƒ juj2

i
dr� �

Z 1
�1

.QhŒu�/0 C B.�/ƒ

Z rmaxCı

rmax�ı

juj2(90)

D B.�/ƒ

Z rmaxCı

rmax�ı

juj2

� B.�/
�
.! � ¨Cm/

2
jaHC j

2
C !2jaIC j

2
�
:

In the last line we used Theorem 6.2.1.
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In particular, applying the estimate (90) to Uhor and then appealing to Corollary 6.3.1
implies Z rmaxCı=2

rmax�ı=2

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� �

B.�/ jWj2

ƒ
:(91)

Now let � be a function which is identically 1 on ŒrC; rmax � ı=2� and identically 0
on Œrmax C ı=2;1/, and then set Qu

:
D �Uhor. We have

Qu00 C
�
!2 � V

�
Qu D �00Uhor C 2�

0U 0hor
:
D QH;

QaH� D QaI� D 0:

Thus, taking r�1 sufficiently negative, applying Theorem 6.3.1 to Qu yieldsZ r�
1

r�
0

hˇ̌
U 0hor

ˇ̌
Cƒ jUhorj

2
i
dr� � B.r�0 ; �/

Z rmaxCı=2

rmax�ı=2

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr�

�
B.r�0 ; �/ jWj

2

ƒ
:

In the last line we used the estimate (91).

Now we are ready for the following lemma.

L 6.3.2. – There exists a constant Q�>0 such that for all frequencies .!;m; `/2F .�/
]

with a sufficiently small � > 0 and ƒ sufficiently large, we haveZ .rCCQ�/�
�1

ˇ̌
U 0hor C i .! � ¨Cm/Uhor

ˇ̌2
.r � rC/

�1 dr� �
B.�/ jWj2

ƒ
:

Proof. – We consider the microlocal redshift current (71) with

z
:
D �

ƒ

QV
�.r/;

where � is a bump function which is identically 1 for r 2 ŒrC; rC C Q�� and 0 for r 2 Œ2Q�;1/,
for a small positive constant Q� to be determined. We obtain from (77) the estimateZ .rCCQ�/

�

�1

h
z0
ˇ̌
U 0hor C i.! � ¨Cm/Uhor

ˇ̌2i
dr�(92)

� B.�; Q�/

Z .rCC2Q�/
�

.rCCQ�/�

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� �Qz

redjrDrC :

If Q� > 0 is small enough, then via Proposition 6.3.3 we see that r 2 .rC; rC C Q�� implies
that z0 � b.r � rC/

�1. In particular, after fixing a small choice of Q�, we may combine (92)
and Lemma 6.3.1 to concludeZ .rCCQ�/

�

�1

ˇ̌
U 0hor C i.! � ¨Cm/Uhor

ˇ̌2
.r � rC/

�1 dr� �
B.�/ jWj2

ƒ
� BQz

redjrDrC :(93)

We conclude the proof by noting that

�Qz
redjrDrC D �ƒ � 0:
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6.3.4. Proof of Proposition 6.3.1. – Finally, Lemma 6.3.2 easily allows us to prove Proposi-
tion 6.3.1.

Proof of Proposition 6.3.1. – Let ƒ be sufficiently large. Recall the definition (128)
of Ehor. It follows that

E 0hor D U
0
hor C i.! � ¨Cm/Uhor:

Assuming r � rC sufficiently small, we then have

jEhor.r
�/j �

Z r�

�1

ˇ̌
E 0hor

ˇ̌
ds� D

Z r�

�1

ˇ̌
U 0hor C i .! � ¨Cm/Uhor

ˇ̌
ds�

� B

Z r

rC

ˇ̌
U 0hor C i .! � ¨Cm/Uhor

ˇ̌
.s � rC/

�1 ds

� B
p
r � rC

sZ r

rC

ˇ̌
U 0hor C i .! � ¨Cm/Uhor

ˇ̌2
.s � rC/�2 ds

� B
p
r � rC

sZ r�

�1

ˇ̌
U 0hor C i .! � ¨Cm/Uhor

ˇ̌2
.s � rC/�1 ds�

�
B.�/ jWj
p
ƒ

p
r � rC:

6.4. The large-` limit of T

It is useful to observe that T must vanish in the large-` limit.

P 6.4.1. – For each fixed value of ! and m satisfying ! �¨Cm ¤ 0, we have

lim
`!1

T .!;m; `/ D 0; lim
`!1

QT .!;m; `/ D 0:

Proof. – We will only consider the case of T as the proof for QT is exactly the same.

Fix a pair! andm such that!�¨Cm ¤ 0. Next, pick and fix some value of r0 2 .rC;1/.
Then, for all sufficiently large `, there will exist a ı > 0 such that

(94)
�
V � !2

�
jr2Œr0�ı;r0Cı� � bƒ:

The basic intuition is that for ƒ sufficiently large, this large potential barrier will prevent
the transmissions of waves toHC. To make this rigorous, we observe that an examination of
the beginning of proof of Lemma 6.3.1 shows that (94) implies that if ` is sufficiently large

(95)
Z r0Cı=2

r0�ı=2

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� �

B

ƒ

Z r0Cı

r0�ı

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr�:

Keeping in mind that Lemma 5.3.3 implies

Uhor D �
R .! � ¨Cm/

!T
ei!r

�

�
.! � ¨Cm/

!T
e�i!r

�

CO
�
r�1

�
as r !1;

an application of Theorem 6.2.1 implies that

(96)
Z r0Cı

r0�ı

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� � B

"
1C

.! � ¨Cm/
2 jRj2

jTj2

#
:
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Combining this with (95) implies

(97)
Z r0Cı=2

r0�ı=2

hˇ̌
U 0hor

ˇ̌2
Cƒ jUhorj

2
i
dr� �

B .!;m; r0/

ƒ

"
1C

.! � ¨Cm/
2 jRj2

jTj2

#
:

Intuitively, the estimate (97) shows that Uhor must be small near the large potential barrier.
We now want to use an energy estimate to show that if Uhor is small near the poten-

tial barrier, then T must be small. We thus consider the microlocal K-energy current (74)
from Proposition 6.1.1. Now let �.r/ denote a cut-off function which is identically 1

for r 2 ŒrC; r0 � ı=2� and identically 0 for r 2 Œr0 C ı=2;1/. Then, keeping (97) and (79) in
mind,

.! � ¨Cm/
2
D

Z 1
�1

�
�QK

�0
dr� � B

Z r0Cı=2

r0�ı=2

hˇ̌
U 0hor

ˇ̌2
C jUhorj

2
i
dr�(98)

�
B

ƒ

"
1C

.! � ¨Cm/
2 jRj2

jTj2

#
:

Now we may multiply (98) through by T, divide through by .! � ¨Cm/
2, take ` ! 1 and

apply Theorem 6.2.2 to conclude that

lim
`!1

T .!;m; `/ D 0:

The following corollary follows easily from Proposition 6.4.1.

C 6.4.1. – For each fixed value of ! and m satisfying ! � ¨Cm ¤ 0, we have

lim
`!1

R .!;m; `/ D 1; lim
`!1

QR .!;m; `/ D 1:

Proof. – This follows immediately from Corollary 5.3.1 and Proposition 6.4.1.

6.5. Nonvanishing of R

The next proposition shows that for any fixedm and `, the reflection coefficientR cannot
be identically 0.

P 6.5.1. – For each m and `, there exists ! such that R .!;m; `/ ¤ 0 and
QR .!;m; `/ ¤ 0.

Proof. – We will only consider the case of R since QR is treated in a similar fashion.
Fix a choice of m and `. Then, for the sake of contradiction, assume that R .!;m; `/ is

identically 0 in !. We first consider the case when ¨Cm ¤ 0. Then Corollary 5.3.1 implies
!

! � ¨Cm
jTj2 D 1:

Then we get a contradiction by considering any ! such that !.! � ¨Cm/ < 0.
The case when ¨Cm D 0 is a bit more subtle. First of all, observe that the vanishing

of R .!;m; `/ implies that for each !, we can construct a (non-zero!) solution u D u.r�; !;m; `/
to the radial o.d.e. such that u � e�i!r

�

as r� ! �1 and u � e�i!r
�

as r� !1. By direct
inspection, one finds that the estimates of Section 8.7.1 of (version 2! of) [30] go through for
such a solution (see Remark 8.7.1 at the end of Section 8.7.1), and in particular prove that
for ! sufficiently small, u must vanish. This contradiction finishes the proof.
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C 6.5.1. – The reflection coefficientsR and QR cannot vanish on an open set of!.

Proof. – Standard o.d.e. theory implies that for each fixedm and `,R and QR are analytic
in ! 2 R n f0g, and, because Proposition 6.5.1 implies that they are not identically 0, we
conclude that they can only vanish at isolated points in !.

6.6. The microlocal rp estimate

In this section we will establish an analog of Proposition 3.8.1 for the function u, using
the microlocal rp current (72).

The following proposition is the microlocal analog of Proposition 3.8.1.

P 6.6.1. – Fix parameters .!;m; `/ 2 R�Z�Z�jmj with ! ¤ 0, and let u be
a smooth solution of the radial o.d.e. (61)

u00 C .!2 � V /u D H;

such thatH.r�/ is compactly supported and the constant aI� from Proposition 5.2.1 vanishes.
Then, for all p 2 Œ0; 2� and sufficiently large R (independent of .!;m; `/!),Z 1

RC1

h
rp�1

ˇ̌
u0 � i!u

ˇ̌2
C
�
.2 � p/rp�3ƒC rp�4

�
juj2

i
dr�

� B

Z RC1

R

rp
�
1C !2 Cƒ

�
juj2 dr� C B

Z 1
R

jH j
�
rp
ˇ̌
u0 � i!u

ˇ̌
C
ˇ̌
u0
ˇ̌�
dr�:

In the case p D 2, then we may moreover add the term ƒ jaIC j
2 to the left hand side.

Proof. – We begin by observing that a further asymptotic analysis (see Appendix A
of [67]) of u yields

u D aICe
i!r�

�
1C

C

r
CO

�
r�2

��
as r !1;

where C 2 C is a constant independent of u but depending on .!;m; `/. In particular, we
find that

u0 � i!u D O
�
r�2

�
as r !1:

Next, let R < 1 be sufficiently large and let z D �rp where p 2 Œ0; 2� and � is a cut-
off function which is monotonically increasing, identically 0 for r � R, and identically 1
for r � RC 1. Keeping in mind that

V D
ƒ

r2
C
2M Œ1 � .ƒ � 2am!/�

r3
CO

�
r�4

�
as r !1;

we find that

Qz
rp Œu�jrD1 D 0 if p 2 Œ0; 2/;

Qz
rp Œu�jrD1 D �ƒ jaIC j

2 if p D 2:

Furthermore, recalling that by (56) we have

ƒ � 2 jam!j ;

one may easily check that r sufficiently large and p 2 Œ0; 2� imply

� .rpV /
0
� b

�
.2 � p/rp�3ƒC rp�4

�
� B

ƒ

rp�4
:
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Thus, applying the fundamental theorem of calculus to the identity (78) yieldsZ 1
RC1

�
prp�1

ˇ̌
u0 � i!u

ˇ̌2
C
�
.2 � p/rp�3ƒC rp�4

�
juj2

�
(99)

� B

Z RC1

R

rp
�
1C !2 Cƒ

�
juj2 dr� C B

Z 1
R

rp jH j
ˇ̌
u0 � i!u

ˇ̌
dr�

C B

Z 1
RC1

ƒ

rp�4
juj2 dr�;

where in the case p D 2 we may add ƒ jaIC j
2 to the left hand side.

It remains to estimate the last term on the right hand side of (99). (Note that for any
p 2 Œ0; 2/ we could take R sufficiently large depending on p and absorb the troublesome
term onto the left hand side. However, this cannot work in the case p D 2.) Let Q� be a cut-
off which is identically 0 for r 2 ŒrC; R� and identically 1 on ŒR C 1;1/. Then, taking R
sufficiently large and applying the fundamental theorem of calculus to the identity (76) with
y D Q� easily yieldsZ 1

RC1

ƒ

r3
juj2 dr� � B

Z RC1

R

�
1C !2 Cƒ

�
juj2 dr� C B

Z 1
R

jH j
ˇ̌
u0
ˇ̌
dr�;

and thus concludes the proof.

6.7. A quantitative estimate on the rate of convergence of the microlocal radiation field

The following proposition will be used in Section 6.8 below and also in Section 9.1.2.

P 6.7.1. – Fix parameters .!;m; `/ 2 R � Z � Z�jmj with ! ¤ 0, and
let u be a smooth solution of the radial o.d.e. (61) with a right hand side H vanishing for
sufficiently large r�, such that the constant aI� from Proposition 5.2.1 vanishes. Then there
exists a sufficiently large constant R, independent of the frequency parameters, such that for
every � > 0ˇ̌̌̌

!
�
u � ei!r

�

aIC
� ˇ̌̌
rDr0

ˇ̌̌̌2
� B.�/r�2C�0

Z RC1

R

�
1Cƒ3

�
juj2 dr�; 8r0 � R:

R 6.7.1. – Note that if we allowed the constantsB andR to depend on the frequency
parameters, standard o.d.e. theory (e.g., see [60]) would allow one to replace �2 C � with the
sharp exponent �2.

R 6.7.2. – As far as the applications of Proposition 6.7.1 are concerned the only
thing important about the ƒ dependence is that it is polynomial.

Proof. – Set
E
:
D u � ei!r

�

aIC :

Recall that standard o.d.e. theory implies that E D O
�
r�1

�
as r ! 1 (where the implied

constant may depend on .!;m; `/).
Next, we observe that one may find a sufficiently large R < 1 not depending on the

frequency parameters so that r � R implies jV j � B
�
ƒ
r2
C

1
r3

�
.

A simple computation gives

E 00 C !2E D VE C ei!r
�

aICV:
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Variation of parameters (14) then implies

E.r/ D �

Z 1
r�

 
ei!.r

��s�/ � e�i!.r
��s�/

2i!

!�
V.s/E.s/C ei!s

�

aICV.s/
�
ds�:

In particular,

(100) j!E.r/j2 � B

"�Z 1
r�

.1Cƒ/ jE.s/j

s2
ds�

�2
C jaIC j

2

�
ƒ2

r2
C
1

r4

�#
:

Now we consider the two terms on the right hand side of (100) separately. For the first

term, we begin by observing that ei!r
�
�
e�i!r

�

E
�0
D u0 � i!u. Keeping this in mind, we

have �Z 1
r�

jE.s/j

s2
ds�

�2
� B.�/

Z 1
r�

jE.s/j2

s3��
ds�(101)

D B.�/

Z 1
r�

ˇ̌̌
e�i!s

�

E.s/
ˇ̌̌2

s3��
ds�

� B.�/

Z 1
r�

ˇ̌̌̌�
e�i!s

�

E.s/
�0 ˇ̌̌̌2

s1��
ds�

� B.�/r�2C�
Z 1
r�

s
ˇ̌
u0 � i!u

ˇ̌2
ds

� .1Cƒ/B.�/r�2C�
Z RC1

R

juj2 dr�:

In the third inequality we used a standard Hardy inequality, and in the final inequality we
appealed to Proposition 6.6.1.

For the second term in (100), we first note that Proposition 6.6.1 with p D 2 gives

(102) ƒ
jaIC j

2

r2
� Bƒr�2

Z RC1

R

juj2 dr�:

For the lower order term we use
(103)
jaIC j

2

r4
� B

Z 1
r�

jaIC j
2

s5
ds� � B

Z 1
r�

"
juj2 C jEj2

s5

#
ds� � B.1Cƒ/r�3

Z RC1

R

juj2 dr�:

In the last inequality we used the estimates done in (101) and Proposition 6.6.1.

Combining (100), (101), (102), and (103) concludes the proof.

(14) More concretely, we define a function QE by the formula given, note that .E� QE/00C!2.E� QE/ D 0, observe
the trivial fact that any solution to g 00C!2g D 0 which satisfies g D O.r�1/must be identically 0, and deduce
thatE D QE .
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6.8. Relation to the physical space radiation fields

Definition 5.4.1 is motivated by the following propositions.

P 6.8.1. – For all smooth solutions  to (2) on D arising from smooth
compactly supported data along†, let aIC .!;m; `/ be the microlocal radiation field along IC.
Then !aIC 2 L

2
!l
2
m`

and

@�'.�;1; �; �/ D
1
p
2�

Z 1
�1

X
m`

!e�i!�aIC.!;m; `/Sm`.a!; cos �/eim�d!:

Recall that '.�;1; �; �/ denotes the radiation field of  along future null infinity IC.

Proof. – First of all, as noted in Remark 5.1.2,  is sufficiently integrable in the sense
of Definition 5.1.1 and thus the microlocal radiation field aIC is a well defined measurable
function.

Now, define

 C
:
D �.t�/ ;

 �
:
D .1 � �.t�// ;

where �.x/ is a cutoff function which is identically 0 for x � 0 and is identically 1 for x � 1
(the apparent asymmetry in the use of a cutoff depending on t� will not be a problem).

We shall denote
�
r2 C a2

�1=2
 ,
�
r2 C a2

�1=2
 C, and

�
r2 C a2

�1=2
 � by ', 'C, and '�

respectively.

The following facts are immediate consequences of  ’s compact support along† and the
finite speed of propagation.

1. 'CjIC D 'jIC .
2. '�jI� D 'jI� .
3.  D  C C  �.
4. �g C vanishes for large r .
5. �g � vanishes for large r .

Next, we observe the following immediate consequence of Proposition 3.8.1 with p D 1 and
Theorem 3.7.1 (note that the compact support of  ’s initial data implies that the norms on
the right sides of the estimates of Theorem 3.7.1 are finite and thus the right hand side of the
estimate of Proposition 3.8.1 is uniformly bounded as �2 !1):

(104)
Z 1
�1

Z
r�R

Z 2�

0

Z �

0

ˇ̌̌
.@t C @r�/

��
r2 C a2

�1=2
 C

�ˇ̌̌2
sin � dt dr d� d� <1;

where R is sufficiently large. Applying the discrete isometry .t; �/ 7! .�t;��/ and repeating
the above argument implies

(105)
Z 1
�1

Z
r�R

Z 2�

0

Z �

0

ˇ̌̌
.@t � @r�/

��
r2 C a2

�1=2
 �

�ˇ̌̌2
sin � dt dr d� d� <1;

where R is sufficiently large.
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Noting that ˙ are easily seen to be sufficiently integrable in the sense of Definition 5.1.1,
we may apply Carter’s separation to  C and � and define uC and u�. Now we observe that
Plancherel and (104) are easily seen to imply the existence of a dyadic sequence frng such that

lim
n!1

Z 1
�1

X
m`

ˇ̌
u0C � i!uC

ˇ̌2
jrDrn D 0:

In turn, upon passing to a subsequence, this implies that for almost every ! and every .m; `/
we have

lim
n!1

ˇ̌
u0C � i!uC

ˇ̌
jrDrn D 0:

Finally, combining this with Proposition 5.2.1 clearly implies that uC � ei!r
�

as r ! 1.
Similarly, we observe that u� � e�i!r

�

as r ! 1. Since we clearly have u D uC C u�, we
finally conclude that for almost every ! and each .m; `/ we have

uC D aICe
i!r�
CO.r�1/ as r !1;(106)

u� D aI�e
�i!r�

CO.r�1/ as r !1:(107)

Observe that the Fourier transform in � of @�'C is given by
�
e�i!r

�

CO
�
!
r

��
!uC

as r !1. Furthermore, observe that Theorem 3.7.2 and Plancherel are easily seen to imply
that Z 1

�1

X
m`

Z RC1

R

�
1Cƒ3 C !2

�
juCj

2 dr� d! <1:

Thus we may apply Proposition 6.7.1 to conclude that !e�i!r
�

uC and !2ei!r
�

uC converge
in L2!l

2
m`

as r ! 1 to !aIC and !2aIC respectively. In particular, the Fourier transform
in � of @�'C converges to !aIC in L2!l

2
m`

as r ! 1. Plancherel then implies that any
subsequence f@�'Cgrn is Cauchy in L2R�S2 . Now, recalling that @�'C .�; r; �; �/ converges
to @�'C .�;1; �; �/ in L1R�S2 (see Remark 4.2.3 and keep in mind that the finite speed of
propagation implying 'C is only supported along � � �0 for some �0 2 R), we conclude,
using the uniqueness of Lp limits, that @�'C .�; r; �; �/ converges to @�'C.�;1; �; �/

in L2R�S2 . Finally, continuity of the Fourier transform on L2 implies that

@�'C.�;1; �; �/ D
1
p
2�

Z 1
�1

X
m`

!e�i!�aIC.!;m; `/Sm`.a!; cos �/eim�d!:

To conclude the proof we simply recall that 'CjIC D 'jIC .

Now we turn to the horizon flux.

P 6.8.2. – For all solutions  to (2) on D arising from smooth compactly
supported initial data along †, let aHC.!;m; `/ be the microlocal radiation field along HC.
Then .! � ¨Cm/aHC 2 L

2
!l
2
m`

and

(108) K .t�; rC; �; �/

D
1

p
4M�rC

Z 1
�1

X
m`

.! � ¨Cm/ e
�i!t�aHC.!;m; `/Sm`.a!; cos �/eim�

�

d!:
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Proof. – First of all, as noted in Remark 5.1.2,  is sufficiently integrable in the sense
of Definition 5.1.1 and thus the microlocal radiation field aHC is a well defined measurable
function.

We first consider the case where the initial data for  are in fact compactly supported
along V†. We may then proceed in a completely analogous manner to the proof of Proposi-
tion 6.8.1. We note that the argument is in fact simpler since we will be able to rely directly
on Theorem 3.7.1 instead of developing an analog of Theorem 3.8.1 near the horizon.

Define

 C
:
D �.t/ ;

 �
:
D .1 � �.t// ;

where �.x/ is a cutoff function which is identically 0 for x � 0 and is identically 1 for x � 1.
The following facts are immediate consequences of  ’s compact support away from the

bifurcate sphere B and the finite speed of propagation.

1.  CjHC D  jHC .
2.  �jH� D  jH� .
3.  D  C C  �.
4. �g C vanishes for small r � rC.
5. �g � vanishes for small r � rC.

Recalling that the smooth extension of @r� to HC [ H� satisfies @r� jHC D K and
@r� jH� D �K, we see that Theorem 3.7.2 immediately implies

lim
r!rC

.@r� �K/ C D 0 in L2t�;��;��
�
sin �� dt� d�� d��

�
;(109)

lim
r!rC

.@r� CK/ � D 0 in L2�t;��;��
�
sin �� d�t d�� d��

�
:(110)

Appealing to Theorems 3.7.1 and 3.7.2, we may apply Carter’s separation to  C and  �
and define uC and u�. Since we clearly have u D uCCu�, Proposition 5.2.1, (109), (110) and
a similar argument as we used near IC (note that the convergence of  C to its radiation field
along the horizon in both L1R�0�S2 and L2R�0�S2 follows immediately from the fundamental

theorem of calculus and Theorem 3.7.2) imply that for almost every ! and for each .m; `/,
we have

uC D aHCe
�i.!�¨Cm/r� CO.r � rC/ as r ! rC;(111)

u� D aH�e
i.!�¨Cm/r� CO.r � rC/ as r ! rC:(112)

Now, we note that Theorem 3.7.1 is easily seen to imply that  CjrDs !  CjrDrC
as s ! rC in L2

t�;��;��
. Arguing in a similar fashion as in the proof of Proposition 6.8.1 we

conclude that aHC is in L2!l
2
m`

and

(113)  .t�; rC; �; �/ D
1

p
4M�rC

Z 1
�1

X
m`

e�i!t
�

aHC.!;m; `/Sm`.a!; cos �/eim�
�

d!:

Now we consider the case where the support of  may contain the bifurcate sphere B.
We begin by commuting (2) with K and conclude that �g .K / D 0. Then we recall that
K vanishes on the bifurcate sphere in view of (40). Now, let �.x/ be a smooth function
which is identically 0 for x 2 .�1; 1� and identically 1 for x 2 Œ2;1/. Set ��.x/

:
D �

�
x
�

�
,
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and, recalling the coordinate system .UC; V C; �; �/ near the bifurcate sphere which was
introduced in Section 3.2, let .K /� denote the solution to the wave equation with the initial
data of ��

�
V C

�
K . Using thatK is smooth and vanishes at the bifurcate sphere, one may

easily verify that

lim
�!0

Z
V†

JN� ŒK � .K /�� n
�

V†
D 0:

Theorem 3.7.1 then implies that

lim
�!0

Z
HC

JN� ŒK � .K /�� n
�

HC D 0:

Since .K /� is compactly supported away from the bifurcate sphere,
(114)

.K /�.t
�; rC; �; �/ D

1
p
4M�rC

Z 1
�1

X
m`

e�i!t
�

a
.K/

�;HC.!;m; `/Sm`.a!; cos �/eim�
�

d!;

where a.K/
�;HC is the microlocal radiation field along HC for .K /� (observe that .K /� is

easily seen to be sufficiently integrable in the sense of Definition 5.1.1).

In order to finish the proof, we just need to establish that a.K/
�;HC ! .! � ¨Cm/aHC

in L2!l
2
m`

as � ! 0. We begin by noting that the convergence of .K /� to K and

Plancherel imply that fa.K/
�;HCg has an L2!l

2
m`

limit as � ! 0; hence, it suffices to check

that .! � ¨Cm/a
.K/

�;HC converges to .! � ¨Cm/aHC pointwise almost everywhere. In order

to see this, we let u.K/� denote the result of applying Carter’s separation to .K /�, and
observe that a.K/

�;HC is, up to an appropriate normalization, equal to the Wronskian of u.K/�

with Uhor:

a
.K/

�;HC D .�2i .! � ¨Cm//
�1

��
u.K/�

�0
Uhor � u

.K/
� U 0hor

�
:

Since Theorem 3.7.1 may be easily used to show that for each .!;m; `/ and r�, u.K/� .r�; !;m; `/

converges to u� .r
�; !;m; `/ as � ! 0, we conclude that .! � ¨Cm/a

.K/

�;HC .!;m; `/

converges to .! � ¨Cm/a
.K/

HC as � ! 0.

7. Boundedness revisited: A degenerate-energy boundedness statement

This section is dedicated to refining our recent proof from [30] of boundedness for the
wave equation so as to apply for finite degenerate V -energy solutions.

We will collect all statements which we shall need for the remainder of the paper in
Section 7.1. The key statement is Theorem 7.1 together with one immediate corollary. (In
particular, after digesting these statements, the reader impatient to proceed to the scattering
theory constructions can skip to Section 8.)

In the brief aside of Section 7.2, we shall also state the full degenerate-energy analog
of Theorem 3.7.1 in Section 7.2 as Theorem 7.2. We shall not actually require the latter
result in the paper and it in fact is more convenient to infer it a posteriori with the help
of the backwards scattering maps which we shall construct in Section 9. Thus, the proof of
Theorem 7.2 is in fact deferred till Section 9.4.
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Section 7.3 gives the proof of Theorem 7.1. We note that the proof will crucially use
Proposition 5.3.1, Proposition 6.2.1 and Proposition 6.3.1.

7.1. The main theorem and corollary

The main result which we shall require for later sections is the following.

T 7.1. – For all solutions  to (2) on R�0 arising from smooth initial data on †�0
which are compactly supported, we have

(115)
Z
IC

JT� Œ �n
�

IC C

Z
HC
�0

JK� Œ �n
�

HC � B

Z
†�
0

JV� Œ �n
�

†�
0

:

R 7.1.1. – One can easily formulate and prove higher order versions of Theorem 7.1
but we will not pursue this here.

Given that the restriction of the deformation tensor of V to J�
�
†�0
�
\ JC

�
†
�

is
compactly supported away from HC [ H� [ B, a finite in time energy estimate, i.e., (24)
with X D V , immediately implies

C 7.1. – For all solutions  to (2) on JC
�
†
�

arising from smooth compactly
supported initial data along †, we have

(116)
Z
IC

JT� Œ �n
�

IC C

Z
HC

JK� Œ �n
�

HC
� B

Z
†

JV� Œ �n
�

†
:

7.2. Aside: the full degenerate boundedness and integrated decay statements

We note that we can in fact obtain the full analog of Theorem 3.7.1 where energy bound-
edness is given with respect to a spacelike foliation, and where integrated local energy decay
is proven, both now involving the degenerate energy. We will not require this result in the rest
of the paper and it is in fact convenient to obtain it a posteriori using our scattering theory.

T 7.2. – For all solutions  to (2) on R�0 arising from smooth initial data on †�0
which are compactly supported, we have

(117)
Z
†�s

JV� Œ �n
�

†�s
� B

Z
†�
0

JV� Œ �n
�

†�
0

; 8s � 0;

(118)
Z
R�0

�
r�1�jr= j2 C r�1�ı� jT j2 C .r � rC/

2 r�3�ı
ˇ̌
QZ� 

ˇ̌2
C r�3�ı j j2

�
� B.ı/

Z
†�
0

JV� Œ �n
�

†�
0

;

where � is defined as in the statement of Theorem 3.7.1.

The proof is deferred till Section 9.4.

R 7.2.1. – Note the degeneration of the bulk integral at the horizon. One can easily
formulate and prove higher order versions of Theorem 7.2 but we will not pursue this here.
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7.3. The proof of Theorem 7.1

Before we begin the discussion of the proof of Theorem 7.1, let us briefly indicate what
would go wrong if we simply tried to repeat the proof of Theorem 3.7.1 as given in [30].

1. Anytime the redshift estimate of [27] and [23] is applied to  , one must put a termR
†�
0

JN� Œ �n
�

†�
0

on the right hand side of the resulting estimate.

2. In [30], when we proved the integrated energy decay statement for  we first proved an
estimate for � where �.t�/ was a cutoff function which was identically 0 in the past
of †�0 and identically 1 in the future of †�1 . We then studied the inhomogeneous wave
equation

�g.� / D 2g
��
r��r� C

�
�g�

�
 
:
D F:

The resulting estimate in [30] had, in particular, a term on the right hand side propor-
tional to Z

R\fr�Rg
jF j2 ;

for some constant R > rC. Note that on the horizon, F will contain a term propor-
tional to Z� . Unfortunately, this is exactly the derivative that the JV energy loses
control of as r ! rC.

In order to prove Theorem 7.1 we will first observe that without loss of generality,
we can assume that the initial data for  is supported near the horizon. Applying a JK

energy estimate for  and Plancherel then immediately reduce the problem to estimating
the microlocal radiation fields for  

Q
along IC in the superradiant frequency regime F .�/

]
.

Next, using the fundamental solution representation of Proposition 5.3.1 we will repre-
sent the microlocal radiation fields along IC as an integral in r� of the Fourier transform
of F against Uhor. Following this, in the most subtle part of the proof, we will crucially
exploit the fact that we are in a superradiant frequency regime where we can afford to lose
a derivative, the fact we only need to estimate the flux to IC, the fact that F is supported
near the horizon and the oscillations of Uhor in r� (as embodied in Proposition 6.3.1) in
order to gain some degeneration in r � rC. Somewhat surprisingly, this step does not use
that F D 2g��r��r� C

�
�g�

�
 ; it treats F as an arbitrary inhomogeneity. Finally, the

proof concludes with finite in time energy estimates and Hardy inequalities (of course, the
fact that F D 2g��r��r� C

�
�g�

�
 is used in this step).

Proof of Theorem 7.1. – We start with an easy reduction; we may split  into  1 and  2
where  1 has initial data supported near the horizon and  2 has initial data supported away
from the horizon. Of course, the estimate (115) for  2 follows from Theorem 3.7.1. Thus,
without loss of generality, we will assume that  2 D 0 and that  D  1 has initial data
whose support is contained in r 2 ŒrC; 10M�.

We now define  
Q

:
D � where � is a function which is identically 1 in the future of †�1 ,

and identically 0 in the past of †�0 . This satisfies

�g Q D 2g
��
r��r� C

�
�g�

�
 
:
D F:

The functions u and H are then defined by applying Carter’s separation to � and F
respectively. This satisfies the radial o.d.e. (61) with a non-zero right hand side H . Let aIC
denote the corresponding microlocal radiation field of u.

4 e SÉRIE – TOME 51 – 2018 – No 2



A SCATTERING THEORY FOR THE WAVE EQUATION ON KERR 439

We begin by showing

(119)
Z
HC
�0

JK� Œ �n
�

HC C

Z 1
�1

X
m`

! .! � ¨Cm/ jaIC j
2 d! � B

Z
†�
0

JV� Œ �n
�

†�
0

:

Note that part of the proof of this statement will be that the unsigned quantityR1
�1

P
m` ! .! � ¨Cm/ jaIC j

2 d! is absolutely convergent. (One should think of (119) as
corresponding to the formal statement

R
HC
�0

JK� Œ �n
�

HC C
R
IC JK� Œ �n

�

IC � B
R
†�
0

JV� Œ �n
�

†�
0

.

However, we will wish to avoid a discussion of the convergence of the unsigned integralR
IC JK� Œ �n

�

IC .)

Let s > 0 and r0 > rC. We start with a JK energy estimate in the region bounded
by HC.0; s/, †�s \ fr � r0g, fr D r0g \ J�.†�s /, and †�0 . We obtain

(120)
Z
HC.0;s/

JK� Œ �n
�

HC C

Z
†�s\fr�r0g

JK� Œ �n
�

†�s
C

Z
frDr0g\J�.†

�
s /\J

C.†�
0
/

JK� Œ �n
�

frDr0g

D

Z
†�
0
\fr�r0g

JK� Œ �n
�

†�
0

:

It easily follows from Theorem 3.7.2 that for each r0, there exists a dyadic sequence fsig1iD1
such that

lim
i!1

Z
†�si\fr�r0g

JK� Œ �n
�

†�si
D 0:

We thus obtain

(121)
Z
HC
�0

JK� Œ �n
�

HC C

Z
frDr0g\JC.†

�
0
/

JK� Œ �n
�

frDr0g
D

Z
†�
0
\fr�r0g

JK� Œ �n
�

†�
0

:

Observe that Theorem 3.7.2 allows us to unambiguously assign a value to the unsigned
quantity Z

frDr0g\JC.†
�
0
/

JK� Œ �n
�

frDr0g
:

Next, recalling that  j†�
0

is supported with ŒrC; rC C 10M�, we observe that if r0 is
sufficiently large, then (121) becomes

(122)
Z
HC
�0

JK� Œ �n
�

HC C

Z
frDr0g

JK� Œ Q�n
�

frDr0g
� B

Z
†�
0

JV� Œ �n
�

†�
0

:

Now we explicitly compute, apply Plancherel, and integrate by parts:Z
frDr0g

JK� Œ Q�n
�

frDr0g
D

Z
frDr0g

..T  
Q
C !Cˆ Q/ @r� Q/ .r

2
C a2/ sin � dt d� d�(123)

D

Z
frDr0g

��
T ..r2 C a2/1=2 

Q
/C !Cˆ..r

2
C a2/1=2 

Q
/
�

@r�..r
2
C a2/1=2 

Q
/
�

sin � dt d� d�

D

Z 1
�1

X
m`

.! � ¨Cm/ Im
�
u0u

�
jrDr0d!:

Next, we consider the microlocal K-energy current (see Section 6.1):

QK Œu�
:
D .! � ¨Cm/ Im

�
u0u

�
:
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This is conserved for r � r0 for r0 sufficiently large, i.e.,�
QK

�0
D 0:

Noting that the proof of Proposition 6.8.1 implies .u0 � i!u/ jrD1 D 0, we thus obtain

(124)
Z 1
�1

X
m`

.! � ¨Cm/ Im
�
u0u

�
jrDr0d! D

Z 1
�1

X
m`

! .! � ¨Cm/ jaIC j
2 d!:

In particular, the right hand side of (124) is absolutely convergent. Combining (122), (123),
and (124) yields (119).

Next, we observe that Propositions 6.8.1 and 4.2.2 together imply that

(125)
Z
IC

JT� Œ �n
�

IC D

Z 1
�1

X
m`

!2 jaIC j
2 d!:

Now, observing that .!;m; `/ 62 F .�/
]

imply that ! .! � ¨Cm/ � b.�/!2, it is clear that
in order to finish the proof we need only show

(126)
Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

j¨C!mj jaIC j
2 d! � B.�/

Z
†�
0

JV� Œ �n
�

†�
0

;

for some sufficiently small � > 0.

We turn thus to the proof of (126).

First, note that Proposition 5.3.1 allows us to write

(127) jaIC j
2
D jWj�2

ˇ̌̌̌Z 1
�1

Uhor.x
�/H.x�/dx�

ˇ̌̌̌2
:

Keeping in mind that the set f.!;m; `/ 2 F .�/
]
W ƒ � cg is compact, standard o.d.e. theory

implies

(128) Uhor.r
�/ D e�i.!�¨Cm/r

�

CEhor.r
�/;

where .!;m; `/ 2 F .�/
]

and ƒ � c implies

(129) jEhor.r
�/j � B .�; c/ jr � rCj ;

for r � rC sufficiently small. As c ! 1, however, the dependence of B.�; c/ may be bad.
Fortunately Proposition 6.3.1 shows that if � > 0 is sufficiently small and ƒ is sufficiently
large, then we have

jEhorj �
B.�/ jWj
p
ƒ

p
r � rC;

for sufficiently small r � rC.
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Applying (127), (128), (129), Proposition 6.2.1 and Proposition 6.3.1, we obtain

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

j¨C!mj jaIC j
2 d!

(130)

D

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

j¨C!mj

jWj2

ˇ̌̌̌Z 1
�1

Uhor.r
�/H.r�/dr�

ˇ̌̌̌2
d!

� B

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

"
j¨C!mj

jWj2

ˇ̌̌̌Z 1
�1

e�i.!�¨Cm/r
�

H.r�/dr�
ˇ̌̌̌2

C
j¨C!mj

jWj2

ˇ̌̌̌Z 1
�1

e�i.!�¨Cm/r
�

Ehor.r
�/H.r�/dr�

ˇ̌̌̌2 #
d!

� B.�/

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

" ˇ̌̌̌Z 1
�1

e�i.!�¨Cm/r
�

H.r�/ dr�
ˇ̌̌̌2

C

ˇ̌̌̌Z 1
�1

p
r � rC jH.r

�/j dr�
ˇ̌̌̌2 #

:
D B.�/

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

ŒI C II � :

Let us now recall the explicit form of H :

H D
�

.r2 C a2/3=2

Z 1
�1

Z
S2
ei!te�im�Sm`.�; a!/

�
�2F

�
sin � dt d� d�;(131)

F D 2g��r��r� C
�
�g�

�
 :(132)

We begin by showing that the term proportional to II can be dealt with easily. On the
support ofH we have dr� � .r � rC/

�1 dr . Thus, changing variables from r� to r , applying
Cauchy-Schwarz, Fubini, Plancherel, a straightforward Hardy inequality, and a finite-in-
time energy inequality yields

Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

jII j .
Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

ˇ̌̌̌
ˇZ 1rC .r � rC/

1=2
ˇ̌
��1H.r/

ˇ̌
dr

ˇ̌̌̌
ˇ
2

(133)

.
Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

Z 1
rC

.r � rC/
ˇ̌
��1H.r/

ˇ̌2
dr

.
Z 1
�1

Z 1
rC

Z
S2
jF j2 .r � rC/ sin � dt dr d� d�

.
Z
†�
0

JV� Œ �n
�

†�
0
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For every  > 0, the same direct application of Cauchy-Schwarz, Plancherel, a straight-
forward Hardy inequality, and a finite in time energy inequality to the term I will only give
(134)Z 1
�1

X
f.m;`/W.!;m;`/2F.�/

]
g

jI j � B./

Z
†�
0
\ŒrC;rCC10M�

.r � rC/
1�

ˇ̌
QZ� 

ˇ̌2
C B

Z
†�
0

JV� Œ �n
�

†�
0

:

Unfortunately, the first term on the right hand side is (barely) not controlled by
R
†�
0

JV� Œ �n
�

†�
0

.

We control the term I as follows (we will not lose anything by allowing the sum inm and `
to be over all of Z � Z�jmj):Z 1

�1

X
m`

jI j d! D

Z 1
�1

X
m`

ˇ̌̌̌Z �

0

Z 2�

0

Z 1
�1

Z 1
�1

e�i.!�¨Cm/r
�

ei!te�im�Sm`.�; a!/

��2

.r2 C a2/3=2
F sin � d� d� dt dr�

ˇ̌̌̌2
d!

�

Z �

0

Z 1
�1

X
m

ˇ̌̌̌Z 1
�1

Z 1
1

Z 2�

0

e�i!.r
��t/eim.¨Cr

���/(135)

��2

.r2 C a2/3=2
F d� dt dr�

ˇ̌̌̌2
sin � d! d�:

For each fixed m we have used the orthogonality of the Sm` in the last inequality.

Now we introduce the variables Qv
:
D t C r� and Qu

:
D t � r� and keep in mind that F is

only supported in a compact range of Qv. Then (135) becomes

Z �

0

X
m

Z 1
�1

ˇ̌̌̌Z 1
�1

Z 1
1

Z 2�

0

ei! Queim.¨C
Qv�Qu
2 ��/

��2

.r2 C a2/3=2
F d� d Qud Qv

ˇ̌̌̌2
sin � d! d�

(136)

� B

Z �

0

Z 1
�1

X
m

Z 1
�1

ˇ̌̌̌Z 1
�1

Z 2�

0

ei! Queim.¨C
Qv�Qu
2 ��/

��2

.r2 C a2/3=2
F d� d Qu

ˇ̌̌̌2
sin � d! d Qv d�:

D .2�/B

Z �

0

Z 1
�1

Z 1
�1

X
m

ˇ̌̌̌Z 2�

0

eim.¨C
Qv�Qu
2 ��/

��2

.r2 C a2/3=2
F d�

ˇ̌̌̌2
sin � d Qud Qv d�

D .2�/B

Z �

0

Z 1
�1

Z 1
�1

X
m

ˇ̌̌̌Z 2�

0

e�im�
��2

.r2 C a2/3=2
F d�

ˇ̌̌̌2
sin � d Qud Qv d�

D .2�/2B

Z 1
�1

Z 1
�1

Z
S2

ˇ̌̌̌
��2

.r2 C a2/3=2
F

ˇ̌̌̌2
sin � d Qud Qv d� d�

� B

Z
†�
0

JV� Œ �n
�

†�
0

:

We have used Plancherel in the ! variable and the orthogonality of the eim� . In the
last line we used finite in time energy estimates and the Hardy inequality

R1
rC
f 2 dr �

B
R1
rC
.r � rC/

2.@rf /
2 dr , which holds for smooth functions f which vanish for large r .

Putting together (130), (133), (135) and (136), we have indeed obtained (126). The theorem
is thus proven.
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8. The forward maps

We now turn to our scattering theory proper.

The first order of business is to carefully set up the relevant spaces described in Section 2.1.4
of the introduction. This will be accomplished in Section 8.1 below.

We will then define in Section 8.2 the various forward maps FC and infer their bound-
edness. The boundedness of the map with domain EN

†�
0

(Theorem 8.2.2) is independent of

Section 7. This will give Theorem 1 of Section 2.3.1.

The boundedness of the degenerate-energy theory maps with domain EV
V†

and EV
†

(Theo-

rems 8.2.3 and 8.2.4, respectively) indeed requires the statement of Theorem 7.1 just proven.
This will give Theorem 3 of Section 2.3.3.

8.1. Function spaces

In this section we will define the function spaces for which we will formulate our scattering
theory.

8.1.1. Initial data on †�0 , V† and †. – Let us denote by 2C1cp.†�0/, 2C1cp. V†/, 2C1cp.†/ the

vector space of smooth compactly supported pairs of functions .§;§0/ defined on †�0 , V†,
†, respectively. We will complete these vector spaces with respect to appropriate norms to
define the Hilbert spaces of our scattering theory.

We start with the non-degenerate N -energy space. We shall only in fact consider this for
initial data on †�0 .

D 8.1.1. – For .§;§0/ 2 2C1cp.†�0/ we setˇ̌ˇ̌
.§;§0/

ˇ̌ˇ̌
EN
†�
0

:
D

sZ
†�
0

JN� Œ‰�n
�

†�
0

;

where ‰ is any extension of § to R such that n†�
0
‰ D §0.

The above expression gives a norm on the vector space 2C1cp.†�0/, and we define the space

.EN
†�
0
; k � kEN

†�
0

/

to be its completion.

Next, we define the degenerate V -energy spaces along †�0 , V†, and †, respectively.

D 8.1.2. – For .§;§0/ 2 2C1cp.†�0/, 2C1cp. V†/, and 2C1cp.†/, respectively, we set

ˇ̌ˇ̌
.§;§0/

ˇ̌ˇ̌
EV
†�
0

:
D

sZ
†�
0

JV� Œ‰�n
�

†�
0

;
ˇ̌ˇ̌
.§;§0/

ˇ̌ˇ̌
EV
V†

:
D

sZ
V†

JV� Œ‰�n
�

V†
;

ˇ̌ˇ̌
.§;§0/

ˇ̌ˇ̌
EV
†

:
D

sZ
†

JV� Œ‰�n
�

†
;

where ‰ is any extension of § to D such that n†�
0
‰ D §0, n

V†
‰ D 0, n†‰ D 0 respectively.
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The above expression gives norms on the vector spaces 2C1cp.†�0/, 2C1cp. V†/, and 2C1cp.†/,
respectively, and we define the spaces

.EV
†�
0
; k � kEV

†�
0

/; .EV
V†
; k � kEV

V†

/; .EV
†
; k � kEV

†

/;

to be their respective completions.

R 8.1.1. – Note that the energy density is pointwise degenerate because as r ! rC
the vector field V becomes null. An explicit calculation gives

JV� Œ Q§�n
�

†�
0

�
ˇ̌
@t� Q§

ˇ̌2
C .r � rC/

ˇ̌
Z� Q§

ˇ̌2
C
ˇ̌
r= Q§

ˇ̌2
as r ! rC:

This does not however affect the positive definitivity of the above norms, which moreover are
easily seen to arise from a positive definite inner product. Thus, EN

†�
0

, EV
†�
0

, EV
V†

, EV† are all

in fact Hilbert spaces. Note moreover that both EN
†�
0

and EV
†�
0

may be identified with subsets

of L2loc.†
�
0/ � L

2
loc.†

�
0/ and, after this identification is made, EN

†�
0

is a proper subset of EV
†�
0

.

Finally, we note that one may easily check that a sufficient condition for a pair of smooth func-
tions .§;§0/ to lie in EV

V†
is that k.§;§0/kEV

V†

<1 and limr!rC.§;§
0/ D limr!1.§;§

0/ D 0.

8.1.2. Scattering data along HC�0, HC and HC. – We now carry out similar constructions

for data alongHC�0,HC andHC. Let us denote by C1cp.H
C
�0/, C1cp.HC/, C1cp.HC/ the vector

space of smooth compactly supported functions § defined on HC�0, HC, HC, respectively.
We start with the case of finite non-degenerate energy data along HC�0.

D 8.1.3. – For § 2 C1cp.H
C
�0/ we set

jj§jjEN
HC
�0

:
D

sZ
HC
�0

JN� Œ§�n
�

HC :

The above expression gives a norm on the vector space C1cp.H
C
�0/, and we define the space

.EN
HC
�0

; k � kEN
HC
�0

/

to be its completion.

Next, we define the K-energy spaces along HC�0, HC, and HC, respectively.

D 8.1.4. – For § 2 C1cp.H
C
�0/, C1cp.HC/, and C1cp.HC/, respectively, we set

jj§jjEK
HC
�0

:
D

sZ
HC�′

JK� Œ§�n
�

HC
�0

; jj§jjEK
HC

:
D

sZ
HC

JK� Œ§�n
�

HC ;

jj§jjEK
HC

:
D

sZ
HC

JK� Œ§�n
�

†
:

The above expression gives norms on the vector spaces C1cp.H
C
�0/, C1cp.HC/, and C1cp.HC/,

respectively, and we define the spaces

.EK
HC
�0

; k � kEK
HC
�0

/; .EKHC ; k � kEK
HC
/; .EK

HC
; k � kEK

HC
/;

4 e SÉRIE – TOME 51 – 2018 – No 2



A SCATTERING THEORY FOR THE WAVE EQUATION ON KERR 445

to be their respective completions.

R 8.1.2. – Note that theK-based energy densities are pointwise degenerate in that
the norms do not control @�� and @�� . An explicit calculation gives

JK� Œ§�n
�

HC � jK j
2 :

Again, this degeneration does not however affect the positive definitivity of the above norms,
which moreover are again easily seen to arise from a positive definite inner product. Thus, EN

HC
�0

,

EK
HC
�0

, EKHC , EK
HC

are all in fact Hilbert spaces. Note moreover that both EN
HC
�0

and EK
HC
�0

may

be identified with subsets of L2loc.HC/ and, after this identification is made, EN
HC
�0

is a proper

subset of EK
HC
�0

.

8.1.3. Scattering data along IC. – Finally, we turn to null infinity. Let us denote by C1cp.IC/
the vector space of smooth compactly supported functions ¥ defined on IC.

The space of finite energy data along IC is then defined as follows.

D 8.1.5. – For ¥ 2 C1cp.IC/ we set

jj¥jjET
IC

:
D

sZ
IC
j@�¥j

2:

The above expression gives a norm on the vector space C1cp.IC/, and we define the space

.ETIC ; k � kET
IC
/

to be its completion.

R 8.1.3. – Note that this energy density is pointwise degenerate in that it does not
control @�¥ and @�¥. As before, this does not however affect the positive definitivity of the above
norms, which moreover are easily seen to arise from a positive definite inner product. Thus, ETIC is
in fact a Hilbert space.

8.2. Definition and boundedness of the forward maps

In this section we will define the various forward maps from Cauchy data to scattering
data and infer their boundedness. However, we first need the following corollary of Theo-
rems 3.7.2 and 4.2.1.

C 8.2.1. – For all solutions to (2) onR�0 arising from initial data in 2C1cp.†�0/,
we have that the radiation fields to HC�0 and IC lie in the spaces EN

HC
�0

and ETIC respectively.

Proof. – Given Theorems 3.7.1 and 4.2.1, the only statement we need to check is that the
radiation fields lie in the closure of compactly supported smooth functions.

In order to prove this, we start by giving a (standard) argument which upgrades
Theorem 3.7.2 to the statement that

(137) lim
s!1

Z
†�s\fr2ŒrC;R�g

JN� Œ �n
�

†�s
D 0 8R > rC:
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First we observe that the fundamental theorem of calculus and Theorem 3.7.2 immedi-
ately imply the following Lipschitz property:

(138)

ˇ̌̌̌
ˇZ†�s2\fr2ŒrC;R�g JN� Œ �n

�

†�s2
�

Z
†�s1\fr2ŒrC;R�g

JN� Œ �n
�

†�s1

ˇ̌̌̌
ˇ � B. / js2 � s1j :

Let � > 0. Using (138) we may obtain

(139)
Z
†�s\fr2ŒrC;R�g

JN� Œ �n
�

†�s
� B. /� C inf

s02Œs��;sC��

Z
†�
s0
\fr2ŒrC;R�g

JN� Œ �n
�

†�
s0
:

Of course, Theorem 3.7.2 implies that

lim
s!1

inf
s02Œs��;sC��

Z
†�
s0
\fr2ŒrC;R�g

JN� Œ �n
�

†�
s0
D 0:

Thus (139) implies that

lim sup
s!1

Z
†�s\fr2ŒrC;R�g

JN� Œ �n
�

†�s
� B. /�:

Since � was arbitrary, (137) follows.

Now, using Theorem 3.7.2 we immediately obtain higher order versions of (137). Sobolev
inequalities then imply that

(140) lim
s!1

sup
†�s\fr2ŒrC;R�g

j j D 0:

In particular, we may conclude that the radiation field along the horizon HC lies in the
closure of compactly supported functions.

For the radiation field along null infinity, we recall that in the proof of Proposition 6.8.1,
we proved that @�'jrDr0 converges as r0 ! 1 to the @� derivative of the radiation field
in L2R��0�S2

for some sufficiently negative �0. For each r0, (140) implies that 'jrDr0 lies in

the closure of smooth compactly supported functions; completeness thus implies that the
radiation field along null infinity also lies in this closure.

Similarly, we have the following two corollaries.

C 8.2.2. – For all solutions  to (2) on R arising from initial data in 2C1cp. V†/,
we have that the radiation fields to HC and IC lie in the spaces EVHC and ETIC respectively.

Proof. – It follows immediately from a K energy estimate near the bifurcate sphere that
the radiation field of  along HC vanishes for sufficiently negative t�. Since a finite-in-time
energy estimate implies that . j†�

0
; n†�

0
 j†�

0
/ 2 2C1cp.†�0/, the rest of the proof may be

concluded with an appeal to Corollary 8.2.1.

C 8.2.3. – For all solutions  to (2) on R arising from initial data in 2C1cp.†/,
we have that the radiation fields to HC and IC lie in the spaces EV

HC
and ETIC respectively.

Proof. – The proof is the same as the proof of Corollary 8.2.2.

The above three corollaries allow us to make the following definition.
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D 8.2.1. – We define the “forward maps”

FC W
2C1cp.†�0/! EN

HC
�0

˚ ETIC ; FC W
2C1cp. V†/! EKHC ˚ E

T
IC ;

FC W
2C1cp.†/! EK

HC
˚ ETIC ;

to be the maps

(141) .§j
†�
0
; V†; or †

; §0j
†�
0
; V†; or †

/ 7!  

7! .§jHC
�0
;HC; or HC

:
D  jHC

�0
;HC; or HC ; ¥jIC

:
D r jIC/

which take smooth initial data in 2C1cp.†�0/, 2C1cp. V†/ or 2C1cp.†/, solve the wave equation to the
future and then compute the radiation fields along HC�0, HC or HC, respectively, and IC.

Theorem 4.2.1 and (46) now imply

T 8.2.1. – The forward map FC uniquely extends by density to a bounded map

FC W EN†�
0
! EN

HC
�0

˚ ETIC :

This gives Theorem 1 of Section 2.3.1.

Similarly, Theorem 7.1 implies the following theorem.

T 8.2.2. – The forward map FC uniquely extends by density to a bounded map

FC W EV†�
0
! EK

HC
�0

˚ ETIC :

Lastly, Corollaries 7.1, 8.2.2 and 8.2.3 now imply the following two theorems.

T 8.2.3. – The forward map FC uniquely extends by density to a bounded map

FC W EV
V†
! EKHC ˚ E

T
IC :

T 8.2.4. – The forward map FC uniquely extends by density to a bounded map

FC W EV† ! EK
HC
˚ ETIC :

We have obtained thus Theorem 3 of the Section 2.3.3.
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9. The backwards maps and the scattering matrix

This section represents the heart of the paper. We will here construct bounded maps

(142) B� W EKHC
�0

˚ETIC ! EV
†�
0
; B� W EKHC˚E

T
IC ! EV

V†
; B� W EKHC˚E

T
IC ! EV

†
;

which will invert the maps FC from Theorem 8.2.2, 8.2.3 and 8.2.4 and then we shall
construct the scattering maps

(143) S W EVH� ˚ ETI� ! EVHC ˚ E
T
IC ; S W EVH� ˚ E

T
I� ! EV

HC
˚ ETIC :

It turns out that for technical reasons, it is easiest to first construct the middle map of (142)
and show that it is a two-sided inverse of the corresponding forward map on EV

V†
. This will be

the content of Section 9.1 where the main result is stated as Theorem 9.1.1. The remaining
two backwards maps to†�0 and†will then be easily constructed in Sections 9.2 and 9.3, and
these will be shown in Theorems 9.2.1 and 9.3.1 to be two-sided inverses of the corresponding
maps FC. The above three theorems will give Theorem 4 of Section 2.3.4.

The scattering maps (143) and their boundedness will be deduced as Theorem 9.5.2 in
Section 9.5 after introducing the past-analogs F� and BC and inferring their boundedness
(Theorem 9.5.1). This will give Theorem 5 of Section 2.3.5. We shall also represent S in the
frequency domain by Theorem 9.5.3, giving the relationship between the fixed-frequency and
physical space theories. This will imply in particular Theorem 12 of Section 2.4.2.

Finally, this section contains two separate “asides,” Sections 9.4 and 9.6, either of which
can be skipped, but both of which could have interest independent of the rest of the paper. In
Section 9.4, we will use the maps (142) to complete the theory of boundedness and integrated
decay for the degenerate V -energy by giving the proof of Theorem 7.2 from Section 7.2. In
Section 9.6, we will give an alternative, self-contained discussion of the Schwarzschild a D 0
case using exclusively physical-space (i.e., “time-dependent”) methods.

9.1. The backwards map to V†

We begin by constructing the map B� W EKHC ˚ E
T
IC ! EV

V†
.

9.1.1. A frequency-space definition of B�. – First, we define what will turn out to be essen-
tially the Fourier transform of our backwards map. We begin by recalling the coefficients
AI˙ , AH˙ and the WronskianW from Definitions 5.3.1 and 5.3.3, as well as Theorem 5.3.1
which states thatW never vanishes.

D 9.1.1. – For all smooth functions aIC.!;m; `/ and aH�.!;m; `/ which are
only supported on a compact set of .!;m; `/, for all .!;m; `/ with ! ¤ 0 and ! ¤ ¨Cm, we
define

OB� .aHC ; aIC/ j.r;!;m;`/
:
D

�
aICW

�1.2i!/
�
Uhor C

�
aHCW

�1.2i.! � ¨Cm//
�
Uinf:

The next proposition explains the definition of OB�.
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P 9.1.1. – For ! ¤ 0 and ! ¤ ¨Cm, OB�.aHC ; aIC/ is the unique solution
u to the radial o.d.e. (61) with vanishing right hand side H D 0 such that there exist complex
numbers ˛.!;m; `/ and ˇ.!;m; `/ satisfying

u D aHCUhor C ˛.!;m; `/Uhor;(144)

u D aICUinf C ˇ.!;m; `/Uinf:(145)

Proof. – We start with uniqueness. Suppose that we have two solutions u and Qu to the
radial o.d.e. (61) with a vanishing right hand side H such that

u D aHCUhor C ˛.!;m; `/Uhor; Qu D aHCUhor C Q̨ .!;m; `/Uhor;

u D aICUinf C ˇ.!;m; `/Uinf; Qu D aICUinf C
Q̌.!;m; `/Uinf:

Then, for each .!;m; `/ with ! ¤ 0 and ! ¤ ¨Cm, u � Qu would be a solution to the
radial o.d.e. (61) with a vanishing right hand side such that

u � Qu � ei!r
�

as r !1;

u � Qu � e�i.!�¨Cm/r
�

as r ! rC:

These asymptotic conditions imply that u � Qu corresponds to a “mode solution” (see
Definition 1.1 of [67]), and Theorem 1.6 of [67] proves that there are no non-zero mode
solutions.

To see that OB� verifies (144) and (145), it suffices to recall the relations

Uhor D AICUinf C .2i!/�1WUinf;

Uinf D AHCUhor C .2i.! � ¨Cm//�1WUhor:

We now introduce a useful function space.

D 9.1.2. – Let LC1cp denote the set of functions f W R � S2 ! C such that

Of .!;m; `/
:
D

1
p
2�

Z 1
�1

ei!te�im�Sm` .a!; �/ f sin � dt d� d�

is smooth in ! and vanishes for .!;m; `/ outside a compact set of R � Z � Z�jmj.

Next, observing that LC1cp may be naturally identified as a subset of either L2loc

�
HC

�
or

L2loc

�
IC
�
, we let LC1cp.HC/ be the result of identifying LC1cp with a subset of EKHC , and let

LC1cp.IC/ be the result of identifying LC1cp with a subset of ETHC .

R 9.1.1. – One may easily check that LC1cp.HC/ is dense in EKHC and that LC1cp.IC/ is
dense in ETIC .

We now define the map B� on the space LC1cp.HC/˚ LC1cp.IC/.
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D 9.1.3. – For all .§; ¥/ 2 LC1cp.HC/ ˚ LC1cp.IC/, we define the function

B� .§; ¥/ W VR! C by

B� .§; ¥/ j.t;r;�;�/
:
D

1

.r2 C a2/1=2
p
2�

Z 1
�1

X
m`

e�it!eim�Sm` .a!; �/ OB�
�
O§; O¥

�
j.!;r;m;`/ d!:

Note that OB�
�
O§; O¥

�
vanishes for all .!;m; `/ outside a compact set; it immediately follows

that B� .§; ¥/ is a smooth function of .t; r; �; �/.

9.1.2. Boundedness. – The following proposition will be used to show that the map .§; ¥/ 7!�
B�.§; ¥/j V†; n V†B�.§; ¥/j V†

�
is bounded.

P 9.1.2. – For all .§; ¥/ 2 LC1cp.HC/˚ LC1cp.IC/, we haveZ
V†

JV� ŒB�.§; ¥/� n
�

V†
� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�:

Proof. – Set

u
:
D OB�

�
O§; O¥

�
j.!;r;m;`/;

 
:
D B� .§; ¥/ j.t;r;�;�/:

First of all, we observe that  W VR ! C is a smooth solution to �g D 0, is easily
seen to be sufficiently integrable in the sense of Definition 5.1.1, and that applying Carter’s
separation to  yields u.

Keeping the explicit formula for OB� in mind, applying Theorem 6.2.1 to u implies that
for each �1 < R�� < R

�
C <1 we have

.! � ¨Cm/
2
jaH� j

2
C !2jaI� j

2
C

Z R�
C

R��

hˇ̌
u0
ˇ̌2
C

��
1 � rtrapr

�1
�2
.!2 Cƒ/C 1

�
juj2

i
dr�

(146)

� B.R��; R
�
C/
h
.! � ¨Cm/

2
j O§j2 C !2j O¥j2

i
:

The rest of the proof will borrow some ideas from Section 13 of [30]. In order to work
around the presence of the

�
1 � rtrapr

�1
�2

term in (146), it will be useful to decompose  
in pieces, each of which experience trapping near a specific value of r . We first define the
following ranges of .!;m; `/:

D 9.1.4. – Let � > 0 be a sufficiently small parameter to be fixed later. We define

F0
:
D
˚
.!;m; `/ W rtrap D 0

	
;

Fi
:
D
˚
.!;m; `/ W rtrap 2 Œ3M � s

�
C � .i � 1/ ; 3M � s� C �i/

	
;

8i D 1; : : : ; d��1
�
sC C s�

�
e:

Observe that each value of .!;m; `/ lies in exactly one of the Fi .
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D 9.1.5. – We define  i by a phase space multiplication of  by 1Fi
, the

indicator function of Fi :

 i
:
D

1

.r2 C a2/1=2
p
2�

Z 1
�1

X
m`

e�i!t1Fi
Sm`.a!; cos �/eim� OB�

�
O§; O¥

�
d!:

Note that each i is a smooth function from VR to C, satisfies�g i D 0 and is sufficiently
integrable in the sense of Definition 5.1.1.

Next, keeping in mind that each O i is compactly supported in .!;m; `/, Plancherel imme-
diately implies that for each rC < r0 < r1 <1 we have

(147)
Z 1
�1

Z
ftDsg\fr2Œr0;r1�g

JV� Œ i �n
�

ftDsg
ds <1:

In particular, for each rC < r0 < r1 < 1 and i D 0; : : : ; d��1
�
sC C s�

�
e there exist a

constant Ci .r0; r1/ and a dyadic sequence fs.i/n g1nD1 such that s.i/n !1 as n!1 and

(148)
Z
ftDs

.i/
n g\fr2Œr0;r1�g

JN� Œ i � n
�

ftDs
.i/
n g
�
Ci .r0; r1/

s
.i/
n

:

Next, taking � from Definition 9.1.4 sufficiently small (and then fixing �), for each ri we
appeal to Corollary 3.4.1 and construct a T -invariant timelike vector field Vi on VR which is
Killing in the region

r 2 Œ3M � s� C .i � 1/ �; 3M � s� C i�/ ;

and is equal to V for r sufficiently close to rC and r sufficiently large.

Finally, we are ready for our main estimate. For each rC < r0 < r1 < 1 such that
r0�rC is sufficiently small and r1 is sufficiently large, we apply the energy identity associated

to Vi in between the hypersurfaces V†\ fr 2 Œr0; r1�g, fr D r0g \ JC
�
V†
�
\ J�

�n
t D s

.i/
n

o�
,

fr D r1g \ J
C

�
V†
�
\ J�

�n
t D s

.i/
n

o�
, and ft D s.i/n g \ fr 2 Œr0; r1�g. We obtain

Z
V†\fr2Œr0;r1�g

JVi� Œ i � n
�

V†

(149)

� B

Z s
.i/
n

0

Z
ftDsg\ supp.KVi /

JVi� Œ i �n
�

ftDsg
ds C

Z
ftDs

.i/
n g\fr2Œr0;r1�g

JVi� Œ i � n
�

ftDs
.i/
n g

C B

�Z
frDr0g

C

Z
frDr1g

� ˇ̌̌
V
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�;

where we have used the calculation (123) and the fact thatˇ̌̌
KVi

ˇ̌̌
� BJVi ;

where we recall that KVi D .Vi /�˛ˇT˛ˇ and .Vi /�˛ˇ denotes the deformation tensor of Vi .
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Taking n!1 and appealing to (148) then yields

Z
V†\fr2Œr0;r1�g

JVi� Œ i � n
�

V†

(150)

� B

Z 1
0

Z
ftDsg\ supp.KVi /

JVi� Œ i �n
�

ftDsg
ds

C B

�Z
frDr0g

C

Z
frDr1g

� ˇ̌̌
V
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�;

Next, since
�
1 � rtrapr

�1
�2 ˇ̌̌
O i

ˇ̌̌2
�

ˇ̌̌
O i

ˇ̌̌2
for values of r in the support of K.Vi /, we observe

that applying Plancherel and (146) yields

Z 1
0

Z
ftDsg\ supp.KVi /

JVi� Œ i �n
�

ftDsg
ds

(151)

�

Z 1
�1

Z
ftDsg\ supp.KVi /

ˇ̌̌
JVi� Œ i �n

�

ftDsg

ˇ̌̌
ds

� B

Z 1
�1

X
.!;m;`/2Fi

Z r�max

r�min

hˇ̌
u0
ˇ̌2
C

��
1 � rtrapr

�1
�2
.!2 Cƒ/C 1

�
juj2

i
dr� d!

� B

Z 1
�1

X
m`

h
.! � ¨Cm/

2
j O§j2 C !2j O¥j2

i
d!

� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�:

We conclude thatZ
V†

JVi� Œ i � n
�

V†
� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�(152)

C B lim inf
r0!rC

lim inf
r1!1

�Z
frDr0g

C

Z
frDr1g

�
ˇ̌̌
V
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�:

It immediately follows from Proposition 5.2.3, the compact support of O i in .!;m; `/,
and (146) that

lim inf
r0!rC

Z
rDr0

ˇ̌̌
V
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�

(153)

D lim inf
r0!rC

Z
rDr0

ˇ̌̌
K
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�

� lim inf
r0!rC

B

Z 1
�1

X
m`

ˇ̌
.! � ¨Cm/uu

0
ˇ̌
d!
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� B

Z 1
�1

X
m`

.! � ¨Cm/
2
h
jaHC j

2
C jaH� j

2
i
d!

� B

Z 1
�1

X
m`

h
.! � ¨Cm/

2
j O§j2 C !2j O¥j2

i
d!

� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�:

R 9.1.2. – Note that the passing of the limit through the integral and sum that
implicitly occurs between lines 3 and 4 is justified by Proposition 5.2.3 and the compact support
of O i in .!;m; `/. Moreover, we emphasize that the compact support of O i is only used
qualitatively in this fashion; none of the constants depend on the size of the support of O i .

Similarly, it immediately follows from Proposition 6.7.1, Proposition 6.6.1, the compact
support of O i , and (146) that

lim inf
r1!1

Z
rDr1

ˇ̌̌
V
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�

(154)

D lim inf
r1!1

Z
rDr1

ˇ̌̌
T
��
r2 C a2

�1=2
 i

�
@r�

��
r2 C a2

�1=2
 i

�ˇ̌̌
sin � dt d� d�

� lim inf
r1!1

B

Z 1
�1

X
m`

ˇ̌
!uu0

ˇ̌
� B

Z 1
�1

X
m`

!2
h
jaIC j

2
C jaI� j

2
i
d!

� B

Z 1
�1

X
m`

h
.! � ¨Cm/

2
j O§j2 C !2j O¥j2

i
d!

� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�:

Combining (152), (153), and (154) yields

(155)
Z
V†

JVi� Œ i � n
�

V†
� B

Z 1
�1

Z
S2

hˇ̌�
@� C ¨C@�

�
§
ˇ̌2
C j@�¥j

2
i

sin � d� d� d�:

We conclude the proof with the (trivial) observation thatZ
V†

JV� Œ � n
�

V†
� B

d��1.sCCs�/eX
iD1

Z
ftD0g

JVi� Œ i � n
�

ftD0g
:

The following proposition will be used to show that the range of
�
B�j V†; n V†B�j V†

�
lies

in EV
V†

.
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P 9.1.3. – For all .§; ¥/ 2 LC1cp.HC/˚ LC1cp.IC/, we have

lim
r!rC

sup
S2
jB� .§; ¥/ jtD0j D 0;

lim
r!1

sup
S2
jB� .§; ¥/ jtD0j D 0:

Proof. – We start with the limit as r ! rC. Since OB�
�
O§; O¥

�
is compactly supported

in .!;m; `/, and Uhor andW are smooth for ! 2 R n f0g, one may easily establish that for
every ı > 0

min .j!j ; j! � ¨Cmj/ � ı) OB�
�
O§; O¥

�
D aHCe

�i.!�¨Cm/r�CaH�e
i.!�¨Cm/r�CError;

where

jErrorj � B.ı; §; ¥/.r � rC/:

Let�.x/ be a cutoff function which is identically 1 in a neighborhood of 0 and identically 0
for jxj > 1. For every ı > 0 we have

lim sup
r!rC

ˇ̌̌�
r2 C a2

�1=2p
2�B�j.0;r;�;�/

ˇ̌̌(156)

D lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1X

m`

eim�Sm` .a!; �/ OB� d!

ˇ̌̌̌
ˇ :

� lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1X

m`

�
�
!ı�1

�
�
�
.! � ¨Cm/ı

�1
�
eim�Sm` .a!; �/ OB� d!

ˇ̌̌̌
ˇ

C lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1 �1 � � �!ı�1�� �1 � � �.! � ¨Cm/ı�1��X

m`

eim�Sm` .a!; �/ OB� d!

ˇ̌̌̌
ˇ :

We estimate the first term simply with Cauchy-Schwarz and (146):

lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1X

m`

�
�
!ı�1

�
�
�
.! � ¨Cm/ı

�1
�
eim�Sm` .a!; �/ OB� d!

ˇ̌̌̌
ˇ(157)

� B .§; ¥/ lim sup
r!rC

ı1=2

vuutZ 1
�1

X
m`

ˇ̌̌
OB�

ˇ̌̌2
d!

� B .§; ¥/ ı1=2

vuutZ 1
�1

X
m`

h
jaHC j

2
C jaH� j

2
i

� B .§; ¥/ ı1=2:
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Set Q�ı
:
D
�
1 � �

�
!ı�1

�� �
1 � �

�
.! � ¨Cm/ı

�1
��

. For the second term we use the oscil-
lation in r�:

lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1X

m`

eim� Q�ıSm` .a!; �/ OB� d!

ˇ̌̌̌
ˇ

(158)

� B .§; ¥; ı/ lim sup
r!rC

ˇ̌̌̌
ˇZ 1�1X

m`

Q�ıe
im�Sm`

�
aHCe

�i.!�¨Cm/r� C aH�e
i.!�¨Cm/r�

�
d!

ˇ̌̌̌
ˇ

� B .§; ¥; ı/ lim sup
r!rC

ı�1 jr�j
�1

D 0:

In the second to last line, the decay in r� came from an integration by parts in !.

Since ı may be taken arbitrary small, combining (156), (157), and (158) concludes the
proof for the limit when r ! rC. Moreover, it is easy to see that essentially the same proof
works for the limit as r !1.

The previous two propositions and Remark 9.1.1 immediately imply the following corol-
lary.

C 9.1.1. – The map
�
B�j V†; n V†B�j V†

�
, which we shall, by a mild abuse of

notation, now denote by B�, extends by density to a bounded map

B� W EKHC ˚ E
T
IC ! EV

V†
:

Proof. – The key point is that a straightforward calculation (remember that V vanishes at

the bifurcate sphere!) shows that lim
r!rC

�
B�j V†; n V†B�j V†

�
D 0 and lim

r!1

�
B�j V†; n V†B�j V†

�
D 0

imply that
�
B�j V†; n V†B�j V†

�
lies in EV

V†
.

9.1.3. Inverting the forward map. – Finally, we are ready for the key result of the section.

T 9.1.1. – Let B� and FC be as in Corollary 9.1.1 and Theorem 8.2.3. Then B�
and FC are both bounded isomorphisms and satisfy B� ıFC D Id and FC ıB� D Id.

Proof. – Of course, it suffices to prove the assertions B� ıFC D Id and FC ıB� D Id.

We start with establishing FC ıB� D Id. By density (Remark 9.1.1), it suffices to check
that

.FC ıB�/ j LC1cp.HC/˚ LC1cp.IC/ D Id:

Let .§; ¥/ 2 LC1cp.HC/ ˚ LC1cp.IC/. Proposition 9.1.1 implies that there exist functions
˛.!;m; `/ and ˇ.!;m; `/ such that

OB�
�
O§; O¥

�
D O§Uhor C ˛Uhor;

OB�
�
O§; O¥

�
D O¥Uinf C ˇUinf:
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Now, using that .B�.§; ¥/j V†; n V†B�.§; ¥/j V†/ lies EV
V†

, and Theorem 7.1, one may easily

check that the same arguments used in the proofs of Propositions 6.8.1 and 6.8.2 immedi-
ately imply

.FC ıB�/ .§; ¥/ D .§; ¥/:

We now turn to establishing B�ıFC D Id. By density, it suffices to study solutions arising
from initial data .§;§0/ 2 2C1cp. V†/. Let aHC and aIC denote the microlocal radiation fields.
Then Propositions 6.8.1 and 6.8.2 yield

FC
�
§;§0

�
D

 
1

p
4M�rC

Z 1
�1

X
m`

e�it
�!eim�Sm`aHC d!;

1
p
2�

Z 1
�1

X
m`

e�i�!eim�Sm`aIC d!

!
:

It immediately follows from Proposition 9.1.1 that .B� ıFC/ .§;§0/ D .§;§0/.

9.1.4. A physical-space characterization of B�. – Before we close the section it will be
conceptually clarifying and technically useful to observe that the backwards map may also
be characterized in physical space.

P 9.1.4. – Let .§HC ; ¥IC/ 2 C1cp.HC/ ˚ C1cp.IC/. Pick �0 < 1 such that
§HC is compactly supported in HC.�1; �0/ and ¥IC is compactly supported in IC�0 , and then
letˆIC be any smooth extension of¥IC to the manifold with boundary QR (see Definition 4.2.1)
such that ˆIC vanishes in the neighborhood of S�0 .

Next, using Proposition 3.6.4, for each s > 0 sufficiently large we may uniquely define a
smooth solution  s to (2) in the past of HC��0 [

�
S�0 \ fr � r.�0; s/g

�
[ .ft D sg \ fr � r.�0; s/g/

(see the diagram (43)) by requiring

 sjHC��0
D §HC ;

. sjS�\fr�r.�;s/g; nS� sjS�\fr�r.�;s/g/ D .0; 0/;

r sjftDsg\fr�r.�;s/g D ˆIC jftDsg\fr�r.�;s/g:

Let fsig1iD1 be a sequence satisfying si ! 1 as i ! 1. It follows that  si jJC. V†/ and
any finite number of derivatives form a bounded equicontinuous sequence. In particular, we may
extract a smooth limit which will be a solution to (2) in the regionD�

�
S�0

�
\JC. V†/. Finally,

we have

(159) B� .§HC ; ¥IC/ D . j V†; n V† V†/:

Proof. – The boundedness and equicontinuity of any finite number of derivatives of f si g
follows immediately from (higher order) JV energy estimates (it may be useful for the reader
to note that the intersection of D�

�
S�0

�
\ JC. V†/ and the support of .V /� is compact and

contained in
S
s2Œ0;�0�

Ss).

Next, using Theorem 9.1.1, we note that (159) would follow from

(160) FC. j V†; n V† V†/ D .§HC ; ¥IC/ :
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Now, the equality FC. j V†; n V† V†/jHC D §HC is a trivial consequence of the definition
of the radiation field and Proposition 3.6.2.

Finally, the equality FC. j V†; n V† V†/jIC D ¥IC follows from Proposition 3.8.1 and a
straightforward modification of the arguments given in the proof of Proposition 4.2.1.

9.2. The backwards map to †�0

In this section we will define the backwards map B� on EK
HC
�0

˚ ETIC .

D 9.2.1. – Let E W C1cp.H
C
�0/! C1cp.HC/ be any map satisfying

1. E .f / jHC
�0

D f .

2.
R
HC JK� ŒE .f /� n

�

HC � B
R
HC
�0

JK� Œf � n
�

HC .

Note that such a map is easily constructed.
Then we define the backwards map

B� W C1cp.H
C
�0/˚ C

1
cp.IC/! EV

†�
0
;

by

(161) B�
�
§HC
�0

; ¥IC
�
:
D

�
B�

�
E
�
§HC
�0

�
; ¥IC

�
j†�
0
; n†�

0
B�

�
E
�
§HC
�0

�
; ¥IC

�
j†�
0

�
:

The reader should keep in mind our standard recycling of the notation concerning the symbol B�.
In particular, B� on the right hand side of (161) is as in Definition 9.1.3.

The next theorem establishes that the backwards map extends to EK
HC
�0

˚ ETIC and inverts

the forward map FC.

T 9.2.1. – The map B� defined above is a bounded map and thus uniquely extends
to a map

B� W EKHC
�0

˚ ETIC ! EV
†�
0
:

Let FC denote the forward map FC W EV†�
0

! EK
HC
˚ ETIC . Then, B� ı FC D Id and

FC ıB� D Id and thus B� and FC are bounded isomorphisms.

R 9.2.1. – Observe that one corollary of Theorem 9.2.1 is that B� does not depend
on the choice of extension E .

Proof. – First of all, we observe that the boundedness of B� and the statement
FC ıB� D Id follow immediately from Theorem 9.1.1, Proposition 3.6.3 and finite in
time energy estimates (cf. the proof of Corollary 7.1).

The equality B� ıFC D Id is a bit more subtle. The key observation is that it suffices to
check this on a dense subset and it pays to expend a little effort in creating a convenient one.
We thus turn to the construction of a useful dense subset. First of all, C1cp.HC/˚C1cp.IC/ is a
dense subset of EKHC˚E

T
IC , and thus Theorem 9.1.1 implies that B�

�
C1cp.HC/˚ C1cp.IC/

�
is

a dense subset of EV
V†

. Now, considering the elements of B�
�
C1cp.HC/˚ C1cp.IC/

�
as Cauchy

data along V†, we may solve the wave equation to the future of V† with Proposition 3.6.2 and
restrict the solutions to†�0 . This defines a subset QC†�

0
of EV

†�
0

. It follows from Proposition 3.6.4
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and finite in time energy estimates (cf. the proof of Corollary 7.1) that QC†�
0

is in fact a dense
subset of EV

†�
0

.

We now turn to proving that B� ı FCj QC
†�
0

D Id. Let  be a solution to (2) in R�0
whose initial data along†�0 lie in QC†�

0
. We then define a solution Q to (2) inR�0 by applying

Proposition 3.6.1 to solve the wave equation with initial data .B� ıFC/
�
 j†�

0
; n†�

0
 j†�

0

�
along †�0 . We need to prove that  � Q D 0. Now, the key advantage to considering initial
data in QC†�

0
is that it immediately follows from Proposition 9.1.4 that  j†�

0
, n†�

0
 , Q j†�

0

and n†�
0

Q j†�
0

are smooth functions and hence that  and Q extend smoothly toHC�0. Since

FC ıB� D Id we conclude in particular that K
�
 � Q 

�
jHC
�0

D 0.

Set  �
:
D K

�
 � Q 

�
. Since the Cauchy data for  � along †�0 vanishes at HC, we may

easily construct a sequence f �i g
1
iD1 of solutions to (2) whose initial data along †�0 are

smooth and compactly supported away from HC \ †�0 and spacelike infinity and which
satisfy

lim
i!1

Z
†�
0

JV�
�
Q � Q i

�
n
�

†�
0

D 0:

Since the  �i are compactly supported away from HC \ †�0 , they may easily be extended
as solutions to (2) to all of R by applying Proposition 3.6.3 with vanishing initial data
alongHC�0. We will also denote the extension by  �i . Since  �i is easily seen to be sufficiently

integrable in the sense of Definition 5.1.1, we may apply Carter’s separation to �i to defineu�i
and the corresponding microlocal fluxes a�

i;HC and a�
i;IC . It follows immediately from the

construction of  �i , Corollary 7.1, Proposition 6.8.1 and Proposition 6.8.2 that

(162) lim
i!1

Z 1
�1

X
m`

�ˇ̌̌
a
�

i;HC

ˇ̌̌2
C

ˇ̌̌
a
�

i;IC

ˇ̌̌2�
D 0:

Proposition 9.1.2 (and an easy density argument) then imply that

lim
i!1

Z
JV� Œ 

�
i �n

�

ftD0g
D 0:

Then, finite in time energy estimates show that  � vanishes. Finally, using also (137) from
the proof of Corollary 8.2.1, we conclude that . � Q /jR�0 vanishes.

9.3. The backwards map to †

With Theorem 9.2.1 proven, we can now revisit scattering to † and prove a version of
Theorem 9.1.1 where EV

V†
is replaced by EV

†
and EKHC is replaced by EK

HC
.

T 9.3.1. – Let FC be the forward map FC W EV
†
! EK

HC
˚ETIC . Then there exists

a backwards map
B� W EKHC ˚ E

T
IC ! EV

†

such that B� is a bounded map, B� ıFC D Id and FC ıB� D Id. Thus B� and FC are
both bounded isomorphisms.
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Proof. – We begin by introducing the notation

HC�0
:
D HC \ J�.†�0/:

Then, we define the function space 3C1cp.H
C
�0 [ †

�
0/ to consist of triples .§

HC
�0

; §†�
0
; §0

†�
0

/

such that §
HC
�0

is a smooth function on HC�0, §†�
0

and §0
†�
0

are smooth functions of

compact support on †�0 and there exists a smooth function Q‰ on D such that Q‰j
HC
�0

D §
HC
�0

,

Q‰j†�
0
D §†�

0
and n†�

0

Q‰j†�
0
D §0j†�

0
.

Proposition 3.6.3 states that to each .§
HC
�0

; §†�
0
; §0

†�
0

/ 2 3C1cp.H
C
�0 [ †

�
0/ there exists a

unique smooth solution  to (2) in J�.†�0/. Restricting these solutions to † thus defines a
map

(163) 3C1cp.H
C
�0 [†

�
0/ 7!

2C1cp.†/:

Conversely, given any element of .§;§0/ 2 2C1cp.†/, Proposition 3.6.2 yields a unique
solution to (2) whose Cauchy data along † are given by .§;§0/. Restricting these solutions
to HC�0 [†�0 defines a map

(164) 2C1cp.†/ 7! 3C1cp.H
C
�0 [†

�
0/:

It immediately follows that the maps (163) and (164) are inverses of each other and hence
that both are bijections.

Next, we let EV
HC
�0
[†�

0

denote the completion of C1cp.H
C
�0 [†

�
0/ under the norm

ˇ̌̌̌ˇ̌̌̌
.§
HC
�0

; §†�
0
; §0

†�
0
/

ˇ̌̌̌ˇ̌̌̌
EV
HC
�0
[†�

0

:
D

sZ
HC
�0

JK� Œ Q‰�n
�

HC C

Z
†�
0

JV� Œ Q‰�n
�

†�
0

;

where Q‰ is the smooth extension mentioned in the definition of the space C1cp.H
C
�0 [ †

�
0/.

Finite in time JV energy estimates and the bijection (164) immediately yield a bounded
isomorphism

(165) EV
†
7! EV

HC
�0
[†�

0

:

We conclude the proof by combining (165) with the easily observed fact that Theorem 9.2.1
implies that forward evolution yields a bounded isomorphism

EV
HC
�0
[†�

0

7! EK
HC
˚ ETIC :

9.4. Aside: Proof of Theorem 7.2

At this point, using the properties of the backwards map B�, we can now complete our
study of boundedness and integrated local energy decay for the degenerate V -energy theory
by giving the proof of Theorem 7.2 of Section 7.2.
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Proof of Theorem 7.2. – Observe that for any s � 0, we could have defined a forward
map F .s/

C W EV
†�s
! EK

HC�s
˚ ETIC which, in the case of smooth compactly supported data,

computes the radiation field of Cauchy data along †�s and, similarly, we could have defined
a backwards map B.s/

� W EK
HC�s
˚ ETIC ! EV

†�s
. Just as before, we would obtain that F .s/

C

and B.s/
� are both bounded (with a constant independent of s) and inverses of each other. In

particular, since F .s/
C . j†�s ; n†�s j†�s / D FC. j†�

0
; n†�

0
 j†�

0
/, we obtainZ

†�s

JV� Œ �n
�

†�s
� B

ˇ̌̌ˇ̌̌
F .s/
C . j†�s ; n†�s j†�s /

ˇ̌̌ˇ̌̌
EK
HC�s˚E

T

IC

(166)

� B
ˇ̌̌ˇ̌̌
FC. j†�

0
; n†�

0
 j†�

0
/
ˇ̌̌ˇ̌̌
EK
HC
�0

˚ET
IC

� B

Z
†�
0

JV� Œ �n
�

†�
0

:

Next, we observe that during the proof of Proposition 9.1.2 an integrated estimate in r is
in fact established. Using this, an easy density argument, a finite in time energy estimate and
an application of Plancherel easily show that for any compact set K � .rC;1/ we haveZ

R�0\fr2Kg

�
�jr= j2 C � jT j2 C

ˇ̌
QZ� 

ˇ̌2
C j j2

�
(167)

� B.K/
ˇ̌̌ˇ̌̌
FC. j†�

0
; n†�

0
 j†�

0
/
ˇ̌̌ˇ̌̌
EK
HC
�0

˚ET
IC

� B.K/

Z
†�
0

JV� Œ �n
�

†�
0

:

In order to finish the proof we need to exchange the restriction fr 2 Kg in (167) for the
appropriate weights in r and r � rC. For r large, the desired estimate is a trivial consequence
of the “large-r estimate” of Proposition 4.6.1 in [30] and the arguments of Section 9.4 in [30].
For r close to the horizon it is possible to apply a degenerate version of the redshift effect [57]
to achieve the desired estimate.

9.5. The scattering matrix S D FC ıBC

For notational convenience, we have so far restricted our attention to scattering data
along HC and IC. However, in view of the discrete isometry (34) of D, all of our theorems
have exact analogs where HC is replaced by H� and IC is replaced by I�. In particular, we
have the following version of Theorems 9.1.1 and 9.3.1.

T 9.5.1. – Forward evolution (towards the past) uniquely extends to the bounded
maps

F� W EV
V†
! EKH� ˚ ETI� ; F� W EV† ! EKH� ˚ E

T
I� :

There exist bounded maps BC

BC W EKH� ˚ ETI� ! EV
V†
; BC W EKH� ˚ E

T
I� ! EV

†
;

such that F� ıBC D Id and BC ıF� D Id.
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Combining Theorems 9.1.1 and 9.5.1 allows us to define the maps between scattering data
along H� [ I� and HC [ IC. We immediately obtain the following theorem.

T 9.5.2. – We define the scattering map (or S -matrix)

S W EKH� ˚ ETI� ! EKHC ˚ E
T
IC ; S W EKH� ˚ E

T
I� ! EK

HC
˚ ETIC ;

by

(168) S
:
D FC ıBC:

The map S is then a bounded isomorphism from EKH� ˚ ETI� to EKHC ˚ E
T
IC and EKH� ˚ E

T
I�

to EK
HC
˚ ETIC

Furthermore, for every .§H� ; ¥I�/ 2 EKH� ˚ ETI� , there exists a unique set of initial data
.§;§0/ 2 EV

V†
such that F� .§;§0/ D .§H� ; ¥H�/ and FC .§;§0/ D S .§H� ; ¥I�/. An

analogous statement holds for .§H� ; ¥I�/ 2 EKH� ˚ E
T
I�

This is the precise statement of Theorem 5 of Section 2.3.5.

Next, we observe that our scattering map S may be given by an explicit formula involving
the reflection and transmission coefficients.

T 9.5.3. – Let S denote the scattering map from Theorem 9.5.2. Then,
for .§H� ; ¥I�/ lying in either domain EKH� ˚ ETI� or EKH� ˚ E

T
I� , we have

(169) S .§H� ; ¥I�/

D

 
1

p
4M�rC

Z 1
�1

X
m`

�
�

�
!

! � ¨C

�
aI�TC aH� QR

�
e�it!eim�Sm` d!;

1
p
2�

Z 1
�1

X
m`

�
�

�! � ¨Cm
!

�
aH� QTC aI�R

�
e�it!eim�Sm` d!

!
:

Here

�i .! � ¨Cm/aH�
:
D

r
MrC

�

Z 1
�1

Z
S2

�
@t C ¨C@�

�
§H�e

it�!e�im�Sm` sin � dt� d� d�;

�i!aI�
:
D

1
p
2�

Z 1
�1

Z
S2
@t¥I�e

it!e�im�Sm` sin � dt d� d�;

and we emphasize that in interpreting the formula (169), one must keep in mind that the
aI˙ .!;m; `/ are only defined as functions such that!aI˙ 2 L

2
!l
2
m`

and that the aH˙ .!;m; `/
are only defined as functions such that .! � ¨Cm/aH˙ 2 L

2
!l
2
m`

.

Proof. – This follows immediately from the construction of S , Propositions 6.8.1
and 6.8.2 and an easy density argument.

In particular, specializing to the case where §H� D 0, this establishes Theorem 12 of
Section 2.4.2.
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R 9.5.1. – We note that one can define the map S by the expression (169) and
prove directly by Theorem 6.2.2 that the map is a bounded isomorphism without relying on
Theorem 9.1.1; in fact, the proof is a good deal easier because one need never establish the
boundedness of the map B�. However, one would still have to prove the decomposition (168) so
as to identify elements of EKH�˚ETI� and EKHC˚E

T
IC as radiation fields of solutions to the wave

equation arising from finite energy Cauchy data.

9.6. Aside: A self-contained physical-space treatment of the Schwarzschild case

In the Schwarzschild case (a D 0) there is no superradiance and it is much easier to
establish that F is invertible using the unitarity property. Furthermore, the proofs may all
be carried out in physical space, i.e., using “time-dependent methods”. In this section we will
give a self-contained treatment of how this can be done in our set-up (cf. the related [59]).

The ease of the Schwarzschild scattering theory is all associated with the following
unitarity property.

P 9.6.1. – Let a D 0, and observe that in this case K D T D V . Then the
forward maps FC of Theorems 8.2.2, 8.2.3 and 8.2.4 are unitary:

(170)
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
HC
�0

C
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
IC
D
ˇ̌ˇ̌�
§;§0

�ˇ̌ˇ̌2
ET
†�
0

;

(171)
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
HC
C
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
IC
D
ˇ̌ˇ̌�
§;§0

�ˇ̌ˇ̌2
ET
V†

;

(172)
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
HC
C
ˇ̌ˇ̌
FC

�
§;§0

�ˇ̌ˇ̌2
ET
IC
D
ˇ̌ˇ̌�
§;§0

�ˇ̌ˇ̌2
ET
†

:

Proof. – We will only prove (170) as the proof of (171) and (172) is exactly the same. By
density it suffices to prove (170) in the case when .§;§0/ 2 2C1cp.†�0/. Let us assume this for
the remainder of the proof. It follows now from Proposition 3.8.1 and Theorem 3.7.2 that we
can find a dyadic sequence f�ig1iD1 such that

lim
i!1

Z
S�i

JT�
�
F
�
§;§0

��
n
�
S�i
D 0:

Next, for each �i a JT energy estimate yieldsZ
HC.0;�i /

JT�
�
FC

�
§;§0

��
n
�

HC C

Z
IC��i

JT�
�
FC

�
§;§0

��
n
�

IC C

Z
S�i

JT�
�
FC

�
§;§0

��
n
�
S�i

D
ˇ̌ˇ̌�
§;§0

�ˇ̌ˇ̌2
ET
†�
0

:

We conclude the proof by taking i !1.

R 9.6.1. – Let us remark that in the Schwarzschild a D 0 case suitable versions of
the statements of Theorems 3.7.1 and 3.7.2 can be obtained without phase space analysis with
respect to either time or angular frequency decompositions. See [27] and [29]. Thus, not only
the construction but also all relavent properties of F are obtained purely with physical space
(i.e., “time-dependent”) methods. Cf. with the Kerr a ¤ 0 case where the construction of F is
still formulated in the time domain but requires the result of Theorem 3.7.1 which is itself based
on frequency-analysis.
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The injectivity of the forward map is an immediate corollary.

C 9.6.1. – Let a D 0. Then the forward map FC is injective.

We now construct the backwards map.

T 9.6.1. – Let a D 0. Then the forward map FC is a unitary isomorphism (with
either domain EV

V†
or EV

†�
0

or EV
†

) with two-sided unitary inverse B� satisfying B� ıFC D Id,
FC ıB� D Id.

Proof. – We consider the case where the domain is EV
V†

, the cases EV
†

or EV
†�
0

are handled

in an analogous fashion.

First of all, using the physical space construction from the proof of Proposition 9.1.4 we
may define the backwards map on a dense set:

B� W C1cp.H
C
�0/˚ C

1
cp.IC/! ET

†�
0
:

Furthermore, the proof of Proposition 9.1.4 shows that .§HC ; ¥IC/ 2 C1cp.H
C
�0/˚ C1cp.IC/

implies

FC .B� .§HC ; ¥IC// D .§HC ; ¥IC/ :

We thus conclude that the forward map FC has a dense image. Since the unitarity of FC
implies that the backwards map B� is bounded on its domain, it follows immediately
that FC is in fact surjective. The rest of theorem follows immediately.

R 9.6.2. – It is instructive to compare the above “time-dependent method”
construction of B� to the stationary-method construction of Definition 9.1.1. Of course,
one could have defined B� on a dense subset in the general Kerr case with Proposition 9.1.4,
but one would still need to have used the representation of Definition 9.1.1 to estimate it so as
to take the completion.

Applying the discrete isometry t 7! �t of Schwarzschild yields the analogs of the above
statements for F� and BC. As before, we then define the scattering map S D FC ıBC.
We immediately obtain the following corollary.

T 9.6.2. – Let a D 0. Then the scattering maps S W ETH� ˚ ETI� 7! ETHC ˚ E
T
IC are

S W ETH� ˚ E
T
I� 7! ET

HC
˚ ETIC unitary isomorphisms.

10. Further applications

We collect here some further applications of our scattering theory.

In Section 10.1, we will construct a physical-space (time-domain) theory of superradiant
reflection. Theorem 10.1.1 will give the results of Theorem 6 and Theorem 7 of Section 2.3.6.
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We will also formulate and prove an analogous amplification statement in terms of compactly
supported smooth Cauchy data (Theorem 10.1.2).

We will then show in Section 10.2 a “pseudo-unitary” property (Theorem 10.2.1) of our
scattering map S restricted to past scattering data supported only on I�, as well as a genuine
unitarity property of S restricted to an appopriate Hilbert space of non-superradiant data
(Theorem 10.2.2). This will give Theorem 8 and Theorem 9 of Section 2.3.7.

Finally, in Section 10.3 we will establish the injectivity result theorem 10.3.1, which corre-
sponds to “uniqueness of scattering states” for improperly posed scattering problems (for
which there is no existence). This will give Theorem 10 of Section 2.3.8.

10.1. A physical space theory of superradiant reflection

First we define the physical-space reflection and transmission maps referred to already in
Section 2.3.6.

D 10.1.1. – Define the reflection map R and the transmission map T by

R
:
D �ET

IC
ıS j

f0g˚ETI�
; T

:
D �EK

HC
ıS j

f0g˚ETI�

where

�ET
IC
W EKHC ˚ E

T
IC ! ETIC ; �EK

HC
W EKHC ˚ E

T
IC ! EKHC

are the natural projections.

We can view

S j
f0g˚ETI�

D R ˚T :

We are now ready for the following theorem.

T 10.1.1. – The operator norms of T and R are bounded

kT k � B; kRk � B:

If a D 0, then kRk D 1, whereas if a ¤ 0 then

kRk > 1:

Proof. – The maps T and R are compositions of the bounded maps �ET
IC

, �EK
HC

and S

and hence are bounded.

Next, it follows immediately from the formula (169) that

jjRjj D sup
.!;m;`/

R.!;m; `/:

Thus, when a ¤ 0, Corollary 5.3.1 shows that kRk > 1, and when a D 0, Corollary 6.4.1
shows that kRk D 1.

We have now established Theorems 6 and 7 from Section 2.3.6.

With a little more work, we can upgrade the above result to the following statement.
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T 10.1.2. – Let a ¤ 0. There exists a smooth solution onD such that the initial
data for  along V† is supported away from the bifurcate sphere B (though not necessarily of
compact support),  has finite V -energy along V† and we haveZ

H�
JK� Œ �n

�
H� D 0;Z

IC
JT� Œ �n

�

IC >

Z
I�

JT� Œ �n
�

IC :

Also, for all R <1 there exists a solution  R to (2) on R such that the initial data for  R
along V† are compactly supported within r 2 ŒR;1/, and R exhibits superradiance in the sense
that Z

IC
JT� Œ R�n

�

IC >

Z
V†

JT� Œ R�n
�

V†
:

Proof. – We start by letting aI�.!;m; `/ be a non-zero smooth function which is
compactly supported in the set of .!;m; `/ which satisfy

! > 0;

.! � ¨Cm/ < 0:

We define

u
:
D

T

�i .! � ¨Cm/
aI�Uhor D

R

i!
aI�Uinf C

1

i!
aI�Uinf;

 0
:
D

1

.r2 C a2/1=2
p
2�

Z 1
�1

X
m`

e�i!teim�Sm` .a!; �/ u d!:

Note that Proposition 6.8.1, Theorem 7.1, and Proposition 9.1.2 implyZ
I�

JT� Œ 0�n
�
I� D

vuutZ 1
1

X
m`

jaI� j
2:

Now, Corollary 5.3.1 implies

jRj2 jaI� j
2
� jaI� j

2
C �;

for some sufficiently small � > 0 on a compact set of frequencies. Integrating and summing
and applying Proposition 6.8.1, Theorem 7.1, and Proposition 9.1.2 yields

Z
IC

JT� Œ 0�n
�

IC D

vuutZ 1
�1

X
m`

jRj2 jaI� j
2 d! >

vuutZ 1
�1

X
m`

jaI� j
2 d! D

Z
I�

JT� Œ 0�n
�
I� :

(173)

Finally, applying Proposition 6.8.2, Theorem 7.1, and Proposition 9.1.2 yieldsZ
H�

JK� Œ 0�n
�
H� D 0:

Thus, we may multiply  0 by an appropriate constant to define a solution  1 which will
satisfy

1.
R
IC JT� Œ 1� n

�

IC > 1.
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2.
R
I� JT� Œ 1� n

�
I� D 1.

3.
R
H� JK� Œ 1� n

�
H� D 0.

Let Q' denote the radiation field for  1 along I�. Let �.�/ be a bump function, � > 0

be sufficiently small, and let  2 be the unique solution to (2) whose radiation field vanishes
along H� and has the radiation field

�
�
���1

�
Q'qR

I� JT� Œ� .���1/ Q'� n
�
I�

along I�. Using the boundedness of the map S from Definition 9.5.2, it is clear that taking �
sufficiently small (and then fixing �) will imply that

1.
R
IC JT� Œ 2� n

�

IC > 1.
2.
R
I� JT� Œ 2� n

�
I� D 1.

3.
R
H� JK� Œ 2� n

�
H� D 0.

Note that an easy domain of dependence argument shows that the initial data for  2
along V† is compactly supported; thus we may set  

:
D  2.

In order to construct  R we need to do a little more work. We begin by recalling the
estimate (137), the proof of which (being invariant under time reversal) implies

(174) lim
s!�1

Z
ftDsg\ŒrCC�0;rCCA�

JN� Œ 2�n
�

ftDsg
D 0 8 0 < �0 < A <1:

Let �.x/ be cut-off which is 0 for x 2 Œ0; 1� and identically 1 for x 2 Œ2;1/. Letting �0

be small enough so that K is timelike for r 2 ŒrC; rC C 2�0�, applying a JK energy estimate

to
�
1 � �

�
r .�0/

�1
��
 � easily implies

(175)
Z
ftDsg\ŒrC;rCC�0�

JK� Œ 2�n
�

ftDsg

�

Z
H�

JK� Œ 2� n
�
H� C B.�

0/

Z 1
s

Z
ftDsg\ŒrCC�0;rCC2�0�

h
JK� Œ 2�n

�

ftDsg
C j 2j

2
i
ds:

Theorem 3.7.1 implies that the second term on the right hand side of this estimate converges
to 0 as s !1. Since the first term on the right hand side vanishes, we conclude that

(176) lim sup
s!�1

Z
ftDsg\ŒrC;rCC�0�

JK� Œ 2�n
�

ftDsg
D 0:

Taking R suitably large, and applying a similar argument in the region r � R, one may
easily deduce that

(177) lim sup
s!�1

Z
ftDsg\fr2ŒR=10;1/g

JT� Œ 2�n
�

ftDsg
� 1:

Let �00 > 0 be a small constant to be fixed later. Now we choose R sufficiently large and
s D s.�;00R/ sufficiently large and negative so thatZ

ftDsg

JV�
�
 2 � �

�
rR�1

�
 2
�
n
�

ftDsg
< �;00(178) Z

ftDsg

JV�
�
�
�
rR�1

�
 2
�
n
�

ftDsg
� 1C �;00(179)
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Let  3 be the solution to (2) whose initial data along ft D sg are given by �
�
rR�1

�
 2.

Now set  4 .t; r; �; �/
:
D Q 3 .t � s; r; �; �/. It is clear that if we choose �00 small enough, then

Theorem 7.1 will imply thatZ
IC

JT� Œ 4� n
�

IC >

Z
ftD0g

JT� Œ 4� n
�

ftD0g
:

Finally, appealing to Theorem 7.1 one more time, we may define  R to be the unique
solution to (2) whose initial data along ft D 0g is given by

�
1 � �

�
rS�1

��
 4 for some

sufficiently large S .

10.2. Pseudo-unitarity and non-superradiant unitarity

The next sequence of results expresses the conservation of the JT flux. Since this flux is
unsigned along HC we may interpret this as a statement of “pseudo-unitarity”.

P 10.2.1. – Let  be a solution to (2) whose initial data lie in EN
†�
0

. Observe
that Theorem 3.7.1 implies thatZ

HC
0

ˇ̌̌
JT� Œ �n

�

HC

ˇ̌̌
� B

Z
HC
0

JN� Œ �n
�

HC � B

Z
†�
0

JN� Œ �n
�

†�
0

:

In particular, even though the integrand is unsigned, the integralZ
HC
0

JT� Œ �n
�

HC

is well defined and finite.
We then have Z

HC
0

JT� Œ �n
�

HC D

Z
†�
0

JT� Œ �n
�

†�
0

�

Z
IC

JT� Œ �n
�

IC :

Proof. – By density considerations, we may assume that  lies in C1cp.†�0/. As we have
already argued a few times before, Proposition 3.8.1 and Theorem 3.7.2 then allow us to find
a dyadic sequence f�ig such that

R
S�i

JN� Œ �n
�
S�i
! 0 as i ! 1. For each �i , a JT energy

estimate yieldsZ
HC.0;�i /

JT� Œ �n
�

HC C

Z
S�i

JT� Œ �n
�
S�i
C

Z
IC��i

JT� Œ �n
�

IC D

Z
†�
0

JT� Œ �n
�

†�
0

:

Now we simply take �i !1 and observe that
ˇ̌̌
JT� Œ �n

�
S�i

ˇ̌̌
� BJN� Œ �n

�
S�i

.

R 10.2.1. – Of course, one may prove a version of Proposition 10.2.1 where the
hypersurface †�0 is replaced by †.

T 10.2.1. – For any ¥ 2 C1cp.I�/ we haveZ
HC

JT� ŒT ¥� n
�

HC C

Z
IC

JT� ŒR¥� n
�

IC D

Z
I�

JT� Œ¥� n
�
I� ;(180) Z

HC

ˇ̌̌
JT� ŒT ¥� n

�

HC

ˇ̌̌
� B

Z
I�

JT� Œ¥� n
�
I� :(181)

Then, an easy density argument shows that (180) and (181) hold for arbitrary ¥ 2 ETI� .
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Proof. – The equality (180) follows immediately from Remark 10.2.1 and the fact that
¥ 2 C1cp.I�/ implies that Z

†

JN� ŒBC .0; ¥/� n
�

†
<1:

The inequality (181) follows immediately from Plancherel, Theorem 9.5.3, Theorem 10.1.1

and the fact that combining Theorem 10.1.1 and Corollary 5.3.1 implies that
ˇ̌̌

!
!�¨C

T
ˇ̌̌

is

uniformly bounded.

This gives Theorem 8 of Section 2.3.7.

R 10.2.2. – Note that we cannot consider the case of general initial data in EKH�
as § 2 EKH� does not imply that Z

H�
JT� Œ§�n

�
H� <1:

Finally, we observe that if we restrict the initial data along H� and I� to be non-
superradiant, then the map S will be unitary in the standard sense. First we introduce the
relevant function spaces.

D 10.2.1. – We define ET;\
I˙

to be the Hilbert space consisting of functions
f .�; �; �/ W I˙ ! C such that

Of .!;m; `/ D
1
p
2�

Z 1
�1

Z
S2
ei!te�im�Sm`f sin � dt d� d�;

lies in the closure of functions compactly supported in f.!;m; `/ W ! .! � ¨Cm/ > 0g under
the inner product Z 1

�1

X
m`

!2Re
�
f1f2

�
:

D 10.2.2. – We define ET;\
H˙

to be the Hilbert space consisting of functions
f .�; �; �/ W H˙ ! C such that

Of .!;m; `/ D
1
p
2�

Z 1
�1

Z
S2
ei!te�im�Sm`f sin � dt d� d�;

lies in the closure of functions compactly supported in

(182) f.!;m; `/ W ! .! � ¨Cm/ > 0g

under the inner product Z 1
�1

X
m`

! .! � ¨Cm/Re
�
f1f2

�
:

The following theorem is an immediate consequence of the microlocal energy identity of
Proposition 5.2.2.
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T 10.2.2. – The restriction of the map S to functions whose Fourier transforms
are compactly supported in (182) extends by density to a map S W ET;\H� ˚ E

T;\
I� ! ET;\H� ˚ E

T;\
I�

which is a unitary isomorphism with respect to the positive definite inner product

h.§1; ¥1/ ; .§2; ¥2/i D

Z 1
�1

X
m`

h
! .! � ¨Cm/Re

�
O§1 O§2

�
C !2Re

�
O¥1 O¥2

�i
:

This gives Theorem 9 of Section 2.3.7. Note that the above reduces again to Theorem 9.6.2
in the case a D 0, where ET;\

H˙
˚ ET;\

I˙
coincide with ET

H˙
˚ ET

I˙
. It also yields in particular

that S restricted to axisymmetric scattering data is unitary.

R 10.2.3. – One may also formally consider the inner product

h.§1; ¥1/ ; .§2; ¥2/i
:
D

Z 1
�1

X
m`

h
! .! � ¨Cm/Re

�
O§1 O§2

�
C !Re

�
O¥¥2

�i
:

This corresponds to the particle current which is relevant in quantum field theory; see [71]. In
this setting, one may establish the analog of the pseudo-unitarity statement of Theorem 10.2.1.

10.3. Uniqueness of ill-posed scattering states

We turn finally to the “ill-posed case,” where one attempts to pose scattering data onHC[
H�, IC [ I�, H� [ IC or HC [ I�.

To state our theorems, let us note first that we may define the forward maps

F W EV
†
! ETIC ˚ E

T
I� ; F W EV

†
! EK

HC
˚ EKH� ;(183)

F W EV
†
! EKH� ˚ E

T
IC ; F W EV

†
! EK

HC
˚ ETI� ;

by completion of

(184) .§;§0/ 7!  7! .¥jIC ; ¥jI�/ or .§jHC ; §jH�/ or .§jH� ; ¥jIC/ or .§HC ; ¥jI�/;

and these are again bounded maps by our previous results. We have the following statement
of uniqueness (but not existence!) of “improper” scattering states:

T 10.3.1. – The maps F of (183) are all injective.

Proof. – We start with the case of the first two maps of (183).
First of all, the proof is conceptually clearer in the case of smooth compactly supported

initial data, and we thus begin with this case. Consider .§;§0/ 2 2C1cp.†/, let  be solution
of (184) and assume .§;§0/ is in the kernel of the first or second map of (183). Then, upon
an application of Carter’s separation to  we have that for almost every .!;m; `/, the result-
ing u is a smooth solution to the radial o.d.e. (61) such that when ! ¤ 0, jaIC j

2 C jaI� j
2 D 0

or jaHC j
2 C jaH� j

2 D 0, respectively. It follows immediately from the local existence theory
for these o.d.e.’s that u is identically 0 (see [60]) whenever ! ¤ 0, and thus  is 0. It follows
that .§;§0/ D .0; 0/.

For general .§;§0/ 2 EV
†

, let us first consider the case only of the first map of (183), i.e.,

let .§;§0/ 2 ker F W EV
†
! ETIC ˚ E

T
I� . Let  denote the solution of the wave equation (2)

arising from .§;§0/. Theorem 3.7.1 implies that  lies in L2loc;rL
2
t;r;�;�

. In particular, we can
take the Fourier transform of and define the Carter separated function u .r; !;m; `/which
will lie in L2loc;rL

2
!l
2
m;`

.
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Let � > 0, letF[ denote an arbitrary compact set of .!;m; `/ and letK denote an arbitrary
compact set in .rC;1/. Now, by regularizing the initial data for , we can produce a solution
 � to (2) with smooth compactly supported initial data such thatZ

†

JV� Œ �  �� n
�

†
� �:

It follows immediately from the fact that the forward map is well defined, thatZ
I˙

JT� Œ �� n
�

I˙
� B�:

In particular, if we let a�;I˙ denote the microlocal radiation fields for  �, Propositions 6.8.1
and 4.2.2 imply that Z 1

�1

X
m`

hˇ̌
a�;IC

ˇ̌2
C ja�;I� j

2
i
d! � B�:

Letting u� denote the result of applying Carter’s separation to �, it now follows immediately
from standard o.d.e. theory thatZ

K

Z
.!;m;`/2F[

ju�j
2
� B.K;F[/�:

Finally, an application of Theorem 3.7.1 to the  �  � followed by an application of
Plancherel implies Z

K

Z
.!;m;`/2F[

juj2 � B.K;F[/�;

where u .r; !;m; `/ is the result of applying Carter’s separation to  . Since �,K, andF[ were
arbitrary, we conclude that u and hence  vanish.

The case where .§;§0/ lies in the kernel of the second map of (183) is treated in exactly
the same way.

We turn now to the case when .§;§0/ lies in the kernel of the third and fourth map of (183).
Since  is not necessarily sufficiently integrable, we cannot use Definition 5.4.1 to define
the microlocal radiation fields; instead we define aI˙.!;m; `/ and aH˙.!;m; `/ by applying
Carter’s separation to the functions F˙.§;§0/jI˙ and F˙.§;§0/jH˙ :

aI˙
:
D

Z 1
�1

Z
S2
eit!e�im�Sm`F˙.§;§

0/jI˙ sin � dt d� d�;

aH˙
:
D
p
2MrC

Z 1
�1

Z
S2
eit
�!e�im�Sm`F˙.§;§

0/jH˙ sin � dt� d�� d��:
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Now, we may apply Theorem 9.5.3 (and its complex conjugated version) to conclude that

FC.§;§
0/jIC D

1
p
2�

Z 1
�1

X
m`

�
�

�! � ¨Cm
!

�
aH� QTC aI�R

�
e�it!eim�Sm` d!;

(185)

F�.§;§
0/jI� D

1
p
2�

Z 1
�1

X
m`

�
�

�! � ¨Cm
!

�
aHC QTC aICR

�
e�it!eim�Sm` d!;

(186)

FC.§;§
0/jHC D

1
p
4M�rC

Z 1
�1

X
m`

�
�

�
!

! � ¨C

�
aI�TC aH� QR

�
e�it!eim�Sm` d!;

(187)

F�.§;§
0/jH� D

1
p
4M�rC

Z 1
�1

X
m`

�
�

�
!

! � ¨C

�
aICTC aHC QR

�
e�it!eim�Sm` d!:

(188)

Observe that if .§;§0/ lies in the kernel of the third map of (183), then aH� and aIC will

vanish almost everywhere. Then (185) and (188) imply that aI�R and aHC QR both vanish
almost everywhere. However, Corollary 6.5.1 implies thatR and QR can only vanish at isolated
points in!. We conclude that aHC and aI� can only be non-zero at isolated points and hence
that aHC and aI� vanish almost everywhere. We conclude that F˙ .§;§0/ D .0; 0/ and thus
that  vanishes.

The case where .§;§0/ lies in the kernel of the fourth map of (183) is treated in a similar
fashion.

We have thus obtained now Theorem 10 of Section 2.3.8.

R 10.3.1. – In regard to the first two maps of (183), we note that it is possible to
prove localized versions of the above via the techniques of “unique continuation,” where is only
assumed to vanish on certain portions of HC [H� or portions of IC [HC, but with stronger
regularity assumptions and decay at infinity. See [14] for such results in the Schwarzschild
case, [1] for such results on general asymptotically flat spacetimes and [2] for such results for
(among other things) certain non-linear wave equations on Minkowski space.

11. The backwards blue-shift instability and horizon-singular solutions

In this final section, we shall show that any solution of the wave equation (2) on Schwarz-
schild assumed to have a particular choice of radiation field necessarily would have infinite
N -energy on the hypersurface †�0 . Our theorem can be stated as follows:

T 11.1. – Let a D 0 and let  be a smooth spherically symmetric solution of the
wave equation in the region VR�0 such that

1. The initial data for lies in the closure of compactly supported initial data under the normZ
†�
0

�
JT� Œ �C JT� ŒT  �

�
n
�

†�
0

:
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2. @Qv extends continuously to the function .t� C 1/�p on HC�0 for some p > 2.
3. @Qv .T  / extends continuously to the function �p.t�C 1/�p�1 onHC�0 for the same p as

above.
4. There exists �0 such that �1 > �0 implies

lim
r!1

r j�D�1 D 0:

Then Z
†�
0

JN� Œ �n
�

†�
0

D1:

We will prove Theorem 11.1 in Sections 11.1–11.2 below. We have stated our theorem in
the above form so as to be independent of the existence of the scattering theory maps FC,
B�, etc., proven in this paper. Thus, the proof of Theorem 11.1 can be read independently
of the rest of our paper. The argument exploits the blue-shift factor of the horizon together
with a simple monotonicity property of the spherically symmetric wave equation.

In combination with the results of our paper, Theorem 11.1 can be reinterpreted in the
context of both our N -energy and our T -energy theories. First, applying Theorem 9.2.1,
we shall construct solutions  satisfying the assumptions of Theorem 11.1 such that their
induced data lie in ET

†�
0

and give a short discussion of the significance of the existence of such

solutions. Finally, in Section 11.4, we shall reinterpret Theorem 11.3 as a statement of the
non-surjectivity of the map FC W EN†�

0

! ENHC ˚ E
N
IC of Theorem 8.2.1. This will thus give

Theorem 2 of Section 2.3.2.

11.1. Schwarzschild computations

Setting a D 0 in (29), the Schwarzschild metric in Boyer-Lindquist coordinates takes the
form

(189) gSchw D �

�
1 �

2M

r

�
dt2 C

�
1 �

2M

r

��1
dr2 C r2

�
d�2 C sin2 � d�2

�
:

To get an explicitly regular expression for the metric near the event horizon HC we
introduce the . Qv; r; �; �/ coordinate system defined by

dr�

dr

:
D

�
1 �

2M

r

��1
; Qv

:
D t C r�:

The metric then takes the form

(190) gSchw D �

�
1 �

2M

r

�
d Qv2 C 2d Qvdr C r2

�
d�2 C sin2 � d�2

�
:

Note that we haveT D @Qv in the . Qv; r; �; �/ coordinate system. Let us also agree to setY
:
D @r .

It will also be useful to introduce a .Qt ; r; �; �/ coordinate system in the following fashion.
Let�.r/ be a cut-off which is identically 0 for r 2 Œ2M; 3M� and identically 1 for r 2 Œ4M;1/.
We then set

Qt .t; r/
:
D t C r� � 2�.r/r�:

Note that @Qt D T is Killing.
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Finally, it turns out that it is often convenient to work in the null coordinate system
. Qu; Qv; �; �/ where Qv is defined as before and

Qu
:
D t � r�:

The metric then takes the form

(191) gSchw D �2

�
1 �

2M

r

�
d Qud Qv C r2

�
d�2 C sin2 � d�2

�
:

R 11.1.1. – These coordinates break down at the horizon, where Qu D1. Neverthe-
less we can still use these coordinates in an effective manner near HC as long as we remember
that the

�
1 � 2M

r

��1
@ Qu D Y is a regular vector field on HC.

If not explicitly noted otherwise, @Qv and @ Qu will also be defined in the . Qu; Qv; �; �/ coordinate
system. Let us agree to set L

:
D @Qv.

In null coordinates, the wave equation (2) applied to a spherically symmetric function  
takes the form

@Qv
�
r2@ Qu 

�
C @ Qu

�
r2@Qv 

�
D 0

, @2
Qv; Qu C

.@ Qur/@Qv 

r
C
.@Qvr/@ Qu 

r
D 0:(192)

The equation (192) is equivalent to the following coupled transport equations for r@ Qu and
r@Qv :

@ Qu .r@Qv / D �
.@Qvr/.r@ Qu /

r
D �

�
1 � 2M

r

�
r@ Qu 

r
;(193)

@Qv .r@ Qu / D �
.@ Qur/.r@Qv /

r
D

�
1 � 2M

r

�
r@Qv 

r
:(194)

Near the event horizon it will be useful to work with transport equations for r
�
1 � 2M

r

��1
@ Qu 

and r@Qv :

(195)
�
1 �

2M

r

��1
@ Qu .r@Qv / D �

�
1 � 2M

r

� h
r
�
1 � 2M

r

��1
@ Qu 

i
r

;

(196) @Qv

 
r

�
1 �

2M

r

��1
@ Qu 

!
C
2M

r2

 
r

�
1 �

2M

r

��1
@ Qu 

!
D
r@Qv 

r
:

R 11.1.2. – The fact that 2M
r2
jHC D

1
2M

> 0 represents the positivity of surface
gravity and is intimately tied to the (local) redshift effect. See the discussion in [27].

11.2. Proof of Theorem 11.1

We are now ready for the proof of Theorem 11.1. We will proceed in four steps.

1. Letting  be as in Theorem 11.1, we begin by establishing a local energy decay state-
ment with a sharp rate:Z

S�\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/.1C �/�2p 8R > rC:
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2. Using the decay from the previous step, for all sufficiently small � > 0we will propagate
the .1 C Qv/�p lower bound for @Qv along HC to a .1 C v/�p lower bound on the
hypersurfaces fr D 2M C �g. Cf. [18, 22].

3. Using the .Qt ; r; �; �/ coordinate system, define Q .Qt ; r/
:
D �

R1
Qt
 .Qs; r/ d Qs. Using the

equation (196) and the previous steps, we will prove that unless
R
†�
0

JN� Œ �n
�

†�
0

D1,

then
�
1 � 2M

r

��1
@ Qu Q and @Qv Q both are positive along one of the hypersurfaces

fr D 2M C �g.
4. Under the assumption that

R
†�
0

JN� Œ �n
�

†�
0

< 1 we will use some monotonicity

hidden in the system (193) and (194), and show that the positivity of @ Qu Q and @Qv Q 
along fr D 2M C �g propagates along outgoing null curves. Finally, we will see that
this positivity of r@ Qu Q and r@Qv Q implies that r cannot vanish along IC, yielding a
contradiction to the assumption

R
†�
0

JN� Œ �n
�

†�
0

<1.

11.2.1. Local energy decay. – We begin with the following proposition.

P 11.2.1. – Let  and p be as in the statement of Theorem 11.1. Then, for
all R <1 we have Z

S�\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/.1C �/�2p:

Proof. – We begin by arguing that

(197)
Z
S�

JT� Œ �n
�
S�
� B

"Z
HC��

JT� Œ �n
�

HC C

Z
IC��

JT� Œ �n
�

IC

#
� B .1C �/�2pC1 :

Let � < 1. Since
R
†�
0

JT� Œ �n
�

†�
0

< 1 we may find a sequence of solutions f ig to (2)

whose initial data lie in QE†�
0

and which satisfy limi!1

R
S�

JT� Œ i �n
�
S�
D
R
S�

JT� Œ �n
�
S�

. As
we have already observed multiple times, Theorem 3.7.2 and Proposition 3.8.1 imply that we
may find a dyadic sequence f� .i/j g

1
jD1 such that limj!1

R
S
�
.i/
j

JT� Œ i �n
�
S
�
.i/
j

D 0. Then we may

apply a JT energy estimate to each  i and concludeZ
S�

JT� Œ i �n
�
S�
D

Z
HC.�;�.i/

j
/

JT� Œ i �n
�

HC C

Z
IC.�;�.i/

j
/

JT� Œ i �n
�

IC C

Z
S
�
.i/
j

JT� Œ i �n
�
S
�
.i/
j

:

Taking j to infinity and then i to infinity yieldsZ
S�

JT� Œ �n
�
S�
D

Z
HC��

JT� Œ �n
�

HC C

Z
IC��

JT� Œ �n
�

IC :

Finally, using that @Qv extends continuously to .1C t�/�p one may easily show thatR
HC��

JT� Œ �n
�

HC � B
R1
�
.1C t�/�2p dt�, and hence establish (197).

Next, we commute with the Killing vector fieldT and consider the solutionT . Repeating
the above procedure (using in particular that T is assumed to have a finite JT energy
along †�0 and the assumption on the limit of @Qv.T  / to HC�0) another JT energy estimate
implies

(198)
Z
S�

JT� ŒT  �n
�
S�
� B

"Z
HC��

JT� ŒT  �n
�

HC C

Z
IC��

JT� ŒT  �n
�

IC

#
� B .1C �/�2p�1 :
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The final ingredient is an integrated local energy decay estimate. Setting X
:
D f .r�/@r�

for a function f to be fixed later, a straightforward calculation yields the following general
formula:

r
�JX� Œ � D

 
f 0

2

�
1 �

2M

r

��1
C f r�1

!
.T  /2 C

 
f 0

2

�
1 �

2M

r

��1
� f r�1

!
.@r� /

2 :

(199)

We set f
:
D �r�3 and obtain

r
�JX� Œ � D

1

2
r�4 .T  /2 C

5

2
r�4 .@r� /

2 :(200)

Keeping in mind that X jHC D �.2M/�3T and
ˇ̌̌R
S�

JX� Œ �n
�
S�

ˇ̌̌
� B

R
S�

JT� Œ �n
�
S�

,

combining (200) with (197) and (198) yields the following two estimates:Z 1
�

Z
S�\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/ .1C �/�2pC1 8R > rC;(201) Z 1

�

Z
S�\fr�Rg

h�
T 2 

�2
C .@r�T /

2
i
� B.R/ .1C �/�2p�1 8R > rC:(202)

We will now interpolate between these four estimates in a straightforward fashion. (15)

For every k � 1, using the fact thatZ 2kC1

2k

Z
S�\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/

�
2k
��2pC1

;

we may find a �k 2 Œ2k ; 2kC1� such thatZ
S�k\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/�

�2p

k
:(203)

Now consider � 2 Œ�k ; �kC1�. The fundamental theorem of calculus and the estimates (201),
(202), and (203) imply

Z
S�\fr�Rg

h
.T  /2 C .@r� /

2
i(204)

�

Z
S�kC1\fr�Rg

h
.T  /2 C .@r� /

2
i

C B

Z �kC1

�k

Z
Ss\fr�Rg

h
��1k .T  /2 C ��1k .@r� /

2
C �k

�
T 2 

�2
C �k .@r�T /

2
i

� B.R/
h
�
�2p

kC1
C �
�2p

k
C �
�2p

k

i
� B.R/��2p:

R 11.2.1. – If in the process of carrying out a contradiction argument one adds the
assumption that

R
†�
0

JN� Œ �n
�

†�
0

<1, then one could establish the local energy decay statement
using only transport equations in the region fr � Rg.

(15) For example, see [65] for an application of such an interpolation argument to interior decay for the wave
equation.
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C 11.2.1. – Of course, the use of the particular foliation fS�g is not important
for the above proposition. By modifying S� to equal f Qv D �g in the region fr � Rg and repeating
the above proof, one immediately obtainsZ

fQvD�g\fr�Rg

h
.T  /2 C .@r� /

2
i
� B.R/.1C �/�2p:

Analogously, for .r0; r1/ � .rC;1/ one may showZ
f QuD�g\fr2Œr0;r1�g

h
.T  /2 C .@r� /

2
i
� B.r0; r1/.1C �/

�2p:

11.2.2. Pushing the tail off the horizon. – We now turn to the proof of

P 11.2.2. – Let be as in Theorem 11.1. Then, for all � > 0 sufficiently small,

b.1C Qv/�p � .r@Qv / jfr�2MC�g � B.1C Qv/
�p:

Proof. – Keeping in mind that
�
1 � 2M

r

��1
@ Qu D Y is equal to @r in . Qv; r; �; �/ coordi-

nates, we integrate the transport equation (193) and obtain

(205) .r@Qv / j.Qv;r/D.�;2MC�/ D .r@v / j.Qv;r/D.�;2M/ C

Z
fQvD�g\fr�2MC�g

@ Qu dr:

Cauchy-Schwarz and Corollary 11.2.1 then yield�
.r@Qv / j.Qv;r/D.�;2MC�/ � .1C �/

�p
�2
� �

Z
fQvD�g\fr�2MC�g

h
.T  /2 C .@r� /

2
i

(206)

� B�.1C �/�2p:

11.2.3. Positivity of Q . – As we have already indicated in the outline, it will be useful to
introduce the function

(207) Q .Qt ; r/
:
D

Z 1
Qt

 .Qs; r/ d Qs:

Using the fact that T is Killing, and the fact that j .�; r/j � B.r/.1C �/�pC1, one may
easily check that Q is a smooth solution to (2) in VR0 and that T Q D � . The goal of this
section is to use the transport equation (196) to show that r

�
1 � 2M

r

��1
@ Qu Q inherits some

of r@Qv ’s positivity.

We begin by studying r
�
1 � 2M

r

��1
@ Qu .

P 11.2.3. – Let  be as in the statement of Theorem 11.1, Qv0 be a fixed
sufficiently large constant, and . Qu; Qv/ 2 fr D 2M C �g for Qv � v0 and � > 0 sufficiently
small. Then 

r

�
1 �

2M

r

��1
@ Qu 

! ˇ̌̌
. Qu;Qv/

� B exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

! ˇ̌̌̌
ˇ
 
r

�
1 �

2M

r

��1
@ Qu 

! ˇ̌̌
. Qu;Qv0/

ˇ̌̌̌
ˇC b Qv�p:
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Proof. – We may write Equation (196) as

(208) @Qv

"
exp

 Z Qv
Qv0

2M

r2
d Qv0

!
r

�
1 �

2M

r

��1
@ Qu 

#
D exp

 Z Qv
Qv0

2M

r2
d Qv0

!
@Qv :

We conclude that

(209) 
r

�
1 �

2M

r

��1
@ Qu 

! ˇ̌̌
. Qu;Qv/
D exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!" 
r

�
1 �

2M

r

��1
@ Qu 

! ˇ̌̌
. Qu;Qv0/

C

Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

!
@Qv0 d Qv

0

!#
:

Next, using Proposition 11.2.2, we observe that

(210) exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

!
@Qv0 d Qv

0

!

� b exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

! �
Qv0
��p

d Qv0

!
:

Using that j@Qvr j � B�, a straightforward series of integration by parts yields

exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

! �
Qv0
��p

d Qv0

!(211)

�

�
r2

2M

� ˇ̌̌
.Qv; Qu/
Qv�p �

�
r2

2M

� ˇ̌̌
.Qv0; Qu/

. Qv0/
�p exp .� .1 � B�/ . Qv � Qv0//

� B� exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

! �
Qv0
��p

d Qv0

!
� B

�
r2

2M

� ˇ̌̌
.Qv; Qu/
Qv�p�1 C b

�
r2

2M

� ˇ̌̌
.Qv0; Qu/

. Qv0/
�p�1 exp .� .1 � B�/ . Qv � Qv0// � B Qv�p�1:

We conclude that

exp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!Z Qv
Qv0

 
exp

 Z Qv0
Qv0

2M

r2
d Qv00

! �
Qv0
��p

d Qv0

!
� b Qv�p:(212)

Combining (212) with (209) finishes the proof.

R 11.2.2. – If we added the assumption that
�
1 � 2M

r

��1
@ Qu was uniformly

bounded, then for sufficiently large Qv this proposition would prove that
�
1 � 2M

r

��1
@ Qu � b Qv

�p.
Cf. [18].

We now have
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P 11.2.4. – Let  be as in Theorem 11.1, Q defined by (207), and Qv0 be a
sufficiently large constant. Then . Qu; Qv/ 2 fr D 2M C �g , � > 0 sufficiently small, and Qv � Qv0
imply

r

�
1 �

2M

r

��1
@ Qu Q 

ˇ̌̌
. Qu;Qv/
� �Be�

.1�B�/ Qv
4M

sZ
fQvDQv0g\fr�2MC�g

JN� Œ �n
�

fQvDQv0g
C b Qv�pC1:

Proof. – Using that . Qu; Qv/ 2 fr D 2M C �g implies that Qu D Qv � .4M C 2�/�, applying
Proposition 11.2.3 to  and integrating implies that

(213) r

�
1 �

2M

r

��1
@ Qu Q 

� �B

Z 1
Qv

ˇ̌̌̌
ˇexp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!�
1 �

2M

r

��1
@ Qu 

ˇ̌̌
.Qv�.4MC2�/�;Qv0/

ˇ̌̌̌
ˇ d Qv C b Qv�pC1:

Now, we observe that a change of variables yields

(214)
Z 1
Qv

ˇ̌̌̌
ˇexp

 
�

Z Qv
Qv0

2M

r2
d Qv0

!�
1 �

2M

r

��1
@ Qu 

ˇ̌̌
.Qv�2.2MC�/;Qv0/

ˇ̌̌̌
ˇ d Qv

�

Z 2MCBe
� Qv
2M

2M

.r � 2M/�B� jY j jQvDQv0dr:

Cauchy-Schwarz then gives us
(215)Z 2MCBe

� Qv
2M

2M

.r � 2M/�B� jY j jQvDQv0dr � Be
�
.1�B�/ Qv
4M

sZ
fQvDQv0g\fr�2MC�g

JN� Œ �n
�

fQvDQv0g
:

11.2.4. Positivity on IC and the contradiction. – Finally, we will show that if @Qv Q and @ Qu Q 
are eventually positive along fr D 2M C �g, then the null derivatives of Q must eventually
be positive in a neigbourhood of IC.

P 11.2.5. – Let  be as in Theorem 11.1 and define Q by (207). Additionally,
let us assume that

R
fQvDQv0g\fr�2MC�g

JN� Œ �n
�

fQvDQv0g
<1. Then, there exists a constant c such

that

(216) r@Qv Q � c Qv
�pC1; r@ Qu Q � c Qu

�pC1;

for all sufficiently large r and Qv.

Proof. – Propositions 11.2.2 and 11.2.4 imply that we may find r0 > 2M and Qv0 < 1
such that Qv � Qv0 and . Qu; Qv/ 2 fr� D r�0 g implies that there exists a constant c > 0 such that

(217) r@Qv Q � c Qv
�pC1; r@ Qu Q � c Qu

�pC1:

Now, we define

A :
D
˚
s 2 Œ0;1� W Qv � Qv0 and r�. Qu; Qv/ 2 Œr�0 ; r

�
0 C s/) r@Qv Q � c Qv

�pC1 and r@ Qu Q � c Qu
�pC1

	
;

where we emphasize that c is the constant from (217). The proof will be finished if we can
prove that A D Œ0;1/.
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It is clear that A is a closed and non-empty subset of Œ0;1/, so it suffices to prove that
A is open. Suppose that s0 2 A. We show that s0 C � 2 A for � > 0 sufficiently small.

It immediately follows from the transport equations (193) and (194) and Corollary 11.2.1
that � sufficiently small implies that for all r� 2 Œr�0 C s0; r

�
0 C s0 C �� and Qv � Qv0 we have

(218) r@Qv Q �
1

2
c Qv�pC1; r@ Qu Q �

1

2
c Qu�pC1:

Given these estimates, we integrate again the transport equations (193) and (194) and now
use (218) to determine that in the region r� 2 Œr�0 C s0; r

�
0 C s0 C �� and Qv � Qv0, r@Qv Q is

monotonically increasing in�Qu and r@ Qu Q is monotonically increasing in Qv. We conclude that
r� 2 Œr�0 C s0; r

�
0 C s0 C �� and Qv � Qv0 imply (216).

The next corollary establishes the desired contradiction and thus concludes the proof of
Theorem 11.1.

C 11.2.2. – Let  be as in Theorem 11.1 and define Q by (207). Then, for each
sufficiently large �1,

lim
r!1

r .r; �1/ < 0:

Proof. – Using Proposition 11.2.5 and the facts @ QuC@Qv D T and T Q D � we find that

�r D rT Q D r@ Qu Q C r@Qv Q � c
�
Qu�pC1 C Qv�pC1

�
:

The result follows since limr!1 Qu.r; �1/ is bounded above.

11.3. Construction of  using the degenerate T -scattering theory

We now apply our degenerate scattering theory of Theorem 9.2.1 (see also Section 9.6) to
indeed construct solutions  as in the statement of Theorem 11.1. Let §HC

�0

W HC�0 ! R
denote the function

§HC
�0

.t�/ D
.t� C 1/�pC1

�p C 1

for p > 2.

P 11.3.1. – Let a D 0. For §HC
�0

˚ 0 2 EN
HC
�0

˚ ETIC � E
T

HC
�0

˚ ETIC above,

the solution B�
�
§HC
�0

; 0
�

satisfies all of the hypothesis of Theorem 11.1.

Proof. – Let us set  
:
D B�

�
§HC
�0

; 0
�

. We first note that the spherical symmetry of

Schwarzschild, Theorem 9.2.1, and commutations with T and �˛ are easily seen to imply
that  is a smooth spherically symmetric solution in VR and thatZ

†�
0

�
JT� Œ �C JT� ŒT  �

�
n
�

†�
0

<1:

Next, we observe that (193), the fundamental theorem of calculus, Cauchy Schwarz and
an easy density argument show that @Qv and @Qv .T  / extend continuously to the functions
.1C t�/�p and �p.1C t�/�p�1 respectively along HC�0.
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In order to establish that limr!1 r jS� D 0 we first observe the unitarity property of
Theorem 9.6.1 yields

(219)
Z
†�t

JT� Œ � n
�

†�t
D

Z
HC�t

JT� Œ �n
�

HC�t
� B .1C t /�2pC1 :

Next, for r sufficiently large, the fundamental theorem of calculus implies

j .t; r/j �

Z 1
r

j@r j dr � r
�1=2

sZ 1
r

.@r /2r2 dr(220)

� r�1=2

sZ
†�t

JT� Œ � � Br
�1=2.1C t /�pC1=2:

Since r is comparable to t along any fixed hypersurface S� , and p > 2, the estimate (220)
immediately implies that

lim
r!1

r jS� D 0:

We immediately obtain the following corollary.

C 11.1. – Let a D 0. For §HC
�0

˚ 0 2 EN
HC
�0

˚ ETIC � E
T

HC
�0

˚ ETIC above, then

the map B� of Theorem 9.2.1 maps

B�.§HC
�0

; 0/ 2 ET
†�
0
n EN

†�
0
:

More pedestrianly,

C 11.2. – There indeed exists  as in Theorem 11.1.

We note that by what we have shown in Proposition 11.2.1,  has several nice additional
properties. In particular, we have the following decay result.

C 11.3. – Let §HC
�0

be as in Corollary 11.1. Then, for every R <1 we haveZ
S�\fr�Rg

�ˇ̌̌
TB�.§HC

�0

; 0/
ˇ̌̌2
C

ˇ̌̌
@r�B�.§HC

�0

; 0/
ˇ̌̌2�
� B.R/.1C �/�2p 8� � 0:

These strong decay properties lend further support to Conjecture 2.5.

11.4. Non-surjectivity of the N -energy forward map

Lastly, we can immediately reinterpret Corollary 11.1 as a non-surjectivity result (cf. the
discussion in Section 2.3.2).

C 11.4. – Let a D 0. The asymptotic state §HC
�0

˚ 0 is not in the image of

the map FC W EN†�
0

! EN
HC
�0

˚ ETIC . Thus, the map of Theorem 8.2.1 is not surjective, in fact,

the image FC
�
EN
†�
0

�
has infinite co-dimension in EN

HC
�0

˚ ETIC and infinite codimension when

intersected with E t
n
�N

HC
�0

˚ 0 for any n � 0.

Proof. – If §HC
�0

˚ 0 was in the image of the map FC W EN†�
0

! EN
HC
�0

˚ ETIC , then

Theorem 9.2.1 and Corollary 11.1 would immediately yield a contradiction.
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We have thus obtained the final remaining Theorem 2 of Section 2.3.2.
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