Morse-Smale systems and horseshoes for three dimensional singular flows
[Systèmes Morse-Smale et fers-à-cheval pour les flots singuliers en dimension 3]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112.

Nous montrons que tout champ de vecteurs en dimension trois peut être accumulé en topologie C1 ou bien par un champ Morse-Smale, ou bien par un champ possédant une intersection homocline transverse associée à une orbite périodique hyperbolique. Contrairement au cas des difféomorphismes [14], la principale difficulté ici consiste à traiter les singularités. Nous progressons également en direction d'une autre conjecture de Palis.

We prove that every three-dimensional vector field can be C1 accumulated by Morse-Smale ones, or by ones with a transverse homoclinic intersection of some hyperbolic periodic orbit. In contrast to the case of diffeomorphisms [14], the main difficulty here is that we need to deal with singularities. We also make progress on another conjecture related to Palis in this paper.

DOI : 10.24033/asens.2351
Classification : 37C10, 37C20, 37C29, 37D15, 37D30.
Keywords: Morse-Smale system, horseshoe, vector field, singularity.
Mot clés : Système de Morse-Smale, fer-à-cheval, champ de vecteurs, singularité.
@article{ASENS_2018__51_1_39_0,
     author = {Gan, Shaobo and Yang, Dawei},
     title = {Morse-Smale systems and horseshoes  for three dimensional singular flows},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {39--112},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {1},
     year = {2018},
     doi = {10.24033/asens.2351},
     mrnumber = {3764038},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2351/}
}
TY  - JOUR
AU  - Gan, Shaobo
AU  - Yang, Dawei
TI  - Morse-Smale systems and horseshoes  for three dimensional singular flows
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 39
EP  - 112
VL  - 51
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2351/
DO  - 10.24033/asens.2351
LA  - en
ID  - ASENS_2018__51_1_39_0
ER  - 
%0 Journal Article
%A Gan, Shaobo
%A Yang, Dawei
%T Morse-Smale systems and horseshoes  for three dimensional singular flows
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 39-112
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2351/
%R 10.24033/asens.2351
%G en
%F ASENS_2018__51_1_39_0
Gan, Shaobo; Yang, Dawei. Morse-Smale systems and horseshoes  for three dimensional singular flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112. doi : 10.24033/asens.2351. http://www.numdam.org/articles/10.24033/asens.2351/

Afraĭmovič, V. S.; Bykov, V. V.; Sil'nikov, L. P. The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977), pp. 336-339 (ISSN: 0002-3264) | MR | Zbl

Anosov, D. V., Mathematical events of the twentieth century, Springer, Berlin, 2006, pp. 1-17 | MR | Zbl

Arroyo, A.; Rodriguez Hertz, F. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Arnaud, M.-C. Création de connexions en topologie C1 , Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 339-381 (ISSN: 0143-3857) | DOI | MR | Zbl

Bonatti, C.; Crovisier, S. Récurrence et généricité, Invent. math., Volume 158 (2004), pp. 33-104 (ISSN: 0020-9910) | DOI | MR | Zbl

Bonatti, C.; Díaz, L. J.; Pujals, E. R. A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., Volume 158 (2003), pp. 355-418 (ISSN: 0003-486X) | DOI | MR | Zbl

Bonatti, C.; Díaz, L. J.; Viana, M., Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl

Bonatti, C.; Gourmelon, N.; Vivier, T. Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1307-1337 (ISSN: 0143-3857) | DOI | MR | Zbl

Bonatti, C.; Gan, S.; Wen, L. On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1473-1508 (ISSN: 0143-3857) | DOI | MR | Zbl

Bonatti, C.; Gan, S.; Yang, D. Dominated chain recurrent class with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 83-99 (ISSN: 0391-173X) | MR

Birkhoff, G. D. Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyncaei, Volume 53 (1935), pp. 85-216 | JFM | Zbl

Conley, C., CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R.I., 1978, 89 pages (ISBN: 0-8218-1688-8) | MR | Zbl

Crovisier, S. Periodic orbits and chain-transitive sets of C1-diffeomorphisms, Publ. Math. IHÉS, Volume 104 (2006), pp. 87-141 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Crovisier, S. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math., Volume 172 (2010), pp. 1641-1677 (ISSN: 0003-486X) | DOI | MR | Zbl

Crovisier, S.; Sambarino, M.; Yang, D. Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1-49 (ISSN: 1435-9855) | DOI | MR

Franks, J. Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., Volume 158 (1971), pp. 301-308 (ISSN: 0002-9947) | DOI | MR | Zbl

Guckenheimer, J. A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series), Volume 19 (1976), pp. 368-381 | DOI

Guckenheimer, J.; Williams, R. F. Structural stability of Lorenz attractors, Publ. Math. IHÉS, Volume 50 (1979), pp. 59-72 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Hayashi, S. Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137 (ISSN: 0003-486X) | DOI | MR | Zbl

Hirsch, M. W.; Pugh, C. C.; Shub, M., Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl

Kupka, I. Contribution à la théorie des champs génériques, Contributions to Differential Equations, Volume 2 (1963), pp. 457-484 | MR | Zbl

Kupka, I. Addendum et corrections au mémoire: “Contributions à la théorie des champs génériques”, Contributions to Differential Equations, Volume 3 (1964), pp. 411-420 | MR | Zbl

Li, M.; Gan, S.; Wen, L. Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 (ISSN: 1078-0947) | DOI | MR | Zbl

Liao, S. T. A basic property of a certain class of differential systems, Acta Math. Sinica, Volume 22 (1979), pp. 316-343 (ISSN: 0583-1431) | MR | Zbl

Liao, S. T. On the stability conjecture, Chinese Ann. Math., Volume 1 (1980), pp. 9-30 | MR | Zbl

Liao, S. T. Obstruction sets. II, Beijing Daxue Xuebao, Volume 2 (1981), pp. 1-36 | MR

Liao, S. T. Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits, Beijing Daxue Xuebao, Volume 2 (1985), pp. 1-19 (ISSN: 0479-8023) | MR

Liao, S. T. On (η,d)-contractible orbits of vector fields, Systems Sci. Math. Sci., Volume 2 (1989), pp. 193-227 (ISSN: 1000-9590) | MR | Zbl

Lorenz, E. N. Deterministic nonperiodic flow, J. Atmosph. Sci., Volume 20 (1963), pp. 130-141 | DOI | MR

Mañé, R. An ergodic closing lemma, Ann. of Math., Volume 116 (1982), pp. 503-540 (ISSN: 0003-486X) | DOI | MR | Zbl

Morales, C. A.; Pacifico, M. J. A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1575-1600 (ISSN: 0143-3857) | DOI | MR | Zbl

Morales, C. A.; Pacífico, M. J.; Pujals, E. R. On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998), pp. 81-86 (ISSN: 0764-4442) | MR | Zbl

Morales, C. A.; Pacifico, M. J.; Pujals, E. R. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., Volume 160 (2004), pp. 375-432 (ISSN: 0003-486X) | DOI | MR | Zbl

Newhouse, S. E., Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 191-202 | MR | Zbl

Newhouse, S. E. Diffeomorphisms with infinitely many sinks, Topology, Volume 13 (1974), pp. 9-18 (ISSN: 0040-9383) | DOI | MR | Zbl

Newhouse, S. E. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHÉS, Volume 50 (1979), pp. 101-151 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Ohno, T. A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., Volume 16 (1980), pp. 289-298 (ISSN: 0034-5318) | DOI | MR | Zbl

Palis, J. A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, Volume 261 (2000), pp. 335-347 (ISSN: 0303-1179) | Numdam | MR | Zbl

Palis, J. A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 485-507 (ISSN: 0294-1449) | DOI | Numdam | MR

Palis, J. Open questions leading to a global perspective in dynamics, Nonlinearity, Volume 21 (2008), pp. 37-43 (ISSN: 0951-7715) | DOI | MR | Zbl

Palis, J. On the C1 Ω-stability conjecture, Publ. Math. IHÉS, Volume 66 (1988), pp. 211-215 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Palis, J., Dynamical systems and related topics (Nagoya, 1990) (Adv. Ser. Dynam. Systems), Volume 9, World Sci. Publ., River Edge, NJ, 1991, pp. 466-472 | MR

Peixoto, M. M. Structural stability on two-dimensional manifolds, Topology, Volume 1 (1962), pp. 101-120 (ISSN: 0040-9383) | DOI | MR | Zbl

Poincaré, H. Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-270 | JFM

Pujals, E. R.; Sambarino, M. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math., Volume 151 (2000), pp. 961-1023 (ISSN: 0003-486X) | DOI | MR | Zbl

Smale, S. Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 97-116 | Numdam | MR | Zbl

Smale, S., Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63-80 | DOI | MR | Zbl

Smale, S., From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993, pp. 22-26 | DOI | MR

Sun, W.; Young, T.; Zhou, Y. Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3071-3082 (ISSN: 0002-9947) | DOI | MR | Zbl

Thomas, R. F. Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 601-618 (ISSN: 0002-9947) | DOI | MR | Zbl

Wen, L. Homoclinic tangencies and dominated splittings, Nonlinearity, Volume 15 (2002), pp. 1445-1469 (ISSN: 0951-7715) | DOI | MR | Zbl

Wen, L. Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004), pp. 419-452 (ISSN: 1678-7544) | DOI | MR | Zbl

Wen, L. The selecting lemma of Liao, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 159-175 (ISSN: 1078-0947) | DOI | MR | Zbl

Wen, L. On the C1 stability conjecture for flows, J. Differential Equations, Volume 129 (1996), pp. 334-357 (ISSN: 0022-0396) | DOI | MR | Zbl

Wen, L.; Xia, Z. C1 connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230 (ISSN: 0002-9947) | DOI | MR | Zbl

Xi, R. Kupka-Smale Theorem with obstacle (2005) (in Chinese)

Yang, D.; Zhang, Y. On the finiteness of uniform sinks, J. Differential Equations, Volume 257 (2014), pp. 2102-2114 (ISSN: 0022-0396) | DOI | MR | Zbl

Cité par Sources :