Canonical smoothing of compact Aleksandrov surfaces via Ricci flow
[Régularisation canonique des surfaces d'Aleksandrov compactes par le flot de Ricci]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 263-279.

Dans cet article, on montre l'existence et l'unicité du flot de Ricci avec pour condition initiale une surface d'Aleksandrov compacte à courbure minorée. Cela nécessite un affaiblissement de la notion de condition initiale permettant de considérer des espaces métriques a priori non riemanniens. Comme corollaire, on montre que le flot de Ricci d'une surface compacte dépend lissement des perturbations de sa condition initiale au sens de Gromov-Hausdorff.

In this paper, we show existence and uniqueness of Ricci flow whose initial condition is a compact Aleksandrov surface with curvature bounded from below. This requires a weakening of the notion of initial condition which is able to deal with a priori non-Riemannian metric spaces. As a by-product, we obtain that the Ricci flow of a surface depends smoothly on Gromov-Hausdorff perturbations of the initial condition.

Publié le :
DOI : 10.24033/asens.2356
Classification : 53C44, 53C45
Keywords: Ricci flow, Aleksandrov surfaces whose curvature is bounded from below
Mot clés : Flot de Ricci, surfaces d'Aleksandrov à courbure minorée
@article{ASENS_2018__51_2_263_0,
     author = {Richard, Thomas},
     title = {Canonical smoothing of compact {Aleksandrov} surfaces via {Ricci} flow},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {263--279},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {2},
     year = {2018},
     doi = {10.24033/asens.2356},
     mrnumber = {3798303},
     zbl = {1402.53050},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2356/}
}
TY  - JOUR
AU  - Richard, Thomas
TI  - Canonical smoothing of compact Aleksandrov surfaces via Ricci flow
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 263
EP  - 279
VL  - 51
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2356/
DO  - 10.24033/asens.2356
LA  - en
ID  - ASENS_2018__51_2_263_0
ER  - 
%0 Journal Article
%A Richard, Thomas
%T Canonical smoothing of compact Aleksandrov surfaces via Ricci flow
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 263-279
%V 51
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2356/
%R 10.24033/asens.2356
%G en
%F ASENS_2018__51_2_263_0
Richard, Thomas. Canonical smoothing of compact Aleksandrov surfaces via Ricci flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 263-279. doi : 10.24033/asens.2356. http://www.numdam.org/articles/10.24033/asens.2356/

Alexander, S.; Kapovitch, V.; Petrunin, A. Alexandrov meets Kirszbraun, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA (2011), pp. 88-109 | MR | Zbl

Alexandrov, A. D., Chapman & Hall/CRC, Boca Raton, FL, 2006, 426 pages (ISBN: 978-0-415-29802-5; 0-415-29802-4) | MR | Zbl

Aleksandrov, A. D.; Zalgaller, V. A., Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, 15, Amer. Math. Soc., Providence, R.I., 1967, 327 pages | MR | Zbl

Burago, D.; Burago, Y.; Ivanov, S., Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI, 2001, 415 pages (ISBN: 0-8218-2129-6) | MR | Zbl

Giesen, G.; Topping, P. M. Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1860-1880 (ISSN: 0360-5302) | DOI | MR | Zbl

Huber, A. Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie, Comment. Math. Helv., Volume 34 (1960), pp. 99-126 (ISSN: 0010-2571) | DOI | MR | Zbl

Itoh, J.-i.; Rouyer, J.; Vîlcu, C. Moderate smoothness of most Alexandrov surfaces, Internat. J. Math., Volume 26 (2015), 1540004 pages (ISSN: 0129-167X) | MR | Zbl

Machigashira, Y. The Gaussian curvature of Alexandrov surfaces, J. Math. Soc. Japan, Volume 50 (1998), pp. 859-878 (ISSN: 0025-5645) | MR | Zbl

Menchoff, D. Sur une généralisation d'un théorème de M. H. Bohr, Rec. Math. Moscou (1937), pp. 339-354 | JFM

Ramos, D. Smoothening cone points with Ricci flow (preprint arXiv:1109.5554 ) | MR

Reshetnyak, Y. G., Geometry, IV (Encyclopaedia Math. Sci.), Volume 70, Springer, Berlin, 1993 | MR | Zbl

Richard, T. Lower bounds on Ricci flow invariant curvatures and geometric applications, J. reine angew. Math., Volume 703 (2015), pp. 27-41 (ISSN: 0075-4102) | DOI | MR | Zbl

Simon, M. Ricci flow of almost non-negatively curved three manifolds, J. reine angew. Math., Volume 630 (2009), pp. 177-217 (ISSN: 0075-4102) | MR | Zbl

Simon, M. Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. reine angew. Math., Volume 662 (2012), pp. 59-94 (ISSN: 0075-4102) | MR | Zbl

Topping, P. M. Uniqueness and nonuniqueness for Ricci flow on surfaces: reverse cusp singularities, Int. Math. Res. Not., Volume 2012 (2012), pp. 2356-2376 (ISSN: 1073-7928) | MR | Zbl

Troyanov, M. Les surfaces à courbure intégrale bornée au sens d'Aleksandrov (preprint arXiv:0906.3407 ) | Zbl

Cité par Sources :