Dans cet article, on montre l'existence et l'unicité du flot de Ricci avec pour condition initiale une surface d'Aleksandrov compacte à courbure minorée. Cela nécessite un affaiblissement de la notion de condition initiale permettant de considérer des espaces métriques a priori non riemanniens. Comme corollaire, on montre que le flot de Ricci d'une surface compacte dépend lissement des perturbations de sa condition initiale au sens de Gromov-Hausdorff.
In this paper, we show existence and uniqueness of Ricci flow whose initial condition is a compact Aleksandrov surface with curvature bounded from below. This requires a weakening of the notion of initial condition which is able to deal with a priori non-Riemannian metric spaces. As a by-product, we obtain that the Ricci flow of a surface depends smoothly on Gromov-Hausdorff perturbations of the initial condition.
DOI : 10.24033/asens.2356
Keywords: Ricci flow, Aleksandrov surfaces whose curvature is bounded from below
Mot clés : Flot de Ricci, surfaces d'Aleksandrov à courbure minorée
@article{ASENS_2018__51_2_263_0, author = {Richard, Thomas}, title = {Canonical smoothing of compact {Aleksandrov} surfaces via {Ricci} flow}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {263--279}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {2}, year = {2018}, doi = {10.24033/asens.2356}, mrnumber = {3798303}, zbl = {1402.53050}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2356/} }
TY - JOUR AU - Richard, Thomas TI - Canonical smoothing of compact Aleksandrov surfaces via Ricci flow JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 263 EP - 279 VL - 51 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2356/ DO - 10.24033/asens.2356 LA - en ID - ASENS_2018__51_2_263_0 ER -
%0 Journal Article %A Richard, Thomas %T Canonical smoothing of compact Aleksandrov surfaces via Ricci flow %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 263-279 %V 51 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2356/ %R 10.24033/asens.2356 %G en %F ASENS_2018__51_2_263_0
Richard, Thomas. Canonical smoothing of compact Aleksandrov surfaces via Ricci flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 263-279. doi : 10.24033/asens.2356. http://www.numdam.org/articles/10.24033/asens.2356/
Alexandrov meets Kirszbraun, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA (2011), pp. 88-109 | MR | Zbl
, Chapman & Hall/CRC, Boca Raton, FL, 2006, 426 pages (ISBN: 978-0-415-29802-5; 0-415-29802-4) |, Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, 15, Amer. Math. Soc., Providence, R.I., 1967, 327 pages | MR | Zbl
, Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI, 2001, 415 pages (ISBN: 0-8218-2129-6) | MR | Zbl
Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1860-1880 (ISSN: 0360-5302) | DOI | MR | Zbl
Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie, Comment. Math. Helv., Volume 34 (1960), pp. 99-126 (ISSN: 0010-2571) | DOI | MR | Zbl
Moderate smoothness of most Alexandrov surfaces, Internat. J. Math., Volume 26 (2015), 1540004 pages (ISSN: 0129-167X) | MR | Zbl
The Gaussian curvature of Alexandrov surfaces, J. Math. Soc. Japan, Volume 50 (1998), pp. 859-878 (ISSN: 0025-5645) | MR | Zbl
Sur une généralisation d'un théorème de M. H. Bohr, Rec. Math. Moscou (1937), pp. 339-354 | JFM
Smoothening cone points with Ricci flow (preprint arXiv:1109.5554 ) | MR
, Geometry, IV (Encyclopaedia Math. Sci.), Volume 70, Springer, Berlin, 1993 | MR | Zbl
Lower bounds on Ricci flow invariant curvatures and geometric applications, J. reine angew. Math., Volume 703 (2015), pp. 27-41 (ISSN: 0075-4102) | DOI | MR | Zbl
Ricci flow of almost non-negatively curved three manifolds, J. reine angew. Math., Volume 630 (2009), pp. 177-217 (ISSN: 0075-4102) | MR | Zbl
Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. reine angew. Math., Volume 662 (2012), pp. 59-94 (ISSN: 0075-4102) | MR | Zbl
Uniqueness and nonuniqueness for Ricci flow on surfaces: reverse cusp singularities, Int. Math. Res. Not., Volume 2012 (2012), pp. 2356-2376 (ISSN: 1073-7928) | MR | Zbl
Les surfaces à courbure intégrale bornée au sens d'Aleksandrov (preprint arXiv:0906.3407 ) | Zbl
Cité par Sources :