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CANONICAL SMOOTHING OF COMPACT
ALEKSANDROV SURFACES VIA RICCI FLOW

 T RICHARD

A. – In this paper, we show existence and uniqueness of Ricci flow whose initial condition
is a compact Aleksandrov surface with curvature bounded from below. This requires a weakening of
the notion of initial condition which is able to deal with a priori non-Riemannian metric spaces. As
a by-product, we obtain that the Ricci flow of a surface depends smoothly on Gromov-Hausdorff

perturbations of the initial condition.

R. – Dans cet article, on montre l’existence et l’unicité du flot de Ricci avec pour condition
initiale une surface d’Aleksandrov compacte à courbure minorée. Cela nécessite un affaiblissement de
la notion de condition initiale permettant de considérer des espaces métriques a priori non rieman-
niens. Comme corollaire, on montre que le flot de Ricci d’une surface compacte dépend lissement des
perturbations de sa condition initiale au sens de Gromov-Hausdorff.

Introduction

Ricci flow of smooth manifolds has had strong applications to the study of smooth
Riemannian manifolds. It is therefore natural to ask if Ricci flow can be helpful in the study
of non-smooth geometric objects. A reasonable assumption to make on a metric space .X; d/
that we want to deform by the Ricci flow is to require .X; d/ to be approximated in some sense
by a sequence .Mi ; gi / of smooth Riemannian manifolds. In [13] and [14], M. Simon studied
a class of 3-dimensional metric spaces by this method. An important feature of such “Ricci
flows of metric spaces” is that the notion of initial condition has to be weakened. In the work
of M. Simon [13] and [14], and of the author [12], a weak notion of initial condition has been
used, which we call “metric initial condition”:

D 0.1. – A Ricci flow .M; g.t//t2.0;T / on a compact manifoldM is said to have
the metric space .X; d/ as metric initial condition if the Riemannian distances dg.t/ uniformly
converge as t goes to 0 (as functions M �M ! R) to a distance Qd on M such that .M; Qd/ is
isometric to .X; d/.
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264 T. RICHARD

R 0.2. – The compactness assumption in the definition gives that .X; d/ is
homeomorphic toM with its manifold topology. This follows from the fact that Qd is contin-
uous on M , which implies that the identity of M is continuous as a map from M with its
usual topology to M with the topology defined by Qd , compactness of M then gives that the
identity is a homeomorphism.

The existence of such flows for some classes of metric spaces .X; d/ has been proved
in [13, 14] and [12]. An interesting class of spaces for which existence holds is the class of
compact Aleksandrov surfaces whose curvature is bounded from below.

D 0.3. – A compact Aleksandrov surface whose curvature is bounded from below
is a geodesic metric space .X; d/ which is at the same time a compact topological surface
(without boundary) and a metric space with curvature bounded from below in the sense of
Aleksandrov.

R 0.4. – A geodesic metric space has curvature greater than k 2 R in the sense
of Aleksandrov if its geodesic triangles are bigger than the geodesic triangles in the complete
simply connected surface S2

k
with curvature k.

To be more precise, a geodesic metric space .X; d/ has curvature greater than k in the sense
of Aleksandrov if and only if the following condition is satisfied:

Let a; b; c be any three points in .X; d/, and m be any point on a shortest path from b

to c. Let Qa; Qb; Qc be points in S2
k

such that dk. Qa; Qb/ D d.a; b/, dk. Qa; Qc/ D d.a; c/ and
dk. Qb; Qc/ D d.b; c/ where dk is the usual distance in S2

k
, and Qm be a point on a shortest

path from Qb to Qc such that dk. Qb; Qm/ D d.b;m/. Then d.a;m/ � dk. Qa; Qm/.

By Toponogov’s Theorem, every complete smooth surface .M; g/ with Gauss curva-
ture Kg satisfying Kg.x/ � k for every x 2M is an Aleksandrov surface with curvature
bounded from below by k. Another example is the boundary X of a convex set in Rn

(resp. Hn), endowed with its intrinsic metric d coming from the ambient metric. It can be
shown (see [4], Theorem 10.2.6) that X has curvature bounded from below by 0 (resp. �1).

A metric space .X; d/ will be said to have curvature bounded from below in the sense of
Aleksandrov if it has curvature greater than some k 2 R in the sense of Aleksandrov.

For more on Aleksandrov spaces, see [4], Chapters 4 and 10.

In this paper we prove uniqueness for the Ricci flow with such surfaces as metric initial
condition, more precisely:

T 0.5. – Let .M1; g1.t//t2.0;T � and .M2; g2.t//t2.0;T � be two smooth Ricci flows
which admit a compact Aleksandrov surface .X; d/ as metric initial condition. Assume further-
more that one can find K > 0 such that:

8.x; t/ 2Mi � .0; T � Kgi .t/.x/ � �K:

where Kgi .t/.x/ is the Gauss curvature of .Mi ; gi .t// at the point x.

Then there exists a diffeomorphism ' WM1 !M2 such that g2.t/ D '�g1.t/.
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RICCI FLOW OF ALEKSANDROV SURFACES 265

Note that the required bounds on the Ricci flow are provided by the existence proof
outlined in Section 1.1.

In the next few lines, we outline the proof of Theorem 0.5. Both of the two Ricci
flows .Mi ; gi .t// stay in a fixed conformal class, and thus can be writtengi .t/ D wi .x; t/hi .x/
for some fixed background metric hi which can be chosen to have constant curvature. We
first show that the metric initial condition prescribes the conformal class of the flow, thus
we can assume that h1 D h2 D h. The proof of this fact uses deep results from the theory
of singular surfaces introduced by A. D. Aleksandrov. This implies that our two Ricci flows
can be seen as solutions of the following nonlinear PDE on .M; h/:

@wi

@t
D �h log.wi / � 2Kh:

One then shows that w1 and w2 share the same L1 initial condition as t goes to 0 and uses
standard techniques to show uniqueness.

Our result can be stated in two other ways:

P 0.6. – Let M be a compact topological surface, and d be a distance on M
which induces onM its manifold topology and such that .M; d/ is an Aleksandrov surface with
curvature bounded from below.

Let g1.t/t2.0;T / and g2.t/t2.0;T / be two Ricci flows on M which are smooth with respect to
some differential structures on M . Assume furthermore that one can find K > 0 such that:

8.x; t/ 2M � .0; T / Kgi .t/.x/ � �K

and that for i D 1; 2 the distances dgi .t/ uniformly converge to d as t goes to 0.
Then the two a priori different smooth structures onM agree andg1.t/ D g2.t/ for t 2 .0; T /.

This proposition is not a consequence of Theorem 0.5, but just requires a minor adjust-
ment in its proof, which will be indicated in Section 2.

P 0.7. – Let .M1; g1.t//t2.0;T � and .M2; g2.t//t2.0;T � be two smooth Ricci
flows such that for i D 1; 2 .Mi ; gi .t//Gromov-Hausdorff converges to a compact Aleksandrov
surface .X; d/ with curvature bounded from below as t goes to 0. Assume furthermore that one
can find K > 0 such that:

8.x; t/ 2Mi � .0; T � Kgi .t/.x/ � �K:

Then there exists a diffeomorphism ' WM1 !M2 such that g2.t/ D '�g1.t/.

Proof. – We just have to show that if .M 2; g.t//t2.0;T / is a smooth Ricci flow on a
surface M 2 such that for all t 2 .0; T / Kg.t/ � �K and such that .M 2; g.t// Gromov-
Hausdorff converges to .X; d/ as t goes to 0, then .X; d/ is the metric initial condition for
the Ricci flow .M 2; g.t//.

Since the diameter and the volume are continuous with respect to Gromov-Hausdorff

convergence with sectional curvature bounded from below, we have bounds on the diameter
and the volume of .M; g.t// which are independent of t . Thanks to the lower bound on the
curvature, the upper bound on the diameter and the lower bound on the volume, the Bishop-
Gromov inequality implies that we have some v0 > 0 such that:

8t 2 .0; T / 8x 2M volg.t/.Bg.t/.x; 1// � v0:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



266 T. RICHARD

Thanks to Lemma 4.2 in [14], we then have that, for some constant C > 0 and all t 2 .0; T /
(for some possibly smaller T > 0):

8t 2 .0; T / jKg.t/j �
C

T
:

One can then argue as in the proof of Theorem 9.2 of [14] to show that, as t goes 0, the
Riemannian distances uniformly converge to a distance Qd onM such that .M; Qd/ is isometric
to .X; d/. Thus .X; d/ is the metric initial condition of the Ricci flow .M; g.t//.

As a corollary, we obtain the following statement, which says that for surfaces with
curvature bounded from below Gromov-Hausdorff convergence of the initial conditions
implies smooth convergence of the Ricci flows:

C 0.8. – Let .Mi ; gi /i2N be a sequence of compact surfaces with Gaussian
curvature greater than �1 which converges to a compact Aleksandrov surface .X; d/ with
curvature bounded from below, then there exists T > 0 such that the Ricci flows .Mi ; gi .t//i2N
with initial condition .Mi ; gi / exist at least for t 2 .0; T / and converge (as smooth Ricci
flows on .0; T /) to the unique Ricci flow with metric initial condition satisfying the bounds of
Theorem 0.5.

Proof of Corollary 0.8. – Let .Mi ; gi /i2N be a sequence satisfying the assumptions of
Corollary 0.8. By continuity of the volume and the diameter with respect to Gromov-
Hausdorff convergence of Aleksandrov surfaces, we have constants V and D such that for
any i 2 N:

– Kgi
� �1,

– diam.Mi ; gi / � D,
– V

2
� vol.Mi ; gi / � V .

The existence theory (Theorem 1.1) implies the Ricci flows .Mi ; gi .t// exist at least
for t 2 Œ0; T / and form a precompact sequence whose accumulation points can only be
Ricci flows with metric initial condition .X; d/ satisfying the bounds of Theorem 0.5. The
uniqueness theorem then implies that there is only one accumulation point.

Uniqueness and non-uniqueness issues have been previously considered for the Ricci flow
of surfaces with “exotic” initial conditions in the works of Giesen and Topping ([5, 15]) and
Ramos [10].

The paper is organized as follows, in the first section, we sketch M. Simon’s existence proof
in dimension 2. In the second section, we show that the metric initial condition uniquely
specifies the conformal class. The last section completes the proof. In the appendix, we
quickly summarize the results we need from the theory of Aleksandrov surfaces.

Acknowledgements

The author wishes to thank V. Kapovitch, A. Petrunin and M. Troyanov for answering
his questions on Aleksandrov surfaces, and P. Topping for useful remarks. He also thanks
his advisor G. Besson for his guidance and support.

Finally, the author sincerely thanks the referees of an earlier version of this paper for their
detailed comments which led to a significant improvement of the paper.

4 e SÉRIE – TOME 51 – 2018 – No 2



RICCI FLOW OF ALEKSANDROV SURFACES 267

1. Existence

Here we briefly review the work of Miles Simon which shows the existence of a Ricci
flow for compact Aleksandrov surfaces with curvature bounded from below. Without loss of
generality, we will assume that all Aleksandrov surfaces with curvature bounded from below
have curvature bounded from below by �1.

What allows us to flow these surfaces is that they can be approximated by smooth surfaces
in a controlled way. This is what Theorem A.1 in the appendix says.

We will now construct a Ricci flow with metric initial condition .X; d/ as limit of the Ricci
flows of the .Mi ; gi /. In order to do this, we use the following estimates due to M. Simon:

T 1.1. – For any V > 0 and D > 0, there exist � > 0 and T > 0 such that if
.M; g/ is compact Riemannian surface satisfying:

– Kg � �1,
– diam.M; g/ � D,
– V

2
� vol.M; g/ � V ,

then the Ricci flow .M; g.t// with (classic) initial condition .M; g/ exists at least for t 2 Œ0; T /
and satisfies:

– �1 � Kg.t/ �
�
t

for t 2 Œ0; T /,
– diam.M; g.t// � 2D for t 2 Œ0; T /,
– V

4
� vol.M; g.t// � 2V for t 2 Œ0; T /,

– dg.s/ � �.
p
t �
p
s/ � dg.t/ � e

�.t�s/dg.s/ for 0 < s < t � T .

R 1.2. – Note that in dimension 2 a lot of the arguments used by M. Simon
to prove these estimates in dimension 3 become very simple. Only the existence of T and
the �=t bound require a delicate blowup analysis.

Using these estimates on each Ricci flow .Mi ; gi .t//with classic initial condition .Mi ; gi /,
we have, using the compactness theorem of Hamilton for flows, a subsequence which
converges to a Ricci flow .M; g.t// defined for t 2 .0; T / which satisfies the estimates of
Theorem 1.1. Using the estimate on the distances, we can argue as in [14] to show that
.M; g.t// has .X; d/ as metric initial condition.

2. Uniqueness of the conformal class

In this section, we prove that the metric initial condition determines the conformal class
of the flow under the geometric estimates we have assumed.

P 2.1. – Let .M1; h1/ (resp. .M2; h2/) be compact Riemannian surfaces of
constant curvature, g1.x; t/ D w1.x; t/h1.x/ (resp. g2.x; t/ D w2.x; t/h2.x/) a smooth Ricci
flow on M1 � .0; T � (resp. M2 � .0; T �).

Assume that:

1. �1 � Kg1
.x; t/ and �1 � Kg2

.x; t/,
2. .M1; g1.t// and .M2; g2.t// have the same compact Aleksandrov surface .X; d/ as metric

initial condition.

Then there exists a conformal diffeomorphism ' W .M1; h1/! .M2; h2/.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



268 T. RICHARD

Set ui .x; t/ D 1
2

logwi .x; t/, so that gi D e2uihi . In the following lemmas, u (resp. w)
denotes either u1 or u2 (resp. w1 or w2).

L 2.2. – When t goes to 0, u.:; t/ (resp.w.:; t/)converges inL1 norm to an integrable
function u0.:/ (resp. w0.:/).

Proof. – Since @tu D �Kg � 1, we have that u.x; t/� t increases as t decreases to 0. This
allows us to define the pointwise limit u0.x/ of u.t; x/ as t goes to 0. If we fix t0 > 0, this also
gives us that, using the smoothness of u, for t 2 .0; t0/, u.x; t/ � u.x; t0/� .t0� t /. Thus u is
uniformly bounded from below.

Moreover, by Jensen’s inequality:

exp
�
2

Z
M

u.x; t/
dvh

vol.M; h/

�
�

Z
M

e2u.x;t/
dvh

vol.M; h/
D

vol.M; g.t//
vol.M; h/

:

Now it is easy to see using the Gauss-Bonnet formula that

d
dt

vol.M; g.t// D �2
Z
M

Kg.t/dvg.t/ D �4��.M/;

hence vol.M; g.t// is equal to vol.M; g.t0//� 4��.M/.t � t0/ and vol.M; g.t// is uniformly
bounded above on any interval .0; t0�. This gives that u.:; t/ is uniformly bounded in L1.
Using Lebesgue’s monotone convergence theorem, we get that u0 is in L1 and u.:; t/

converges to u0 in L1 norm. This settles the convergence of u.x; t/.
For w, since w D e2u and

R
wdvh D vol.M; g.t//, a similar monotonicity argument can

be applied.

L 2.3. – u0 belongs to the space Pot.M; h/ defined in the appendix.

Proof. – The previous lemma shows that u0 is anL1 function. We just need to check that
the distributional Laplacian of u0 is a signed measure.

To see this, we write, for a smooth function � WM ! R:Z
M

�.x/�hu.x; t/dvh.x/ D

Z
M

�.x/.Kh �Kg.t/e
2u.x;t//dvh

D

Z
M

�.x/Khdvh �

Z
M

�.x/d!g.t/

where d!g.t/ D Kg.t/e2u.x;t/dvh is the curvature measure of .Mi ; gi .t//. By Theorem A.15,
since the distance dg.t/ uniformly converges to the distance d , the curvature measures weakly
converge to the curvature measure of .M; d/ which we call d!. We integrate by parts on the
left side of the previous equality and let t go to 0, we get:Z

Mi

u0.x/�h�.x/dvh D

Z
M

�.x/Khdvh �

Z
Mi

�.x/d!:

This tells us that the distributional Laplacian of u0 is the measure d� D Khdvh � d!.

As in the appendix, we define a new distance on M by d0 D dh;u0
. Since .M; d/ has

curvature bounded from below, the condition d�C.fxg/ < 2� is satisfied (see Remark A.18),
and d0 is a distance on M whose induced topology is the usual manifold topology of M .

L 2.4. – For any x and y in M , d.x; y/ D d0.x; y/.

4 e SÉRIE – TOME 51 – 2018 – No 2



RICCI FLOW OF ALEKSANDROV SURFACES 269

Proof. – For t > 0, consider the curvature measures:

d!t D Kg.t/e
2u.x;t/dvh:

By Theorem A.15, the curvature measures weakly converge to the curvature measure d!
of .M; d/. Moreover, since the curvature of .M; d/ is bounded from below by �1,
d! � �e2u0dvh. Set:

d�t D Khdvh � d!t :

As t goes to 0, d�t weakly converges to d�, since d� is bounded from below by an integrable
function, we have that d�Ct and d��t weakly converge to d�C and d��. We also have
convergence of the volumes. We can then apply Theorem A.17 to get that dg.t/ uniformly
converges to dh;u0

. This gives the claimed result.

We will write .M; e2u0h/ for M equipped with the distance d0.

We are now ready to prove Proposition 2.1:

Proof (of Proposition 2.1). – For each Ricci flow .Mi ; e
2ui .x;t/hi .x//, we have

constructed a ui;0.x/ such that .Mi ; e
2ui;0hi / is isometric to .X; d/. Thus there exists

an isometry ' from .M1; e
2u1;0.x/h2.x// to .M2; e

2u2;0.x/h2.x//. Theorem A.19 exactly
gives that ' is conformal from .M; h1/ to .M; h2/.

3. End of the proof

Thanks to the results of the previous section, we can now assume that g1.x; t/ D
w1.x; t/h.x/ and g2.x; t/ D w2.x; t/h.x/ are two Ricci flows on a surface .M; h/ with
metric initial condition .M; d/ defined for t in .0; T �.

It is a standard fact that w1 and w2 satisfy the following equation of M � .0; T �:

(1)
@wi

@t
D �h log.wi / � 2Kh:

The next lemma relates the metric initial condition with the behavior of wi as t goes to 0:

L 3.1. – wi .:; t/dvh weakly converges to the 2-dimensional area measure d� associ-
ated with d .

This is Theorem A.15 in the appendix.

First we prove some estimates on wi :

L 3.2. – One can find C > 0 depending on K, w1 and w2 only, such that:

Cet � wi .x; t/

for all x in M � .0; T �.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



270 T. RICHARD

Proof. – We set w D w1, the proof is the same for w2. We have:

@tg D @twh D �2Kgg D �2Kgwh

which gives @tw D �2Kgw. Using the geometric estimates on the curvature, we get:

@tw

w
� 2:

Let 0 < t1 < t2 < T , compute at some fixed x 2M , then:

Œlog.w.x; t//�t2t1 � 2.t2 � t1/

and:
w.x; t2/

w.x; t1/
� e2.t2�t1/

thus:
w.x; t1/

w.x; t2/
� e2.t1�t2/:

Let t1D t and t2>0 be some fixed time in .0; T / and use thatw.:; t2/ is smooth onM compact,
we get the required estimate.

The weak convergence of wi .:; t/dvh to d� is not really pleasant to work with when
dealing with uniqueness issues. In fact, the following lemma shows that the convergence is
strong in L1.

L 3.3. – As t goes to 0, w.:; t/ converges in L1 norm to a function w0 which satisfies
w0dvh D d� .

Proof. – Let Qw.x; t/ D e�2tw.x; t/, then:

@t Qw.x; t/ D �2e
�2tw.x; t/C e�2t@tw.x; t/:

As in the proof of the previous lemma: @tw � 2w. So @t Qw � 0 and Qw.x; t/ increases as t
decreases to 0. Let w0 be the pointwise limit of Qw.:; t/ as t goes to 0. Since

R
M
Qw.x; t/dvh D

e�2t vol.M; g.t// is bounded, Lebesgue’s monotone convergence theorem gives that w0 is
in L1 and Qw.:; t/ (and w.:; t/) converges in L1 norm to w0. Since L1 convergence implies
weak convergence, w0dvh D d� .

We now prove the uniqueness statement.

P 3.4. – w1.x; t/ D w2.x; t/ for any x 2M and t 2 .0; T �.

Proof. – We will prove that for any smooth nonnegative function � on M and any
T 0 2 .0; T �: Z

M

.w1.x; T
0/ � w2.x; T

0//�.x/dvh.x/ D 0:

Let  be a smooth function on M � .0; T 0� and 0 < s < T 0, then:Z
M

.w2.x; T
0/ � w1.x; T

0// .x; T 0/dvh �

Z
M

.w2.x; s/ � w1.x; s// .x; s/dvh

D

Z T 0

s

Z
M

.w2.x; �/ � w1.x; �//.A.x; �/�h .x; �/C @t .x; �//dvhd�

4 e SÉRIE – TOME 51 – 2018 – No 2



RICCI FLOW OF ALEKSANDROV SURFACES 271

where A.x; �/ D log.w2.x;�//�log.w1.x;�//
w2.x;�/�w1.x;�/

. Since w1 and w2 are smooth and positive
on M � .0; T �, A is smooth too. Moreover, by the mean value theorem and Lemma 3.2, we
have, for .x; t/ 2M � .0; T �:

'.t/ � A.x; t/ �
1

C1
where ' is the positive continuous function defined by:

'.t/ D inf
x2M

min
�

1

w1.x; t/
;

1

w2.x; t/

�
> 0:

We now choose  .x; t/ to be the solution of the following backward linear heat equation:(
@ 
@t
.x; t/ D �A.x; t/�h .x; t/;

 .x; T 0/ D �.x/:

Thanks to the properties of smoothness and positivity of A,  exists and is smooth
on M � .0; T 0� and the maximum principle shows that: 0 �  .x; t/ � supx2M �.x/.
We also get:Z

M

.w2.x; T
0/ � w1.x; T

0//�.x/dvh D

Z
M

.w2.x; s/ � w1.x; s// .x; s/dvh:

We now let s go to 0. Since w1.:; s/ � w2.:; s/ goes to 0 in L1 norm and  .x; s/ is bounded,
the right hand side of the previous equality goes to 0 and :Z

M

.w2.x; T
0/ � w1.x; T

0//�.x/dvh D 0:

Since this equality is true for any � and any T 0 > 0, we have thatw1 andw2 are equal almost
everywhere, since these functions are smooth, we get equality everywhere.

Appendix

Facts from the theory of Aleksandrov surfaces

This appendix gathers the results from the theory of Aleksandrov surfaces with bounded
integral curvature or curvature bounded from below that have been used in the paper. All
these results can be found in the works of Aleksandrov and Reshetnyak (see [3], [1] and [11]).
A survey in a more modern language can be found in [16].

We use two notions of surfaces with special curvature properties in this work that we will
present in the two subsections of this appendix.

A.1. Surfaces with curvature bounded from below

Our main objects of interest are compact surfaces with curvature bounded from below
by�k, which are surfaces with an intrinsic metric .X; d/whose geodesic triangles are “fatter”
than those in the complete simply-connected surface of constant curvature �k. These were
defined in the introduction, but see also [4], Chapters 4 and 10. For k D 0 the theory has
been developed by A.D. Aleksandrov. All the results we mention here are shown in [3] in the
k D 0 case. The generalization of these results to nonzero curvature bounds can usually be
reduced to simple exercises in non-Euclidean plane geometry, however we will give references
when available or sketch the proofs.
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First we need a theorem on the approximation of compact Aleksandrov surfaces with
curvature bounded from below by smooth surfaces:

T A.1. – For any compact Aleksandrov surface with curvature bounded from below
by �k .X; d/, there exist a sequence of smooth compact Riemannian surfaces .Mi ; gi /i2N
satisfying:

– Kgi
� �k,

– diam.Mi ; gi / � D,
– V

2
� vol.Mi ; gi / � V ,

which Gromov-Hausdorff converges to .X; d/.

Proof. – We first remark that we just need to build a sequence .Mi ; gi / satisfying
Kgi

� �k which Gromov-Hausdorff converges to .X; d/: the other bounds will follow
from the continuity of the diameter and the two-dimensional Hausdorff with respect to
Gromov-Hausdorff convergence with curvature bounded from below, see Exercise 7.3.14
and Theorem 10.10.10 in [4].

This theorem seems to have belonged to the folklore of the metric geometry of surfaces
for several decades, but a proof of it is surprisingly hard to locate. To the knowledge of the
author, the only written proof that can be found is Lemma 2.4 in [7].

We will also need some properties of angles in a metric space.
Let a; b; c be three points in a metric space .X; d/; we define the k-comparison angle Q∠kacb

as the angle at Qa of the comparison triangle Qa Qb Qc in S2
k

whose sides have length dk. Qa; Qb/ D
d.a; b/, dk. Qa; Qc/ D d.a; c/ and dk. Qb; Qc/ D d.b; c/. This notion gives us another characteri-
zation of spaces with curvature bounded below:

P A.2 ([4], Proposition 10.1.1). – Let .X; d/ be a geodesic metric space.
.X; d/ has curvature bounded from below by k 2 R if and only if for any points a; b; c; d 2 X ,
we have the following inequality:

Q∠ka
c
b C
Q∠ka

d
c C
Q∠ka

b
d � 2�:

Let .
1.s//s2Œ0;T � and .
2.t//t2Œ0;T � be two shortest paths parametrized by arc length
in .X; d/ such that 
1.0/ D 
2.0/ D m 2 X . We define the upper angle ∠.
1; 
2/ between 
1
and 
2 by:

∠.
1; 
2/ D lim sup
t!0;s!0

Q∠0m

1.s/


2.t/
:

Since the cosine laws in Euclidean, spherical and hyperbolic geometry are equivalent when
the sides of the triangle go to 0, using Q∠k for k ¤ 0 instead of Q∠0 in the definition above will
not change the upper angle.

If the limsup above is actually a limit,∠.
1; 
2/ is called the angle between 
1 and 
2 and is
denoted by∠.
1; 
2/. In an Aleksandrov space with curvature bounded from below, the angle
between two shortest paths is always defined: see Proposition 4.3.2 in [4]. If T is a geodesic
triangle and a; b; c are the vertices of T , then the angle ∠a D ∠ac

b
at a is the angle between

the two edges of T which emanate from a.
Angles allow us to give an alternative characterization of compact surfaces with curvature

bounded from below in the sense of Aleksandrov.
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P A.3 ([4], Theorem 4.3.5). – A compact topological surface X with an
intrinsic distance d is a compact surface with curvature bounded greater than k in the sense of
Aleksandrov if and only if the following two conditions are satisfied:

1. for any geodesic triangleT the angles at the vertices ofT are bigger than the corresponding
angle in the comparison triangle T � S2

k
whose sides have the same length than the sides

of T ;
2. for any four points a; b; c; d , for any shortest paths 
 from a to b and � from c to d , if c lies

on 
 and is different from a and b, then ∠cda C ∠cd
b
D � .

In the end of this section, we will state two properties of Aleksandrov surfaces with
curvature bounded from below which are specific to dimension 2 and play an important role
in linking surfaces with curvature bounded from below with surfaces with bounded integral
curvature.

First we need to define some concepts. These discussions are extracted from [3],
Chapter IV and [1] Chapter II for convenience of the reader.

In a surface .X; d/ with curvature bounded from below, any two distinct shortest
paths .
.s//s2Œ0;"/ and .�.t//t2Œ0;"/ such that 
.0/ D �.0/ D m 2 X will not meet for
some finite time "0 > 0, by this we mean that 
.Œ0; "0// \ �.Œ0; "0// D m. It follows that
the same is true for any finite collection 
1; : : : ; 
n of shortest paths emanating from m.
Intersecting these shortest paths with a very small topological disk D containing m, this
gives a partition of D into n sectors, each of them bounded by two of the 
i and a portion
of the boundary of D. If 
k and 
l are two distinct shortest paths from m, they divide a
small enough disk D around m into two connected components. If D is endowed with
an orientation, we can pick the component which lies on the right side of the path going
from 
k to m to 
l . We call this component the sector inside D bounded by 
k and 
l .

Two shortest paths which are part of the boundary of one of the sectors are said to be
adjacent. A shortest path 
i is said to be between 
k and 
l if for any � > 0 and any
topological diskD aroundm, 
i .Œ0; "// intersects the sector insideD bounded by 
k and 
l .
A finite list 
1; : : : ; 
n of shortest paths emanating from a point m 2 X is said to be ordered
if for any i , 
i is between 
i�1 and 
iC1 (where the indices are understood modulo n).

With these notions, we have the following result:

P A.4. – Letm 2 X where .X; d/ is a compact surface with curvature bounded
from below by k. Let 
1; : : : ; 
n be an ordered list of n shortest paths emanating from m 2 X .
Let ˛i D ∠.
i ; 
iC1/. Then:

˛1 C ˛2 C � � � C ˛n � 2�:

R A.5. – The author has not been able to locate an elementary proof of this
result. For the k D 0 case, Aleksandrov proves this via approximation of the surface by
convex polyhedra in [3]. In [8], this fact is used for arbitrary k but a proof is not provided.
One can probably argue as follows: the tangent cone to .X; d/ at any pointm is a cone over a
dimension 1 Aleksandrov space of curvature greater than 1 (see [4], Corollary 10.9.6). Since
an Aleksandrov space of dimension 1 is either an interval of length not greater than � or a
circle of length not greater than 2� , this implies that the proposition is true for the tangent
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cone. Since the proposition is infinitesimal in nature, it should hold for the original surface.
For convenience of the reader we sketch an elementary proof below.

Proof (Sketch). – We prove the result by induction on n. The statement is empty
for n D 0; 1 and trivial for n D 2 since any angle is less than � by definition. For n D 3, the
result follows by applying Proposition A.2 with a D m, b D 
1.t/, c D 
2.t/ and d D 
3.t/
and letting t go to 0.

Now the induction step is done as follows. If we have n � 4 shortest paths, we can find
two shortest paths 
k and 
l which are not adjacent. There are two cases to consider here,
either the broken path formed by 
k and 
l is a shortest path, in which case we can apply
Theorem 1* on p. 130 of [3] to both sides of this shortest path and conclude, or it is not. In
this case, consider the sequence of shortest paths ci joining 
k.1i / and 
l .1i /. Because of the
Jordan curve theorem, we can assume after passing to a subsequence that ci intersects all
the shortest paths 
i lying on a fixed side of the broken path made by 
k and 
l in an order
compatible with the order on the shortest path. Without loss of generality, we can assume
that k < l and ci intersects every 
i for k < i < l . In this situation we can apply Theorem 3
on p. 128 of [3], and conclude that the angle between 
k and 
l is the sum ˛kC� � �C˛l�1. We
can thus discard all the shortest paths 
i for k < i < l without modifying the sum, which
will then be less than 2� by the induction hypothesis. This ends the induction step.

We will also need the following elementary observation:

L A.6. – For any point m in a compact surface .X; d/ with curvature bounded from
below by k, one can find two shortest paths 
1, 
2 emanating from m such that ∠.
1; 
2/ > 0.

Proof. – Since .X; d/ is a topological surface and a geodesic metric space, we can find
two points p1 and p2 such that:

d.p1; p2/ < d.p1; m/C d.m; p2/;

d.p1; m/ < d.p1; p2/C d.p2; m/;

d.p2; m/ < d.p2; p1/C d.p1; m/:

Let 
i be a shortest path from m to pi ; by the angle characterization of lower curvature
bounds, we have that ∠.
1; 
2/ is greater than the angle in the comparison triangle in S2

k
.

In particular:
∠.
1; 
2/ > 0:

These two previous propositions can be summarized using the concept of complete angle
at a point m 2 X .

D A.7. – The complete angle �.m/ at a point m 2 .X; d/ is the supremum of
nX
iD1

∠.
i ; 
iC1/

over all ordered finite lists of shortest paths .
1; : : : ; 
n/ emanating from m.

The two previous propositions show:
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P A.8. – The complete angle �.m/ at a point m in a surface .X; d/ with
curvature bounded from below satisfies:

�.m/ 2 .0; 2��:

A.2. Surfaces with bounded integral curvature

A wider class of surfaces is the class of surfaces with bounded integral curvature in the
sense of Aleksandrov. The references for this topic are [1] and [11]. Before defining what it
means for a surface to have bounded integral curvature, we first need some definitions.

Let .X; d/ be a topological surface endowed with an intrinsic metric d .

D A.9. – A filled geodesic triangle T � X is an open set homeomorphic to a
disk whose boundary consists of three consecutive shortest paths. We will call the endpoints of
these shortest paths the vertices of T , the shortest paths themselves the edges of T .

D A.10. – A filled geodesic triangle T is said to be simple if for any pair of
points e; f in the boundary of T , any curve joining e to f in XnT is longer than the shortest
path joining e to f in the boundary of T .

R A.11. – It is easy to see that a simple triangle is convex in the sense that any
shortest path between points in T remains in T .

The upper angle at a vertex a of a geodesic triangle T is the upper angle between the
two edges of T emanating from a and is denoted by ∠a. The excess of a triangle is defined
by e.T / D ∠aC ∠b C ∠c � � where a, b and c are the vertices of T .

We can now define the concept of bounded integral curvature.

D A.12. – A compact surface with an intrinsic metric .X; d/ is said to have
bounded integral curvature if there is a constantC such that for any finite family .Ti / of disjoint
simple triangles,

P
i je.Ti /j � C .

We then have the following result:

P A.13. – A compact surface with curvature bounded from below by somek2R
in the sense of Aleksandrov has bounded integral curvature.

A proof of this fact for k D 0 follows easily from the work of Aleksandrov. For the case
of general k, it can be extracted from [8]. For convenience of the reader, we provide a proof.

Proof. – We first treat the k D 0 case. Let us first notice that the excess of a geodesic
triangle in a surface of nonnegative curvature is always nonnegative by Proposition A.3.
Consider a finite collection T of disjoint simple triangles. It follows from the Theorem
on p. 88 of [3] that we can add finitely many geodesic triangles to T and get a triangu-
lation T

0 of X . Let V be the number of vertices of the triangulation induced by T
0 and

F be the number of triangles of T
0. Then the Euler-Poincaré characteristic of X satisfies

2�.X/ D 2V � F .
On the other hand we have:

(2)
X
T2T

0

e.T / D
X
T2T

0

.˛T C ˇT C 
T � �/ � 2�V � �F D 2��.X/;
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where we have denoted by ˛T ; ˇT and 
T the three angles of a triangle T and used Propo-
sition A.4 to bound the sum of all angles at a given vertex by 2� . Now since the excesses of
each triangle are nonnegative we get:X

T2T

je.T /j �
X
T2T

0

je.T /j D
X
T2T

0

e.T / � 2��.X/:

Which completes the proof for the k D 0 case.
We now investigate the case when k ¤ 0. It is actually enough to only consider the case

k D �1. The bound (2) still holds. Let A denote the area measure on .X; d/, it can be
defined as the 2-dimensional Hausdorff measure on Borel subsets of .X; d/. The area of a
filled geodesic triangle is by definition A .T /, moreover the total area of a compact surface
with curvature bounded below is finite. We will need the following fact:

If T is a simple triangle in a compact surface with curvature greater than �1, then
e.T / � �A .T /.

We postpone the proof of this fact and first see how it implies our result.
Decompose T into T C D fT 2 T je.T / � 0g and T � D fT 2 T je.T / � 0g. Then:X

T2T

je.T /j D
X

T2T C

e.T /C .�
X
T2T �

e.T //:

The second term can be bounded above by
P
T2T �

A .T / � A .X/. To give an upper
bound for the first term we write, using Equation (2):X
T2T C

e.T / � 2��.X/ �
X

T2T
0
nT C

e.T / � 2��.X/C
X

T2T C

A .T / � 2��.X/C d A .X/:

In the end we get: X
T2T

je.T /j � 2��.X/C 2A .X/;

which shows that .X; d/ has bounded integral curvature.
Let us now show the estimate e.T / � �A .T /. To this end, denote by QT the comparison

triangle in S2�1 D H2 whose sides have the same length than the sides of T ; it follows from
Proposition A.3 that e.T / � e. QT /. Moreover, e. QT / D �A . QT / since QT is a hyperbolic
triangle and A is just the usual area in H2.

We thus just need to show that A . QT / � A .T /. This can be proved along the following
lines: first isometrically identify each of the sides of T with the corresponding side of QT ,
using the definition of curvature bounded from below given in the introduction, this gives a
1-Lipschitz map f from the boundary ofT to the boundary of QT . We then use the Kirszbraun
theorem from [2], which asserts that f can be extended as a 1-Lipschitz map from T to QT .
This map is surjective for topological reasons. Thus the area of T is bigger than the area
of QT .

Aleksandrov surfaces with bounded integral curvature have well-defined notions of
area and curvature, which are measures on the surface (signed measure for the curvature).
Following the notations of [1], we will denote the area measure by d� and the curvature
measure by d!. The curvature measure d! is defined in [1] p. 156, on a simple triangle T ,
the curvature d!.T / is just the excess e.T / of this triangle.
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In the case of compact smooth surfaces .M; g/, these measures coincide with the usual
notions of volume form dvg and curvature measure Kgdvg , see [1], Chapters 5 and 8.

R A.14. – In the case of surfaces with curvature bounded below we used in the
last proof as an area measure the 2-dimensional Hausdorff measure. The area measure is
defined in [1] in a different way; however it is said on p. 266 of the previous reference that
these two notions of area coincide on Borel sets. Unfortunately the author has not been able
to locate the reference to the proof that is given in the book. Anyway, we will not need this
result.

The next theorem shows that, within the class of Aleksandrov surfaces with bounded
integral curvature, the curvature measure and the area measure depend continuously on the
distance, this is Theorem 6, p. 240 and Theorem 9 p. 269 in [1].

T A.15. – Let .di /i2N and d be distances on a compact surface M such that:

– .M; d/ and each of the .M; di / are Aleksandrov surfaces of bounded integral curvature;
– as functions on M �M , the distances di uniformly converge to d .

Then the curvature measures !i of .M; di / weakly converges to the curvature measure !
of .M; d/, that is, for any continuous ' function on M :Z

M

'd!i
i!1
���!

Z
M

'd!:

Moreover, the area measure �i of di weakly converges to the area measure � of d .

Our aim now is to present a partial converse of the previous theorem. In the sequel, h is a
fixed smooth Riemannian metric on M . We consider the space Pot.M; h/ of L1 functions u
onM whose distributional Laplacian with respect to h is a signed measure d� onM , we say
that u is the potential of d�. Such a u is the difference of two subharmonic functions and has
a representative which is well-defined outside a set of Hausdorff dimension 0 in M .

The volume of u is defined by V.u/ D
R
M
e2udvh. Given a zero mass signed measure d�

andV > 0, d� has a unique potentialud�;V of volumeV . We will denote by d� D d�C� d��

the Jordan decomposition of d�. Reshetnyak has studied the non-smooth Riemannian
metric e2uh. We have ([11] Theorem 7.1.1 on p. 100, [16] Proposition 5.3):

T A.16. – Let u 2 Pot.M; h/ be a potential of d�. Assume that d�C.fxg/ < 2�
for any x 2M . Define:

dh;u.x; y/ D inf

2�.x;y/

Z 1

0

eu.
.�//j P
.�/jhd�

where �.x; y/ is the space of C 1 paths 
 from Œ0; 1� to M with 
.0/ D x and 
.1/ D y.
Then dh;u is a distance onM such that .M; dh;u/ has bounded integral curvature. The curvature
measure of this surface is given by:

d! D Khdvh � d�:

We are now ready to state the converse of Theorem A.15. This is Theorem 7.3.1 in [11],
p. 112, see also [16], Theorem 6.2.
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T A.17. – Let .M; h/ be a smooth Riemannian surface and .d�Ci /i2N .d�
�
i /i2N

be two sequences of (nonnegative) measures which weakly converge to d�C and d�� and such
that d�Ci .M/ and d��i .M/ are equal and bounded independently of i .

Let Vi be a sequence of positive numbers converging to V > 0. Let ui be the potential
of d�i D d�Ci � d�

�
i of volume Vi and u be the potential of d� D d�C � d�� of volume V .

Assume that d�.fxg/ < 2� for all x 2M . Then the distances dh;ui
uniformly converge

as i goes to infinity to the distance dh;u.

R A.18. – When d� is the curvature measure of a surface with curvature
bounded from below, the condition d�.fxg/ < 2� is automatically fulfilled. In fact, it
follows from the discussion on “complete angles at a point” in [1] (Chapter 2, Section 5 and
Chapter 4, Section 4) that the curvature d!.fxg/ of a point x in .M; d/ is equal to 2���.x/,
where �.x/ is the complete angle at x from Definition A.7. Proposition A.8 thus implies that
d�.fxg/ 2 Œ0; 2�/.

The next theorem, due to Huber ([6], Satz A.), says that the distance dh;u determines the
conformal class of h, see [11] Theorem 7.1.3 or [16] Theorem 6.4.

T A.19. – Let .M; h/ and .M 0; h0/ be two compact Riemannian surfaces,
u 2 Pot.M; h/ and u0 2 Pot.M 0; h0/. Assume f is an isometry from .M; dh;u/ to .M 0; dh0;u0/,
then f is a conformal diffeomorphism from .M; h/ to .M 0; h0/.

The proof of this theorem is related to some ideas from the theory of quasiconformal
maps. Recall that a homeomorphism f between two open sets of C is said to be H -quasi-
conformal (H � 1) if

lim sup
r!0

maxjz�z0jDr jf .z/ � f .z0/j

minjz�z0jDr jf .z/ � f .z0/j
� H

for any z0 in the domain of f . Menchoff proved in [9] that a 1-quasiconformal map is actually
a conformal diffeomorphism (and hence is holomorphic or anti-holomorphic), he actually
showed that it is enough to require that f is 1-quasiconformal on its domain except maybe
at a finite number of points.

In [6], Huber shows that, around every point p in M except a finite number, one can find
complex charts U and U 0 on M and M 0, and at any point z0 2 U :

lim
r!0

maxjz�z0jDr jf .z/ � f .z0/j

minjz�z0jDr jf .z/ � f .z0/j
D 1:

This is Equation (3.20) in [6]. It is proved using delicate potential theoretic estimates on u
and u0.

One can then use a theorem of Menchoff [9] to conclude that f is conformal.
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