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MORSE-SMALE SYSTEMS AND HORSESHOES
FOR THREE DIMENSIONAL SINGULAR FLOWS

 S GAN  D YANG

A. – We prove that every three-dimensional vector field can be C 1 accumulated by
Morse-Smale ones, or by ones with a transverse homoclinic intersection of some hyperbolic periodic
orbit. In contrast to the case of diffeomorphisms [14], the main difficulty here is that we need to deal
with singularities. We also make progress on another conjecture related to Palis in this paper.

R. – Nous montrons que tout champ de vecteurs en dimension trois peut être accumulé
en topologie C 1 ou bien par un champ Morse-Smale, ou bien par un champ possédant une intersec-
tion homocline transverse associée à une orbite périodique hyperbolique. Contrairement au cas des
difféomorphismes [14], la principale difficulté ici consiste à traiter les singularités. Nous progressons
également en direction d’une autre conjecture de Palis.

1. Introduction

1.1. The main result

One of the main subjects in differentiable dynamical systems is to describe the dynamics
of “most” dynamical systems. These theories were established in the last century. See [2] for
instance. An important progress is due to Peixoto [43]:

T (Peixoto). – Assume thatM 2 is a closed surface. A C 1 vector field onM 2 is C 1

structurally stable iff it is Morse-Smale. Moreover, every vector field can be accumulated by
structurally stable ones in the C 1 topology.

D. Yang is the corresponding author. S. G. is supported by 973 project 2011CB808002, NSFC 11025101
and 11231001. D.Y. was partially supported by NSFC 11271152, 11001101, Ministry of Education of P. R.
China 20100061120098 and A Project Funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD).
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40 S. GAN AND D. YANG

Smale was interested in the generalization of Peixoto’s result and he asked whether Morse-
Smale vector fields are dense in the space of vector fields. Levinson wrote Smale that one
couldn’t expect Morse-Smale systems to be dense generally. Essential ideas were contained
in Levinson’s paper which was inspired by work of Cartwright and Littlewood. See [2, 48].
Smale noticed the point and he constructed his famous horseshoe (for two dimensional
diffeomorphisms or three-dimensional vector fields) [47] which shows that the dynamics
may be very complicated and Morse-Smale systems would not be dense in the space of
diffeomorphisms or vector fields. As in [2, Page 16]: “At that moment the world turned upside
down..., and a new life began”.

Actually, Poincaré found an important phenomenon in his famous work [44] on celestial
mechanics, which was called a “doubly asymptotical solution”. Nowadays mathematicians
call it a transverse homoclinic intersection. Smale found that his horseshoe is closely related
to transverse homoclinic intersections. Three classical results are known:

– Poincaré showed that transverse homoclinic intersections can survive under small
perturbations. Moreover, if a system has one transverse homoclinic intersection, then
it has infinitely many transverse homoclinic intersections [44].

– Birkhoff showed that if a plane system has one transverse homoclinic intersection, then
it has infinitely many hyperbolic periodic orbits [5].

– Smale proved that the existence of a transverse homoclinic intersection is equivalent to
the existence of a horseshoe [47].

In this paper, a horseshoe of a vector field is a hyperbolic set that is topologically equivalent
to a suspension of full shift with two symbols. Hence there are two kinds of typical dynamical
systems: Morse-Smale systems or systems with a horseshoe. Their dynamical behaviors are
quite different:

– The dynamics of Morse-Smale systems is very simple: the chain recurrent set of a
Morse-Smale system is a set which consists in finitely many hyperbolic periodic orbits
or singularities. The topological entropy is robustly zero.

– The dynamics of a system with a horseshoe is very complicated: its chain recurrent set
contains a non-trivial basic set with dense periodic orbits. The topological entropy is
robustly positive.

Is there other typical dynamics beyond the above two ones? Palis formulated the idea for
diffeomorphisms, and he conjectured that

C (Palis [40, 41, 42]). – Every system can be approximated either by Morse-
Smale systems or by systems exhibiting a horseshoe.

In this paper, we manage to prove such kind of results for three dimensional vector fields.

T A (Main Theorem). – Every three dimensional vector field can be C 1 approx-
imated by Morse-Smale ones or by ones exhibiting a horseshoe. In other words, Morse-Smale
vector fields and vector fields with a horseshoe form a C 1 open dense set in the space of three
dimensional vector fields.
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MORSE-SMALE SYSTEMS AND HORSESHOES 41

Important progresses have been made for the conjecture of Palis for diffeomorphisms: in
the C 1 topology, Pujals-Sambarino [45] proved it for two-dimensional diffeomorphisms (as
a corollary of a stronger result); Bonatti-Gan-Wen [9] gave a proof for three-dimensional
diffeomorphisms; and finally Crovisier [14] proved the conjecture for any dimensional diffeo-
morphisms.

Comparing with the diffeomorphism case, singularities of vector fields bring more difficul-
ties. This prevents one to use some techniques of diffeomorphisms to singular vector fields,
such as Crovisier’s central model and Pujals-Sambarino’s distortion arguments. By consid-
ering the sectional Poincaré maps of the flows, sometimes one can get some (not all) similar
properties between d -dimensional vector fields and .d � 1/-dimensional diffeomorphisms.
But singular vector field displays different dynamics, e.g., the famous Lorenz attractor [29].
In the spirit of the Lorenz attractor, geometric Lorenz attractors ([1, 17, 18]) were constructed
in a theoretical way. Roughly, a geometric Lorenz attractor is a robust attractor of a three-
dimensional vector field, and it contains a hyperbolic singularity which is accumulated by
hyperbolic periodic orbits in a robust way. The return map of a geometric Lorenz attractor
has some discontinuous points. This fact gives extra difficulties when one wants to generalize
Mañé’s classical argument [30] to singular flows (1).

The Lorenz attractor is not hyperbolic because of the existence of a singularity. On the
other hand, Mañé [30] showed that a robust attractor of a surface diffeomorphism is hyper-
bolic. This implies that the dynamics of 3-dimensional singular flows are different from
2-dimensional diffeomorphisms. Morales-Pacifico-Pujals [32, 31, 33] studied geometric
Lorenz attractors in an abstract way. They found the right concept, i.e., singular hyper-
bolicity, to describe the weak hyperbolicity of the Lorenz attractor, and they proved that
a robust transitive set of a three-dimensional vector field is singular hyperbolic. But the
dynamics of singular hyperbolic sets are not as clear as hyperbolic sets. For instance, there
is no shadowing lemma of Anosov-Bowen type.

The dynamics of general transitive sets with singularities for three-dimensional vector
fields are even more unclear for us than singular hyperbolic sets, even if the transitive sets
have some dominated splitting with respect to the linear Poincaré flow. These are the main
difficulties that we encounter. For a non-trivial transitive set without singularities of a generic
any dimensional vector field, one can adapt Crovisier’s central model [14] to get a transverse
homoclinic intersection of a hyperbolic periodic orbit.

Let us be more precise. Let M d be a d -dimensional C1 compact Riemannian mani-
fold without boundary. Denote by X1

.M d / the space of C 1 vector fields on M d . Given
X 2 X1

.M d /, denote by �t D �Xt the C 1 flow generated by X and by ˆt D d�t W TM d ! TM d

the tangent flow on the tangent bundle TM d . If X.�/ D 0, then � is called a singularity
of X . Other points are called regular. Let Sing.X/ be the set of singularities of X . For a
regular point p, if �t .p/ D p for some t > 0, then p is called periodic. Let Per.X/ be the set
of periodic points of X . If x 2 Sing.X/ [ Per.X/, then x is called a critical point of X and
Orb.x/ is called a critical orbit or critical element of X .

(1) Mañé’s classical argument was generalized to the case of diffeomorphisms by [45] and to the case of non-singular
flow by [4].
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42 S. GAN AND D. YANG

For an invariant setƒ and aˆt -invariant bundleE � TƒM d , we say thatE is contracting
(w.r.t. the tangent flow ˆt ) if there are constants C � 1; � > 0 such that kˆt jE.x/k � C e��t

for every x 2 ƒ and t � 0; we say that E is expanding if it is contracting for �X .
An invariant set ƒ of X is hyperbolic if TM d has a continuous ˆt -invariant splitting

TƒM
d
D Es ˚ hXi ˚Eu

(where the fiber hX.x/i at x is 0-dimensional or 1-dimensional depending on if x is a singu-
larity or not), such that Es is contracting and Eu is expanding. If dimEs is independent
of x 2 ƒ, then dimEs is called the index of ƒ.

For a critical point x, if Orb.x/ is a hyperbolic set, then we say that x or Orb.x/ is
hyperbolic. One can define its index as the index of the hyperbolic set Orb.x/.

Recall that a C 1 vector field X is Morse-Smale if the non-wandering set �.X/ of X
consists of only finitely many hyperbolic critical elements and their stable and unstable
manifolds intersect transversely. We use MS to denote the set of Morse-Smale vector fields
in X1

.M d /. For a hyperbolic periodic orbit 
 , define

W s.
/ D fx 2M d
W lim
t!C1

d.�t .x/; 
/ D 0g;

W u.
/ D fx 2M d
W lim
t!�1

d.�t .x/; 
/ D 0g:

We know ([20]) that W s.
/ and W u.
/ are submanifolds, which are called the stable
and unstable manifolds of 
 . If W s.
/ t W u.
/ n 
 ¤ ;, then one says that 
 has a
transverse homoclinic orbit (2). One says that X has a transverse homoclinic orbit if for some
hyperbolic periodic orbit 
 of X , 
 has a transverse homoclinic orbit. Recall that: Birkhoff-
Smale theorem asserts that the existence of transverse homoclinic orbits is equivalent to the
existence of a horseshoe (non-trivial hyperbolic basic set). We denote:

HS D fX 2 X1
.M d / W X has a transverse homoclinic orbitg:

One can restate Theorem A as:
MS [ HS is open and dense in X1

.M 3/.

1.2. More on three-dimensional flows

Given a vector fieldX , let �t be the flow generated byX . For any " > 0, fx0; x1; : : : ; xng is
called an "-chain(or "-pseudo-orbit) from x0 to xn if there are ti � 1 such that d.�ti .xi /; xiC1/ < "
for any 0 � i � n � 1. For x; y 2 M d , one says that y is chain attainable from x if for any
" > 0, there is an "-chain from x and y. x and y are chain bi-attainable if x is chain attainable
from y and y is chain attainable from x. If x is chain attainable from itself, then x is called a
chain recurrent point. The set of chain recurrent points is called the chain recurrent set of X ,
denoted by CR.X/. Chain bi-attainability is a closed equivalence relation on CR.X/. For
each x 2 CR.X/, the equivalence class containing x is called the chain recurrent class of x,
denoted by C.x/ or C.Orb.x//. These are standard by Conley’s theory [12].

Bonatti and Crovisier [6] extended theC 1 connecting lemma to pseudo-orbits. An applica-
tion of their result gave a useful classification of chain recurrent classes for C 1-generic vector

(2) Singularities cannot have transverse homoclinic intersections.
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MORSE-SMALE SYSTEMS AND HORSESHOES 43

fields (3): if a chain recurrent class contains a periodic orbit, then it is the homoclinic class of
this periodic orbit; otherwise, it is called an aperiodic class. Here, the homoclinic class of a
hyperbolic periodic orbit is defined to be the closure of all transverse homoclinic orbits of
this periodic orbit.

Hyperbolic periodic orbits may have non-transverse homoclinic intersections, which are
called homoclinic tangencies. Newhouse [34, 35, 36] studied the bifurcations of homoclinic
tangencies crucially, which generate rich dynamics. Newhouse phenomena give typical
dynamics beyond uniformly hyperbolic dynamics. There are many results for diffeomor-
phisms far away from ones with a homoclinic tangency. One can see the introduction of [15].

In this work, we can prove that every non-trivial chain recurrent class is a homoclinic class
for C 1 generic vector fields which are far away from homoclinic tangencies. Here, a chain
recurrent class is called non-trivial if it is not reduced to be a critical orbit.

T B. – There is a dense Gı set R � X1
.M 3/ such that, for every X 2 R , if X

cannot be accumulated by ones with a homoclinic tangency, then every non-trivial chain recurrent
class of X is a homoclinic class.

Theorem B is stronger than Theorem A. We will see this point in Section 4.

An important conjecture made by Palis for surface diffeomorphisms is: every two-
dimensional diffeomorphism can be accumulated either by ones with a homoclinic tangency,
or by uniformly hyperbolic ones. This was proved by Pujals-Sambarino [45] in the C 1

topology. For three-dimensional vector fields, as mentioned in [39], excluding homoclinic
tangencies and uniform hyperbolic systems, the typical dynamics may include the homo-
clinic orbits of singularities or Lorenz-like attractors. Arroyo-Rodriguez [4] proved the
conjecture of Palis if homoclinic orbits of singularities were involved for three-dimensional
vector fields (4). It is still an open problem about the density of Lorenz-like attractors or
repellers beyond uniform hyperbolicity and homoclinic bifurcations of periodic orbits (even
in the C 1 topology).

Morales-Pacifico-Pujals [31, 33] defined what is “Lorenz-like” in a dynamical way. In [32],
Morales-Pacifico gave the notion of singular Axiom A without cycle. Let’s be more precise.

We say that a continuous invariant splitting TƒM d D E ˚ F w.r.t. the tangent flow over
a compact invariant setƒ is a dominated splitting with respect to the tangent flowˆt if there
are constants C � 1; � > 0, such that kˆt jE.x/kkˆ�t jF.�t .x//

k � C e��t for every x 2 ƒ
and t � 0. For a compact invariant setƒ, we say thatƒ admits a partially hyperbolic splitting
if there is a continuous invariant splitting TƒM d D Es ˚ Ec ˚ Eu w.r.t. ˆt , where Es is
contracting,Eu is expanding, and bothEs˚ .Ec˚Eu/ and .Es˚Ec/˚Eu are dominated
splittings. In the above definition, Es or Eu is allowed to be trivial.

(3) Their results are stated for diffeomorphisms. The proof can be adapted to the case of vector fields by a parallel
way.
(4) The precise statement of the work of Arroyo-Rodriguez [4] is: any vector field can be C1 approximated by one
of the following phenomena: uniformly hyperbolicity, a homoclinic tangency and a singular cycle. Even in the non-
singular case, it does not parallel to the case of diffeomorphisms: on the one hand, the reparametrization problem
of the flow gives them difficulties; on the other hand, the diffeomorphisms between sections induced by the flow are
only defined locally.
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44 S. GAN AND D. YANG

D 1.1. – A transitive set ƒ of X 2 X1
.M 3/ is called a singular hyperbolic

attractor if

1. There is a neighborhood U of ƒ such that

ƒ D
\
t�0

�t .U /:

2. ƒ contains a singularity, and every singularity in ƒ has index 2.
3. ƒ admits a partially hyperbolic splitting TƒM 3 D Es ˚ Ecu, where dimEs D 1 and
Ecu is area-expanding: there are constants C > 0, � > 0 such that for any x 2 ƒ and
for any t � 0, one has j det.ˆt jEcu.x//j � C e�t .

ƒ is called a singular hyperbolic repeller if it is a singular hyperbolic attractor for �X .

One knows that the geometric Lorenz attractors as in [17, 18, 1] are singular hyperbolic
attractors. X 2 X1

.M 3/ is called singular Axiom A without cycle as in [32] if the chain
recurrent set of X contains only finitely many chain recurrent classes and if each chain
recurrent class is a hyperbolic basic set, or a singular hyperbolic attractor, or a singular
hyperbolic repeller.

Singular Axiom A flows include Lorenz-like flows. One ([4, 8, 32]) wonders if singular
Axiom A flows and flows with a homoclinic tangency are typical phenomena.

C (Palis: the Conjecture 5.14 of [8]). – Every X 2 X1
.M 3/ can be accumu-

lated either by vector fields with a homoclinic tangency, or by singular Axiom A vector fields
without cycle.

We get some progress on this conjecture.

T C. – There is a dense Gı set R � X1
.M 3/ such that for any X 2 R and

any singularity � of X , if the chain recurrent class C.�/ is nontrivial and admits a dominated
splitting TC.�/M 3 D E˚F w.r.t. the tangent flow, then C.�/ is a singular hyperbolic attractor
or a singular hyperbolic repeller.

Notice that in a joint work with C. Bonatti [10], we proved this result by adding an
additional assumption that C.�/ contains a periodic orbit. So, according to this result, to
prove the above theorem, we assume that C.�/ contains no periodic orbits. Then we can
consider the return map of (singular) cross-sections. After a sequence of perturbations, we
will get a contradiction. This is one of the main points of this work.

1.3. Entropy of flows

The entropy of a flow is defined to be the entropy of the time-one map of the flow. The
definition meets some problems: there are two topological equivalent flows such that one has
zero entropy and the other one has positive entropy. This pathology happens because of the
existence of singularities. See [37, 50, 49] for references. But using the main theorem of the
paper, we can prove:

T 1.2. – There is a dense open set U � X1
.M 3/ such that for any X 2 U , for

any Y topologically equivalent to X , one has h.X/ D 0 iff h.Y / D 0.
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MORSE-SMALE SYSTEMS AND HORSESHOES 45

Proof. – By Theorem A, there is a dense open set U � X1
.M 3/ such that for any

X 2 U , either X is Morse-Smale, or X has a non-trivial hyperbolic basic set. Thus for any
X 2 U , one has

– either h.X/ D 0, then X is Morse-Smale, thus for any Y which is topologically
equivalent to X , for any point x, both the forward iteration and backward iteration
of x with respect to �Yt go to a critical element. This feature implies that h.Y / D 0.

– or h.X/ > 0, then X has a non-trivial hyperbolic basic set. Since for non-singular
equivalent flows X; Y , h.X/ > 0 iff h.Y / > 0. We have that h.Y / > 0.

For the relationship between zero-entropy vector fields and Morse-Smale vector fields,
one has

T 1.3. – If a three-dimensional vector field X 2 X1
.M 3/ can be accumulated

byC 1 robustly zero-entropy vector fields, then it can beC 1 accumulated by Morse-Smale vector
fields.

Proof. – By the assumptions, for any C 1 neighborhood U of X , there is an open set
V � U such that every vector field Y in V has zero-entropy. By Theorem A, by reducing V

if necessary, one can assume that for every Y 2 V, either it is Morse-Smale, or it has a non-
trivial hyperbolic basic set. Since Y 2 V can only have zero-entropy, one has Y is Morse-
Smale. This ends the proof.

1.4. Organization of this paper

The proof of the theorems is not short. In particular, for vector fields, they involve more
definitions and notations.

1. In Section 2, we give various kinds of definitions of flows associated to a vector fieldX .
Liao defined these flows in a very abstract way. In fact, all these flows have their
geometric meanings. We will deal with dominated splittings for the tangent flow and
the linear Poincaré flow. For the estimations stated in this section (which is crucial for
singular flow), Liao had very original ideas by a sequence of papers. We restate some
of them and give the proof by ourselves. The proof is more intuitive.

2. In Section 3, we will study the generic properties which are implied by connecting
lemmas and by the ergodic closing lemma. Bonatti and Crovisier [6] gave a C 1 connec-
ting lemma for pseudo-orbits which helps us to obtain generic results for chain
recurrent classes. We notice that Lyapunov stable chain recurrent classes with a crit-
ical element are robust for generic vector fields. The proof is not difficult, but it opens
a new door: Lyapunov stable chain recurrent class will survive under generic small
perturbations.

3. In Section 4 we first give the proof of Theorem A by assuming Theorem B. Then we
reduce the proofs of Theorem B and Theorem C to several sub-results.

4. In Section 5, we prove that the Lyapunov stable chain recurrent class admits a partially
hyperbolic splitting Ess ˚ Ecu and every singularity in the chain recurrent class is
Lorenz-like. In this section, the main novelty of this paper is that we use some uniform
estimation on vector fields away from homoclinic tangencies and a suitable application
of Liao’s shadowing lemma.
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46 S. GAN AND D. YANG

5. In Section 6, we prove that every nontrivial partially hyperbolic chain recurrent class
with singularities contains periodic orbits for generic three-dimensional vector fields.
We notice that it contains a periodic orbit iff it is singular hyperbolic. When the chain
recurrent class is not singular hyperbolic, it is not singular hyperbolic robustly. Then
by a sequence of perturbations, the continuation of the chain recurrent class intersects
the closure of the basin of some sink. This implies that the continuation of the chain
recurrent class is not Lyapunov stable. We can get a contradiction by Lemma 3.15. The
difficulty we encounter is similar to the case of one-dimensional endomorphisms with
singularities, where “singularities” means that the points where the endomorphisms
fail to be a local diffeomorphisms. For flows, for every central unstable curve in the
cross-section, in principle we will know that its length will grow near the local stable
manifold of the singularities. But when it is cut by local stable manifold of singularities,
its image under the return map will be disconnected. This facts make the dynamics
unclear. We have a good control in this section for this phenomenon.

2. Flows associated to a vector field and dominated splittings

2.1. Tangent flow, linear Poincaré flow and their extensions

Given X 2 X1
.M d /, X generates a C 1 flow �t W M

d ! M d , and the tangent flow
ˆt D d�t W TM d ! TM d . Denote by � W TM d !M d the bundle projection.

Denote the normal bundle of X by

N D NX
D

[
x2Md nSing.X/

Nx ;

where Nx is the orthogonal complement of the flow direction X.x/, i.e.,

Nx D fv 2 TM
d
W v ? X.x/g:

Given x 2 M d n Sing.X/ and v 2 Nx ,  t .v/ is the orthogonal projection of ˆt .v/
on N�t .x/ along the flow direction, i.e.,

 t .v/ D ˆt .v/ �
hˆt .v/; X.�t .x//i

jX.�t .x//j2
X.�t .x//;

where h�; �i is the inner product on TxM given by the Riemannian metric.
By the definition, k tk is uniformly bounded for t in any bounded interval although it is

just defined on the regular set which is not compact in general.
This flow can also be defined in a more general way by Liao [28]. Li, Gan and Wen [23]

used the terminology of “extended linear Poincaré flow”. For every point x 2 M d , one can
define the sphere fiber at x by

SxM
d
D fv W v 2 TxM

d ; jvj D 1g:

The sphere bundle SM d D
S
x2Md SxM

d is compact. One can define the unit tangent flow

ˆIt W SM
d
! SM d

as

ˆIt .v/ D
ˆt .v/

jˆt .v/j
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MORSE-SMALE SYSTEMS AND HORSESHOES 47

for any v 2 SM d .
Given a compact invariant set ƒ of X , denote by

eƒ D Closure

0@ [
x2ƒnSing.X/

X.x/

jX.x/j

1A
in SM d . Thus the essential difference between eƒ andƒ is on the singularities. We have more
information on eƒ: it tells us how regular points in ƒ accumulate singularities.

For any x 2 M d , and any two orthogonal vectors v1; v2 2 TxM d , if jv1j ¤ 0, one can
define

�t .v1; v2/ D .ˆt .v1/; ˆt .v2/ �
hˆt .v1/; ˆt .v2/i

jˆt .v1/j2
ˆt .v1//:

By definition the two components of �t are still orthogonal. If one denotes

�t D .proj1.�t /; proj2.�t //;

then for any regular point x 2M d and any vector v 2 Nx , one has

 t .v/ D proj2�t .X.x/; v/:

One can normalize the first component of �t : for any x 2 M d , and any two orthogonal
vectors v1; v2 2 TxM d , if jv1j D 1, one can define

�#
t .v1; v2/ D .ˆ

I
t .v1/; ˆt .v2/ �

hˆt .v1/; ˆt .v2/i

jˆt .v1/j2
ˆt .v1//:

�#
t is also a continuous flow, and for any regular point x and any v 2 Nx , one has

�#
t .
X.x/

jX.x/j
; v/ D .ˆIt .

X.x/

jX.x/j
/;  t .v//:

By the continuity of �t , one can extend the definition of  t “to singularities”: for any
u 2 eƒ, one defines fNu D fv 2 T�.u/M W hu; vi D 0g. fN is a .d � 1/-dimensional vector
bundle on the base space eƒ (for a formal discussion, see [23]). For u 2 eƒ and v 2 fNu, one
can define e t .v/ D proj2�t .u; v/. By the definition we know that proj2�t is a continuous
flow defined on eƒ. Thus, e t can be viewed as a compactification of  t .

2.2. Scaled linear Poincaré flow  �t and Liao’s estimations

The results in this subsection are in the spirit of Liao [24, 27, 28]. One can find the scaled
linear Poincaré flow  �t in Liao’s work. Liao used his “canonical equations” to give some
uniform estimations in a more analytical way. In this work, we first use the notations P and
P
� to study the local sectional dynamics to understand Liao’s powerful tools in a more

geometrical way. Although all the estimations (especially Lemma 2.5) cannot be seen in
Liao’s original work, we still call them Liao’s estimations.

For our purpose, we need another flow �t W N ! N (called scaled linear Poincaré flow).
Given x 2M d n Sing.X/, and v 2 Nx ,

 �t .v/ D
jX.x/j

jX.�t .x//j
 t .v/ D

 t .v/

kˆt jhX.x/i
k
:

In our case, this scaled linear Poincaré flow will help us to overcome some difficulties
produced by singularities since it gives uniform estimations on some non-compact sets.
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L 2.1. – For any � > 0, there is C� > 0 such that for any t 2 Œ��; ��,

k �t k � C� ;

where k �t k D supfj �t .v/j W v 2 N and jvj D 1g:

Proof. – For t 2 Œ��; ��, first we know that ˆt is uniformly bounded from 0 and 1;
from the definition of the linear Poincaré flow, we know that t is uniformly bounded. Thus,
 �t .x/ D  t .x/=kˆt j<X.x/>

k is uniformly bounded.

For each ˇ > 0, one can define the normal manifold Nx.ˇ/ of x as the following:

Nx.ˇ/ D expx.Nx.ˇ//;

where Nx.ˇ/ D fv 2 Nx W jvj � ˇg: Take ˇ� > 0 small enough such that for any x 2 M ,
expx is a diffeomorphism from Nx.ˇ�/ to its image Nx.ˇ�/:

To study the dynamics in a small neighborhood of a periodic orbit of a vector field,
Poincaré defined the sectional return map of a cross section of a periodic point. By gener-
alizing this idea to every regular point, one can define the sectional Poincaré map between
any two cross sections at any two points in the same regular orbit. For our convenience, we
define the sectional Poincaré map in the normal bundle.

Given T > 0 and x 2 M d n Sing.X/, the flow �t defines a local holonomy map Px;�T .x/
from Nx.ˇ�/ to N�T .x/.ˇ�/ in a small neighborhood of x. Hence its lift map in the normal
bundle gives a map Px;�T .x/ W U ! N�T .x/.ˇ�/, where U is a small neighborhood of x
in Nx.ˇ�/ and Px;�T .x/ D exp�1

�T .x/
ıPx;�T .x/ ı expx . Note that when T 0 > T > 0, the

domain of Px;�T 0 .x/
is contained in the domain of Px;�T .x/. Usually the size of U depends

on the orbit of x: if x is very close to a singularity, then U should be very small. But after
scaling, we have the following uniform estimation for the relative size of U .

Recall the definition of the linear Poincaré flow. By the geometrical meanings of P

and  t , we have

L 2.2. – For any regular point x and any time t , we have when y D 0,

Dy Px;�t .x/ D  t .x/:

Proof. – Since the derivative of expx.y/ at y D 0 is the identity map: D0.expx/ D Id,
by the relationship between Px;�t .x/ and Px;�t .x/, we only have to show that D0Px;�t .x/ D
 t .x/: Assume that Px;�t .x/.z/ D ��.z/.z/, where �.x/ D t . Note that �.z/ is a C 1 function
of z. According to the chain rule, we have that

DPx;�t .x/.z/ D ˆ�.z/.z/CX.��.z/.z//D�.z/:

Given y 2 Nx , write ˆt .x/.y/ D  t .x/.y/C rX.�t .x//. At z D x, we have

DPx;�t .x/.x/.y/ D ˆt .x/.y/CX.�t .x//D�.x/.y/

D  t .x/.y/C .r CD�.x/.y//X.�t .x//:

Since DPx;�t .x/.x/.y/ 2 N�t .x/, we get DPx;�t .x/.x/.y/ D  t .x/.y/.

L 2.3. – Given X 2 X1
.M d / and T > 0, there is ˇT > 0 such that for any regular

point x, Px;�T .x/ is well defined on Nx.ˇT jX.x/j/.
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Proof. – After taking an orthonormal basis fe1; e2; : : : ; ed g of TxM , we get a coordinate
system:

Expx W Rd !M d ;

such that

Expx.z/ D expx.
dX
iD1

ziei /:

In the coordinate, the flow generated by the vector field X satisfies the following differential
equation:

dz
dt
D OX.z/;

where
OX.z/ D DExp�1x ıX.Expx.z//:

Note that OX depends on x 2M d .
Assume that ˇ� is small enough such that for any x 2 M d , jzj � ˇ�, and any two unit

vectors v and w,

0:999 < jDExpx.z/vj < 1:001; j∠.DExpx.z/v;DExpx.z/w/ � ∠.v; w/j < 0:001:

We will prove the lemma in the local coordinate. Note that Expx.0/ D x and jX.x/j D
j OX.0/j.

Denote by
K D sup

x2Md ;jzj�ˇ�

fj OX.z/j; kD OX.z/kg:

Since DExpx and DExp�1x are uniformly bounded with respect to x, we have

K <1:

Assume ˇ0 < minf1; ˇ�g=.1000K/. For any regular point x, take e1 D X.x/=jX.x/j. Then
OX.0/ D .jX.x/j; 0; : : : ; 0/. For jzj � ˇ0jX.x/j, according to the mean-value theorem in

integral,

j OX.z/j D j OX.0/C

Z 1

0

D OX.tz/zdt j � jX.x/j �Kˇ0jX.x/j � 0:999jX.x/j > 0:

This implies that Nx.ˇ0jX.x/j/ \ Sing.X/ D ;:
Denote by O�t .z/ D . O�1; : : : ; O�d / the solution of OX.z/ such that O�0.z/ D z. Then for

0 � t � ˇ0, if jzj � ˇ0
3
jX.x/j and j�s.z/j � ˇ0jX.x/j for s 2 Œ0; t �, we have

j O�t .z/j D jz C

Z t

0

OX. O�t .z//dt j � .
ˇ0

3
C 1:001t/jX.x/j:

Let t be the time such that j O�s.z/j � ˇ0jX.x/j for s 2 Œ0; t/ and j O�t .z/j D ˇ0jX.x/j: From
the above estimation, we have that

t �
2

3
ˇ0=1:001 >

1

2
ˇ0:

By reducing ˇ0 if necessary, for jzj � ˇ0jX.x/j,

sup
t2.�ˇ0;ˇ0/

j OX.z/j

j OX. O�t .z//j
<

1

1000K
; sup

t2.�ˇ0;ˇ0/

∠. OX.z/; OX. O�t .z/// <
1

1000K
:
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Since e1 D X.x/=jX.x/j, Nx D fz W z1 D 0g; and OX.0/ D .jX.x/j; 0; : : : ; 0/; we have
that for jzj � ˇ0jX.x/j, OX1.z/ 2 Œ0:999jX.x/j; 1:001jX.x/j�.

C. – For 0 < r < ˇ0, for any z D .0; y/, y 2 Rd�1, jyj � r jX.x/j=2, for any
t 2 Œˇ0=3; 2ˇ0=3�, there exists a unique � D �.t; y/ 2 .0; ˇ0� such that O�� .0; y/ 2 ON�t .x/.r/,
where

ONx.r/ D Exp�1.Nx.r//:

Proof of Claim.. – Since jzj < 1000ˇ0K, t 2 Œ0; ˇ0� and ˇ0 is small, Expx is almost
an isometry, and N�t .x/ is the graph of a map f D ft W Rd�1 ! R with j @f

@y
j < 0:001.

Let z D .0; y/ with jyj � ˇ0jX.x/j. Then

proj1 O�ˇ0.z/ D
Z ˇ0

0

OX1. O�t .z//dt � 0:999jX.x/jˇ0:

This means that z and O�ˇ0.z/ are on the different sides of the graph of ft for t 2 Œˇ0=3; 2ˇ0=3�,
from which one can define �.t; y/. Notice that f is C 1 and X is C 1, we have that �.t; y/ is
C 1 w.r.t. t and y.

For any T � ˇ0, let n D Œ3T=ˇ0� and a partition

0 D t0 < t1 < � � � < tn�1 < tn D T;

such that ti D iˇ0=3; i D 0; 1; : : : ; n � 1. Then we have tn � tn�1 2 Œˇ0=3; 2ˇ0=3�: Then we
can define ˇT inductively.

L 2.4. – Let X 2 X1
.M d / and T > 0. By reducing ˇT > 0 as in Lemma 2.3 if

necessary, for any x 2M d n Sing.X/, for the sectional Poincaré map

Px;�T .x/ W Nx.ˇT jX.x/j/! N�T .x/.ˇ�/;

DPx;�T .x/.y/ is uniformly continuous in the following sense: for any � > 0 there exists
ı 2 .0; ˇT � such that for any x 2M d n Sing.X/ and y; y0 2 Nx.ˇT jX.x/j/, if jy � y0j � ıjX.x/j,
then

jDPx;�T .x/.y/ �DPx;�T .x/.y
0/j < �:

(Note that DPx;�T .x/.0/ D  T jNx
.) And hence there exists KT > 0 (independent of x)

such that
jDPx;�T .x/j � KT :

Proof. – We will still use the notations and terminologies as in the proof of Lemma 2.3.
We first assume that T < ˇ0. Notice that we are in a local Euclidean coordinate, Nz D N z

for each regular point z.

In the local coordinate, assume that the vector field OX has the following form OX.z; y/ D

.f .z; y/; g.z; y//, where z 2 R1, y 2 Rd�1, f W Rd ! R1 and g W Rd ! Rd�1 are
continuously C 1 maps such that

– OX.0; 0/ D .f .0; 0/; 0/, where f .0; 0/ > 0.
– for any .z; y/ in the local coordinate, one has f .z; y/ 2 .0:999f .0; 0/; 1:001f .0; 0// and
jg.z; y/j < f .0; 0/=1000.
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The flow of OX satisfies the following differential equations:

dz
dt
D f .z; y/;

dy
dt
D g.z; y/:

Assume that the solution of these differential equations is .b't .z; y/; b t .z; y//, whereb't .z; y/ W R1 � Rd ! R1 and b t .z; y/ W R1 � Rd ! Rd�1.
Now we consider the expression of the sectional Poincaré map PT W Nx.ˇ0jX.x/j/!

N�T .x/.ˇ�/ in this local coordinate. The local coordinate of x is .0; 0/. Thus N .0;0/.ˇ�/ �

f0g �Rd�1. Now we consider .b'T .0; 0/; b T .0; 0//, whose normal manifold is contained in a
graph of an affine map h W Rd�1 ! R such that jDhj < 0:001.

For y 2 Rd�1,
P.0; y/ D P.y/ D .b'� .0; y/; b � .0; y//T ;

where the time function � W Rd�1 ! R1 satisfiesb'�.y/.0; y/ D h.b �.y/.0; y//:
By differentiating y in the above equality, one has

@b'
@t
jtD�.y/

@�

@y
C
@b'
@y
D
@h

@y
.
@b 
@t

@�

@y
C
@b 
@y
/:

Notice that in the above equality, @�=@y, @b'=@y and @h=@y are row vectors with d � 1
elements, @b =@t is a column vector with .d � 1/ elements, @b =@y is a .d � 1/ � .d � 1/
matrix.

By solving the above equality, one has

@�

@y
D

@h
@y
@b 
@y
�
@b'
@y

@b'
@t
�
@h
@y
@b 
@t

:

Thus,

@P

@y
D

 
@b'
@t
@�
@y
C

@b'
@y

@b 
@t
@�
@y
C

@b 
@y

!
D

 
@b'
@t
@b 
@t

!
@h
@y
@b 
@y
�
@b'
@y

@b'
@t
�
@h
@y
@b 
@t

C

 
@b'
@y

@b 
@y

!
:

By the expression of the differential equations, one has

@P

@y
D bX.P.y//

@h
@y
@b 
@y
�
@b'
@y

@b'
@t
�
@h
@y
@b 
@t

C

 
@b'
@y

@b 
@y

!
:

In another form,

@P

@y
D

bX ı P.y/bf ı P.y/ � @h
@y
bg ı P.y/

 
@h

@y

@b 
@y
�
@b'
@y

!
C

 
@b'
@y
.0; y/

@b 
@y
.0; y/

!
:

Since 0:999 < jf j=jbX j < 1:001 and jgj=jX j < 0:001, there is a uniform constant bK > 0

such that

k
@P

@y
k � bK:
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For any " > 0, since the tangent flow ˆt is uniformly continuous, there is ı > 0 such that
for any y; y0 2 Nx.ˇT jX.x/j/, if jy � y0j � ıjX.x/j, one has

k
@b'
@y
.0; y/ �

@b'
@y
.0; y0/k < "=4; k

@b 
@y
.0; y/ �

@b 
@y
.0; y0/k < "=4:

Let ˛.y/ D bX ı P.y/ and ˇ.y/ D bf ı P.y/ � @h=@y.bg ı P.y//, then we have

˛.y/

ˇ.y/
�
˛.y0/

ˇ.y0/
D
˛.y/ � ˛.y0/

ˇ.y/
C
ˇ.y0/ � ˇ.y/

ˇ.y/ˇ.y0/
˛.y0/:

We have the following estimation by the mean value theorem:

k˛.y/ � ˛.y0/k � kD bXkkP.y/ � P.y0/k � bKkD bXkjy � y0j:
By reducing ı if necessary, for any y; y0 2 Nx.ˇ0jX.x/j/, if jy � y0j � ıjX.x/j, one has

k
˛.y/ � ˛.y0/

ˇ.y/
k � 1:001

bKkD bXkıjX.x/j
jX.x/j

� 2ı bK:
We just need to choose ı < "=8bK

k
ˇ.y/ � ˇ.y0/

ˇ.y/ˇ.y0/
˛.y0/k �

k˛.y0/k

jˇ.y0/j

bKkD bf C bKDbgkjy � y0j
jbX j < "=4;

if we reduce ı again.
Let

F.y/ D
bX ı P.y/bf ı P � @h=@y

bg ı P ; G.y/ D
@h

@y

@b 
@y
�
@b'
@y
:

We know that F.y/ is uniformly continuous and G.y/ is uniformly continuous. Thus
F.y/G.y/ is uniformly continuous.

Combining all above estimations, we can know that Px;�T .x/ is uniformly continuous.
For any T � ˇ0, let n D Œ3T=ˇ0� and a partition

0 D t0 < t1 < � � � < tn�1 < tn D T;

such that ti D iˇ0=3; i D 0; 1; : : : ; n � 1. Then we have tn � tn�1 2 Œˇ0=3; 2ˇ0=3�: Then by
using the prolongation, we know the result is true.

Sometimes one needs to consider the scaled sectional Poincaré map P
� which is defined

in the following way:

P
�

x;�T .x/
.y/ D

Px;�T .x/.jX.x/jy/

jX.�T .x//j

for each y 2 Nx.ˇT /. Thus P
�

x;�T .x/
is a map from Nx.ˇT / to N�T .x/.

L 2.5. – Given X 2 X1
.M d / and T > 0, there are constants ˇT > 0 and KT > 0

such that for any t 2 .0; T / and any regular point x 2M d ,

1. P
�

x;�t .x/
can be defined on Nx.ˇT /.

2. DP
�

x;�t .x/
is uniformly continuous: for any " > 0, there is ı > 0, such that for any

y; z 2 Nx.ˇT /, if d.y; z/ < ı, one has kDP
�

x;�t .x/
.y/ �DP

�

x;�t .x/
.z/k < ".

3. DP
�

x;�T .x/
.y/jyD0

D  �T .x/.

4. kDP
�

x;�t .x/
.y/k � KT for any y 2 Nx.ˇT /.
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Proof. – Item 1 is true because of Lemma 2.3.

For any y; z 2 Nx.ˇT /, one has

DP
�

x;�T .x/
.y/ �DP

�

x;�T .x/
.z/ D

jX.x/j

jX.�T .x//j
.DPx;�T .x/.yjX.x/j/ �DPx;�T .x/.zjX.x/j//:

Since jX.x/j=jX.�T .x//j is uniformly bounded, item 2 follows from Lemma 2.4.

For item 3, we have

Dy P
�

x;�T .x/
.y/ D Dy

�
Px;�T .x/.yjX.x/j/

jX.�T .x//j

�
D Dy Px;�T .x/.yjX.x/j/

jX.x/j

jX.�t .x//j
:

Thus, when y D 0, one has

Dy P
�

x;�T .x/
.0/ D Dy Px;�T .x/

jX.x/j

jX.�T .x//j
D

 T .x/

kˆT j<X.x/>
k
D  �T .x/;

where the second equality in the formula follows from Lemma 2.2.

Item 4 holds because  �T is uniformly bounded and item 2.

2.3. Franks’ Lemma and dominated splittings

As in the diffeomorphism case, one needs Franks’ lemma [16] to get some information
on the derivative along periodic orbits. We state a version of Franks’ lemma for flows which
is taken from [11, Theorem A.1]. Liao also had a version by using his standard differential
equations [24, Proposition 3.4].

L 2.6. – GivenX 2 X1
.M d / and a C 1 neighborhood U � X1

.M/ ofX , there is a
neighborhood V � U of X and " > 0 such that for any Y 2 V, for any periodic orbit Orb.x/
of Y with period T � 1, any neighborhood U of Orb.x/ and any partition of Œ0; T �:

0 D t0 < t1 < � � � < tl D T; 1 � tiC1 � ti � 2; i D 0; 1; : : : ; l � 1;

and any linear isomorphisms Li W N�Yti
.x/ ! N�YtiC1

.x/; i D 0; 1; : : : ; l � 1

with kLi �  YtiC1�ti jN�ti
.x/
k � ", there exists Z 2 U such that  ZtiC1�ti jN�ti

.x/
D Li

and Z D Y on .M d n U/ [Orb.x/.

R. – For simplicity, the time length of the partition is restricted to Œ1; 2�. We
remark that this is not a serious restriction. Sometimes, the system may contain periodic
orbits with period less than 1. But in our consideration, usually singularities are all hyper-
bolic. So there is a lower bound for the periods of periodic orbits. And after scaling, we may
assume that the lower bound is 1.

In this paper, we will use two estimations obtained by Franks’ lemma: dominated split-
tings for vector fields away from homoclinic tangencies and uniform estimation along a
sequence of periodic orbits restricted on the stable bundle.
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2.3.0.1. Dichotomy for the stable bundle: For any hyperbolic periodic orbit 
 , N 
 admits
a natural splitting N 
 D N s

˚ Nu such that N s is contracting and Nu is expanding
w.r.t. the linear Poincaré flow  t .

By using the methods of periodic linear systems as in [7, 11, 30, 52], one can have the
following dichotomy result for a hyperbolic periodic orbit with large period. An abstract
version for diffeomorphisms can be found in [30, Lemma II.3 and Lemma II.5].

L 2.7. – GivenX 2 X1
.M d /, for any C 1 neighborhood U ofX , there are CU > 0,

�U > 0 and �U > 0 and a neighborhood V � U of X such that for any hyperbolic periodic
orbit 
 of index i of Y 2 V with �.
/ > �U , then

– either, there is Z 2 U such that 
 is a hyperbolic periodic orbit of Z of index i � 1;
– or, for any x 2 
 , for any time partition

0 D t0 < t1 < � � � < tn D �.
/;

verifying tiC1 � ti � �U for 0 � i � n � 1, one has
n�1Y
iD0

k tiC1�ti jNs.�ti .x//
k � CU expf��U �.
/g:

D 2.8. – Let C > 0, � > 0 and T > 0. For a hyperbolic periodic orbit 
 , for a
 t -invariant bundle E � N 
 , we say that 
 is called .C; �; T;E/-contracting at the period
(w.r.t.  t ) if there is m 2 N, and for any x 2 
 , there is some time partition

0 D t0 < t1 < � � � < tn D m�.
/;

with tiC1 � ti � T for 0 � i � n � 1, such that
n�1Y
iD0

k tiC1�ti jE.�ti .x//
k � C expf��m�.
/g:

For an  t -invariant subbundle F � N 
 , we say that 
 is called .C; �; T; F /-expanding at
the period if it is .C; �; T; F /-contracting at the period for �X .

R. – Since for a periodic orbit 
 , for any x 2 
 , one has ˆ�.
/X.x/ D
X.��.
/.x// D X.x/, one can give the above definition by using  �t .

C 2.9. – GivenX 2 X1
.M d /, assume thatƒ is a compact invariant set and not

reduced to a critical element. If there is a sequence of vector fields fXng such that

– limn!1Xn D X ,
– each Xn has a sink 
n such that limn!1 
n D ƒ,

then one has the following dichotomy:

– either, there is a sequence of vector fields fYng such that limn!1 Yn D X , and 
n is a
hyperbolic periodic orbit of Yn of index d � 2 D dim N � 1.

– or, there areC > 0,� > 0andT > 0 such that forn large enough,
n is a .C; �; T; N /-con-
tracting at the period w.r.t.  Ynt .

Proof. – Note that limn!1 �.
n/ D 1. If the “either” case is not true, then by
Lemma 2.7, one can get constants �U and �U . Then the “or” case is true by taking
C D CU ; � D �U and T D 2�U .
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2.3.0.2. Vector fields away from homoclinic tangencies: For any invariant setƒ (maybe not
compact) without singularities, if there are � > 0 and an invariant continuous splitting (5)

Nƒ D N cs
˚ N cu w.r.t.  t satisfying k �jNcs.x/

kk ��jNcu.��.x//
k � 1=2 for any x 2 ƒ,

then we say that ƒ admits a �-dominated splitting w.r.t.  t . If dim N cs
.x/ is independent

of x, then it is called the index of this dominated splitting. Note that for any linear flow
defined on some linear bundle, one can define the notion of dominated splitting for that linear
flow. Recall that

H T D fX 2 X1
.M d / W X has a homoclinic tangencyg:

By the similar arguments as diffeomorphisms and by using Franks’ lemma for flows, from
[52, 53], we have

L 2.10. – For any X 2 X1
.M d / n H T , there is a C 1 neighborhood U and

constants C > 0, � > 0, ı > 0 and � > 0 such that for any periodic orbit 
 of Y 2 U

with period �.
/ > �.

– ˆ�.
/ has at most two exponents in .�ı; ı/, andˆ�.
/ has at least one zero exponent, and
this exponent corresponds to the flow direction.

– There is an invariant splitting N 
 D G
s ˚Gc ˚Gu with respect to the linear Poincaré

flow  Yt , where Gs is the invariant space corresponding to the exponents less than �ı,
Gc is the invariant space corresponding to the exponents in .�ı; ı/ and the dimension
ofGc is zero or one,Gu is the invariant space corresponding to the exponents larger than
ı; moreover for any x 2 
 , for any time partition

0 D t0 < t1 < � � � < tn D �.
/;

verifying tiC1 � ti � � for 0 � i � n � 1, one has
n�1Y
iD0

k tiC1�ti jGs.�ti .x//
k � C expf���.
/g;

n�1Y
iD0

k ti�tiC1 jGu.�tiC1 .x//
k � C expf���.
/g:

– If 
 is hyperbolic, and N 
 D N s
˚ Nu is the hyperbolic splitting with respect to  Yt ,

then for any x 2 
 and T > �, one has

k YT jNs.x/
kk Y�T jNu.�Y

T
.x//
k �

1

2
:

C 2.11. – Let X 2 X1
.M d / n H T . Assume that

– there is a sequence of vector fields fXng such that limn!1Xn D X ,
– each Xn has a hyperbolic periodic orbit 
n of index i such that ƒ D limn!1 
n in the

Hausdorff topology.

Then

– NƒnSing.X/ admits a dominated splitting of index i with respect to the linear Poincaré
flow  t ,

(5) Notice that the continuity may be only held on some non-compact set.
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– NƒnSing.X/ admits a dominated splitting of index i with respect to the scaled linear
Poincaré flow  �t ,

– if one considers eƒ, then fN eƒ admits a dominated splitting of index i with respect to the
flow e t .

Proof. – SinceX 2 X1
.M d /nH T ,Xn ! X and 
n is a hyperbolic periodic orbit ofXn

of index i ,

N 
n D N s
.
n/˚ Nu

.
n/

is an �-dominated splitting of index i w.r.t.  Xnt for some uniform � > 0.

For each x 2 ƒnSing.X/, by taking a subsequence if necessary, one can assume that there
is xn 2 
n such that limn!1 xn D x. After taking another subsequence, one can assume that
N cs

.x/ D limn!1 N s
.xn/ and N cu

.x/ D limn!1 Nu
.xn/.

Thus NƒnSing.X/ D N cs
˚ N cu is an �-dominated splitting of index i . One can see [23]

for more details.

Since

 �t .x/ D
 t .x/

kˆt j<X.x/>
k
;

any dominated splitting of  t is also a dominated splitting of  �t .

The dominated splitting of the linear Poincaré flow can be extended to the closure of its
representation in the sphere bundle. See [23] for more details.

L 2.12. – For every X 2 X1
.M d / n H T , there are � > 0, C > 0, � > 0 and a

C 1 neighborhood U of X such that for any Y 2 U , if 
 is a periodic sink of Y with period
�.
/ > �, then

– either, N 
 admits an �-dominated splitting of index d � 2 with respect to  Yt ,
– or 
 is .C; �; 2�; N /-contracting at the period w.r.t.  Yt .

Proof. – LetC and � be as in Lemma 2.10. If the conclusion is not true, there exist �n ! 0,
Xn ! X and a periodic sink 
n of Xn with �.
n/ > �, neither item 1 nor item 2 is satisfied.
Then according to Franks’ Lemma, after a small perturbation of Xn of size �n, we get a Yn
such that 
n is a periodic orbit of index d �2. Since Yn ! X , for n large enough,  Ynt has an
�-dominated splitting over 
n of index d � 2, and then we get a dominated splitting for the
extended linear Poincaré flow over the limit. But the limits of Xn and Yn are the same since
Xnj
n

D Ynj
n
. By the continuity of dominated splitting of the extended linear Poincaré flow,

we know that for n large enough,Xn has also an �-dominated splitting over 
n of index d �2,
which gives a contradiction.
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2.4. Mixed dominated splittings: from linear Poincaré flow to tangent flow

For two linear normed spacesE and F , and a linear operatorA W E ! F , the mini-norm
m.A/ is defined by

m.A/ D inf
v2E; jvjD1

jAvj:

We use L.E;F / to denote the space of bounded linear maps from E to F .

The following lemma concerns how we can get the dominated splitting of the tangent flow
from the dominated splitting of the linear Poincaré flow. This kind of ideas is also used in [23,
Lemma 5.5, Lemma 5.6]. Here we give a general version.

L 2.13. – Let bƒ � SM d be a compact invariant set of ˆIt . Suppose

– fN bƒ D �cs ˚�cu is a dominated splitting w.r.t. e t .
– There are C > 0 and � > 0 such that for any u 2 bƒ, for any t > 0, one has

ke t j�cs.u/k
kˆt .u/k

� C e��t :

Then the projection �.bƒ/ admits a dominated splitting T
�.bƒ/M d D E ˚ F w.r.t the tangent

flow ˆt , where dimE D dim�cs .

Proof. – For each point u 2 eƒ � SM d , the direct-sum splitting T�.u/M d D �cs ˚

<u> ˚ �cu is continuous w.r.t. u. With respect to this decomposition, the tangent flow
ˆT has the following form: 0BB@

e T j�cs.u/ 0 0

B.u/ ˆT j<u>
C.u/

0 0 e T j�cu.u/
1CCA :

By the definitions of �t and e t (see Subsection 2.1), one has thatF.u/ D <u>˚�cu.u/ is
an invariant sub-bundle of ˆt . Let’s find another invariant sub-bundle of ˆt .

C. – There is C1 > 0 and �1 > 0 such that for any u 2 bƒ and any t � 0, one has

ke t j�cs.u/k
m.ˆt jF.u/

/
� C1e��1t :

Proof of the claim. – By enlarging T if necessary, one can assume that for any
u 2 bƒ � SM d , one has

ke T j�cs.u/k
kˆT j<u>

k
�
1

2
;
ke T j�cs.u/k
m.e T j�cu.u// � 1

2
:

SinceˆT is bounded, by the continuity of the splitting, there isK > 0 such that kˆT k � K
and m.ˆT / � 1=K. Denote by

D.u/ D

 
ˆT j<u>

C.u/

0 e T j�cu.u/
!
:
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For any n 2 N, one has

ˆ�nT jF.ˆI
nT
.u//
D

n�1Y
iD0

D�1.ˆIiT .ˆ
I
nT .u/// D D

�n.ˆInT .u//:

Since

Dn.u/ D

0@ˆnT j<u> Pn�1
iD0 ˆ.n�1�i/T j<ˆI

.iC1/T
.u/>

C.ˆIiT .u//
e iT j�cu.u/

0 e nT j�cu.u/
1A ;

we have

D�n..ˆInT .u/// D

0@ˆ�nT j<ˆInT .u/> Pn�1
iD0 ˆ.�1�i/T j<ˆI

.iC1/T
.u/>

C.ˆIiT .u//
e .i�n/T j�cu.ˆI

nT
.u//

0 e �nT j�cu.ˆI
nT
.u//

1A :
This implies

kD�njˆI
nT
.u/
k � kˆ�nT j<ˆI

nT
.u/>
k C ke �nT j�cu.ˆI

nT
.u//
k

C k

n�1X
iD0

ˆ.�1�i/T j<ˆI
.iC1/T

.u/>
C.ˆIiT .u//

e .i�n/T j�cu.ˆI
nT
.u//
k

� 2 � 2�n
1

ke nT j�cs.u/k CK
n�1X
iD0

kˆ.�1�i/T j<ˆI
.iC1/T

.u/>
kke .i�n/T j�cu.ˆI

nT
.u//
k

�
2�nC1

ke nT j�cs.u/k CK
n�1X
iD0

2�.iC1/

ke .iC1/T j�cs.u/k 2i�n

ke .n�i/T j�cs.ˆI
iT
.u//
k

�
2�nC1

ke nT j�cs.u/k CK2
n�1X
iD0

2�n�1

ke iT j�cs.u/kke .n�i/T j�cs.ˆI
iT
.u//
k

�
2�nC1

ke nT j�cs.u/k CK2 n2�n�1

ke nT j�cs.u/k :
Thus, when n large enough, one has

ke nT j�cs.u/k
m.ˆnT jF.u/

/
�
1

2
:

This inequality implies the claim.

Now we will start to find aˆt -invariant bundleE.u/ and T 0 > 0 such that for any u 2 bƒ,

kˆT 0 jE.u/
k

m.ˆT 0 jF.u/
/
�
1

2
:

By the claim above, there is T0 > 0 such that

ke T0 j�cs.u/k
m.ˆT0 jF.u/

/
�
1

2
:
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Let L.bƒ/ D Q
u2bƒL.�cs.u/; F.u//. For each … 2 L.bƒ/, one can define the norm

k…k D sup
u2bƒ k….u/k. Under this norm, one knows that L.bƒ/ is a Banach space. For any

… 2 L.bƒ/, one has0@e T0 j�cs.u/ 0

B.u/ ˆT0 jF.u/

1A �cs.u/

….u/�cs.u/

!
D

0@ e T0 j�cs.u/�cs.u/
B.u/�cs.u/CˆT0 jF.u/

….u/�cs.u/

1A :
Thus, if we want to find an invariant bundle w.r.t. ˆt , we need to require that

B.u/�cs.u/CˆT0 jF.u/
….u/�cs.u/ D ….ˆIT0.u//

e T0 j�cs.u/�cs.u/:
In the spirit of the above equality, one can define a map F W L.bƒ/ ! L.bƒ/ by the

following form:

F ….u/ D .ˆ�T0 jF.ˆI
T0
u/
/.….ˆIT0.u//

e T0 j�cs.u/ � B.u//:
Given …1;…2 2 L.bƒ/, one has

F …1 � F …2 D .ˆ�T0 jF.ˆI
T0
u/
/.…1 �…2/.e T0 j�cs.u//:

Thus,

kF …1 � F …2k � kˆ�T0 jF.ˆI
T0
u/
kk…1 �…2kke T0 j�cs.u/k � 1

2
k…1 �…2k:

So, F is a contracting map. By the contraction mapping principle, F has a unique fixed
point … 2 L.bƒ/, i.e.,

B.u/�cs.u/CˆT0 jF.u/
….u/�cs.u/ D ….ˆIT0.u//

e T0 j�cs.u/�cs.u/:
As a corollary, E D .id;…/�cs is an invariant bundle of ˆT0 .

SinceE, F and�cs are continuous bundles w.r.t. u 2 bƒ, there isL > 0, which depends on
the angles between each two bundles, such that for any non-zero vector vE 2 E, vcs 2 �cs ,
if vE D .id;…/vcs , then

jvE j �
1

L
jvcsj:

Thus, for each n, one has

kˆnT0 jE.u/
k �

1

L
ke nT0 j�cs.u/k � 1

L

1

2n
m.ˆnT0 jF.u/

/:

From these, we get aˆt -invariant splittingE˚F overƒ, which satisfies the condition of
the dominated splitting.

2.5. The existence of invariant manifolds

Assume that ƒ is a compact invariant set and NƒnSing.X/ admits a dominated splitting
with respect to the linear Poincaré flow. Ifƒ\Sing.X/ D ;, thenƒwill have a plaque family
([20, Theorem 5.5]) as in the case of diffeomorphisms. Ifƒ\Sing.X/ ¤ ;, thenƒwon’t have
uniform size of plaque family: the plaque family is defined on a non-compact set and the size
is scaled by the norm of the vector field.

The scaled Poincaré sectional map P
� can be defined in a uniform neighborhood of the

zero section of N . Moreover, we have uniform estimations onDP
�

x;�T .x/
.y/ by Lemma 2.5.

For getting plaque families of dominated splittings, one needs the following abstract lemma.
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2.5.0.1. Notation. For a linear normed space A and r , A.r/ D fv 2 A; jvj � rg.

L 2.14. – For any d 2 N; L > 0; r > 0, and ˛ > 0, there is 
0 > 0; "0 > 0 such that:
for any 
 � 
0, there exists ı > 0, if a sequence of C 1 diffeomorphisms

fi W Rd .r/! Rd ; i 2 Z

satisfies the following properties:

1. fi .0/ D 0,
2. supi2Z maxfjDfi .0/j; jDf �1i .0/jg � L

3. There is a sequence of invariant decompositions Rd D Ei ˚ Fi with the following
properties:
� Dfi .0/.Ei / D EiC1, Dfi .0/.Fi / D FiC1,
� ∠.Ei ; Fi / > ˛,

�

kDfi .0/jEi
k

m.Dfi .0/jFi
/
�

1
2
:

4. Lip.fi �Dfi .0// < "0.

Then there are two sequences of embedding maps �csi 2 Emb.Ei .
/; Fi / and �cui 2

Emb.Fi .
/; Ei / such that

� �
cs=cu
i .0/ D 0, D�cs=cui .0/ D 0,

� fiW
cs=cu
i .ı/ � W

cs=cu
iC1 .
/, where W cs

i .
/ is the graph of �csi restricted to Ei .
/ and
W cu
i .
/ is the graph of �cui restricted to Fi .
/.

Moreover, the invariant manifolds are continuous with respect to the sequence of f D .fi /.
Precisely, for two sequences f D .fi /; g D .gi /, define their metric as

jf � gjC1
D

1X
iD�1

jfi � gi jC1

2ji j
:

Then both W cs
i .
; f / and W cu

i .
; f / are continuous with respect to f , i.e., for every i 2 Z,
if f .n/ ! f , xn 2 W cs

i .
; f .n//, xn ! x, then x 2 W cs
i .
; f /, and TxnW

cs
i .
; f .n// !

TxW
cs
i .
; f /.

The proof of Lemma 2.14 needs to adapt the argument of [20, Theorem 5.5]. We omit the
proof here.

For diffeomorphisms, we know that plaque family of compact invariant set with domi-
nated splittings exists. For vector fields, if a compact invariant singular set has a dominated
splitting w.r.t. the linear Poincaré flow, we also have some similar results, but the form is
changed: one should modify the size of the manifolds. Recall that Px;�t .x/ is the sectional
Poincaré map between Nx and N�t .x/.

L 2.15. – Let ƒ be a compact invariant set of X 2 X1
.M d /. Assume that

ƒ n Sing.X/ admits a dominated splitting NƒnSing.X/ D �cs ˚ �cu of index i with
respect to the linear Poincaré flow  t . For any T > 0, there exists �0 > 0 and two families
of continuous C 1 maps �cs.x/ W �cs.x/.�0/ ! N .x/ and �cu.x/ W �cu.x/.�0/ ! N .x/,
x 2 ƒ n Sing.X/, verifying the following properties:

1. �cs.x/.0x/ D 0x and �cu.x/.0x/ D 0x , where 0x is the origin of TxM .
2. �cs.x/ and �cu.x/ are C 1 embeddings.
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3. D�cs.x/ and D�cu.x/ are continuous: for any " > 0 there exists ı > 0 such that if
d.x; x0/ < ı and d.y; y0/ < ı, d.z; z0/ < ı then

jD�cs.x/.y/ �D�cs.x0/.y0/j < "; jD�cu.x/.z/ �D�cu.x0/.z0/j < ";

where y; y0 2 �cs.x/.�0/; z; z0 2 �cu.x/.�0/.
4. For any � 2 .0; �0�, we define two sub-manifolds by

W cs
�jX.x/j.x/ D expx.jX.x/j�

cs.x/.�cs.x/.�///

and W cu
�jX.x/j.x/ D expx.jX.x/j�

cu.x/.�cu.x/.�///;

then one has
� TxW

cs
�jX.x/j

.x/ D �cs.x/ and TxW cu
�jX.x/j

.x/ D �cu.x/,
� for any " > 0, there is ı > 0 such that for any regular point x 2 ƒ, one

has Px;�T .x/.W
cs
ıjX.x/j

.x// � W cs
"jX.�T .x//j

.�T .x// and Px;�T .x/.W
cu
ıjX.x/j

.x// �

W cu
"jX.�T .x//j

.�T .x//.

Proof. – We will mainly use Lemma 2.14 to prove this lemma. For each point x, Nx is
isomorphic to Rd�1. Since ƒ n Sing.X/ admits a dominated splitting of index i w.r.t. the
linear Poincaré flow, there is T > 0 such that

k �T j�cs.x/
k

m. �T j�cu.x/
/
�
1

2
; 8x 2 ƒ n Sing.X/:

For each i 2 Z, one takes fi D P
�

�iT .x/;�.iC1/T .x/
on N�iT .x/

. By Lemma 2.5, all
assumptions of Lemma 2.14 are satisfied. Then by Lemma 2.14, we get the existence of
plaque family: �cs=cu.x/ D �cs=cu0 .

W cs.x/ and W cu.x/ are called central stable plaques and central unstable plaques respec-
tively.

C 2.16. – Let ƒ be a compact invariant set of X 2 X1
.M d /. Assume that

ƒ n Sing.X/ admits a dominated splitting NƒnSing.X/ D �cs ˚ �cu of index i with respect
to the linear Poincaré flow  t . Then for any T > 0; � > 0; " > 0, there is ı > 0 such
that for any x; y 2 ƒ, if d.x; y/ < ı, d.x; Sing.X// > ", d.y; Sing.X// > ", then
W cs
�
.x/ \ �Œ�T;T �.W

cu
�
.y// ¤ ;.

The proof of this corollary is based on the uniform continuity of plaque families when
points are far away from singularities.

2.6. Estimations on the size of stable/unstable manifolds

D 2.17. – Letƒ be an invariant set andE � NƒnSing.X/ an invariant subbundle
of the linear Poincaré flow  t . For C > 0, � > 0 and T > 0, x 2 ƒ n Sing.X/ is called
.C; �; T;E/- �t -contracting if there exists a partition: 0 D t0 < t1 < � � � < tn < � � � verifying
tnC1 � tn � T for any n 2 N and tn !1 as n!1, and for any n 2 N,

n�1Y
iD0

k �tiC1�ti jE.�ti .x//
k � C e��tn :
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x 2 ƒ n Sing.X/ is called .C; �; T;E/- �t -expanding if it’s .C; �; T;E/- �t -contracting
for �X .

An increasing homeomorphism � W R! R is called a reparametrization if �.0/ D 0. For
any orbit Orb.x/, one defines

W s.Orb.x// D fy 2M d ; 9 a reparametrization � s.t., lim
t!1

d.��.t/.y/; �t .x// D 0g;

W u.Orb.x// D fy 2M d ; 9 a reparametrization � s.t., lim
t!�1

d.��.t/.y/; �t .x// D 0g:

In above definitions, we need to use the reparametrization � because the stable/unstable set
of the sectional Poincaré maps along an orbit is in the stable/unstable set of the flow �t after
a reparametrization.

L 2.18. – Let ƒ be a compact invariant set of X 2 X1
.M d /. Assume that

ƒ n Sing.X/ admits a dominated splitting NƒnSing.X/ D �cs ˚ �cu of index i with
respect to the linear Poincaré flow  t . For C > 0, � > 0 and T > 0, there is ı > 0 such that

– For any regular point x 2 ƒ, if x is .C; �; T;�cs/- �t -contracting, then W cs
ıjX.x/j

�

W s.Orb.x//;
– For any regular point x 2 ƒ, if x is .C; �; T;�cu/- �t -expanding, then W cu

ıjX.x/j
�

W u.Orb.x//.

Proof. – We need to prove that there is ı > 0 such that

lim
t!C1

diam
�

P
�

x;�t .x/
.�cs.x/.�cs.ı///

�
D 0:

By the uniform continuity ofDP
�

x;�t .x/
in Lemma 2.5, we have a uniform linearized neigh-

borhood of 0z in N z for each regular point z. Then the proof parallels to [45, Corollary 3.3].

C 2.19. – Under the assumption of Lemma 2.18, for any compact set ƒ0 �
ƒ n Sing.X/, there is " > 0 such that for any x; y 2 ƒ0, if

� d.x; y/ < ";
� x is .C; �; T;�cs/- �t -contracting and y is .C; �; T;�cu/- �t -expanding;

then W s.Orb.x// \W u.Orb.y// ¤ ;.

Similar to the proof of Lemma 2.18, we have

L 2.20. – Let X 2 X1
.M d /. For any C > 0, � > 0 and T > 0, there is

ı D ı.X; C; �; T / > 0 such that if a regular point x 2 M d is .C; �; T; N /- �-contracting,
then

lim
t!C1

diam
�
Px;�t .x/.Nx.ıjX.x/j//

�
D 0:

In other words, Nx;ıjX.x/j � W s.Orb.x//.

Notice that not only x may be close to a singularity, but also !.x/ may contain singular-
ities.

T 2.21 ([28, Theorem 4.1, Proposition 6.2]). – GivenX 2 X1
.M d / and a hyper-

bolic singularity � of X , for any C > 0; � > 0 and T > 1, there exists a neighborhood U of �
such that there is no .C; �; T; N /- �-contracting periodic point in U .
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The proof of Theorem 2.21 is not short and it is contained in [28]. Now we give some idea
of Theorem 2.21: if Theorem 2.21 is not true, then there is a sequence of .C; �; T; N /- �-con-
tracting periodic points fpng such that limn!1 pn D � . This holds only if � is a saddle. By
the property of fpng, we have

� T�M
d admits a dominated splitting T�M d D Ecs˚Euu w.r.t. the tangent flow, where

dimEuu D 1 and Euu is strong unstable,
� there is ı > 0, Npn.ıjX.pn/j/ � W

s.pn/.

Then by a careful estimation (which is not obvious), one has for n large enough,
W uu.�/ \ W s.pn/ ¤ ;, where W uu.�/ is the strong unstable manifold corresponding
to Euu. ButW uu.�/ n f�g contains only two orbits, and pn are distinct periodic orbits. This
gives us a contradiction.

An available proof can be found in [57].

2.7. Pliss Lemma

We use the following lemma of Pliss type to get the points which can have uniform
estimations to infinity.

L 2.22. – GivenX 2 X1
.M d /,C > 0, T > 0 and � > 0, for any �0 2 .0; �/, there is

N D N.C; T; �; �0/ > 0, such that if 
 is a periodic orbit with period �.
/ > N ,E � N 
 is an
invariant bundle w.r.t.  t , and if 
 is .C; �; T;E/-contracting at the period w.r.t.  t , then there
is x 2 
 such that x is .1; �0; T; E/- �t -contracting.

Proof. – Since 
 is .C; �; T;E/-contracting at the period w.r.t.  t , there is m 2 N and a
time partition

0 D t0 < t1 < � � � < tn D m�.
/;

with tiC1 � ti � T for 0 � i � n � 1, such that

n�1Y
iD0

k tiC1�ti jE.�ti .x//
k � C expf��m�.
/g:

Since ˆ�.
/.X.x// D X.��.
/.x// D X.x/, the above estimation is also true for  �t :

n�1Y
iD0

k �tiC1�ti jE.�ti .x//
k � C expf��m�.
/g:

When �0 < �; if �.
/ is large enough, one can cancel the constant C . Following [15,
Lemma 2.14], one can get a .1; �0; T; E/- �t -contracting point x.

L 2.23. – Assume that every critical element ofX 2 X1
.M d / is hyperbolic. For any

C > 0, T > 0 and � > 0, X can only have finitely many .C; �; T; N /-contracting periodic
orbits.
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Proof. – If the conclusion is not true, then X has infinitely many distinct periodic orbits
f
ng such that each 
n is .C; �; T; N /-contracting at the period w.r.t.  t . We claim that
limn!1 �.
n/ D1. Indeed, by taking a subsequence if necessary, assume that limn!1 
n D ƒ.
If �.
n/ are uniformly bounded, then every point in ƒ is a critical point. Since we assume
that every critical element of X is hyperbolic, every (critical) orbit in ƒ is hyperbolic. It is
easy to show that ƒ consists of finitely many orbits. Since ƒ is connected, it reduces to a
single orbit. Since a hyperbolic critical orbit is isolated, there is no other periodic orbits
contained in a neighborhood of ƒ.

By Lemma 2.22, for each n large enough, there is xn 2 
n such that xn is a
.1; �=2; T; N /- �t -contracting point. Thus, there is ı D ı.X; �; T / > 0 such that
Nxn.ıjX.xn/j/ is contained in the stable manifold of xn. If xn accumulates on singular-
ities, then one can get a contradiction by Theorem 2.21. If xn dose not accumulate on
singularities, then the basin of 
n covers an open set with uniform size. This also gives a
contradiction because the volume of M d is finite and f
ng are distinct periodic orbits.

2.8. Liao’s shadowing lemma for  �t and Liao’s sifting lemma

D 2.24. – Let � > 0 and T > 0. For any x 2 M d n Sing.X/ and T0 > T , the
orbit arc �Œ0;T0�.x/ is called .�; T /- �t -quasi hyperbolic with respect to a direct sum splitting
Nx D E.x/˚ F.x/ if there is a partition

0 D t0 < t1 < � � � < tl D T; tiC1 � ti � T;

such that for k D 0; 1; : : : ; l � 1, we have

k�1Y
iD0

k �tiC1�ti j ti .E.x//
k � e��tk ;

l�1Y
iDk

m. �tiC1�ti j ti .F .x//
/ � e�.tl�tk/;

k �tkC1�tk j tk .E.x//
k

m. �tkC1�tk j tk .F .x//
/
� e��.tkC1�tk/:

R. – The third inequality is usually satisfied in an invariant set with a T �-domi-
nated splitting in the normal bundle with respect to the linear Poincaré flow.

Note that this definition is similar to the usual quasi hyperbolic orbit arc for linear
Poincaré flow, while the only difference is that now we use the scaled linear Poincaré flow  �t
instead of linear Poincaré flow  t . Let dT be the metric in TM d induced by the Riemannian
metric. For x; y 2M d and two linear subspaces E.x/ and F.y/, one defines

Qd.E.x/; F.y// D maxf sup
u2E.x/;jujD1

inf
v2F.y/;jvjD1

fdT .u; v/g; sup
v2F.y/;jvjD1

inf
u2E.x/;jujD1

fdT .u; v/gg:

The following shadowing lemma for singular flows was given by Liao [27]. We restate it
by using modern languages.
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T 2.25 ([27]). – Let X 2 X1
.M d /, ƒ � M d n Sing.X/ be a compact set, and

� > 0; T > 1. For any " > 0 there exists ı > 0, such that for any .�; T /- �t -quasi hyperbolic
orbit arc �Œ0;T �.x/ with respect to some direct sum splitting Nx D E.x/˚ F.x/ satisfying x,
�T .x/ 2 ƒ and Qd.E.x/;  T .E.x/// � ı and Qd.F.x/;  T .F.x/// � ı, there exists a point
p 2M d and a C 1 strictly increasing function � W Œ0; T �! R such that

� �.0/ D 0 and 1 � " < � 0.t/ < 1C ",
� p is periodic: ��.T /.p/ D p,
� d.�t .x/; ��.t/.p// � "jX.�t .x//j; t 2 Œ0; T �,
� there is a direct-sum splitting Np D E.p/ ˚ F.p/ such that  �

�.T /
.E.p// D E.p/,

 �
�.T /

.F.p// D F.p/, and for any t 2 Œ0; T �,

Qd. �t .E.x//;  
�
�.t/.E.p/// � ";

Qd. �t .F.x//;  
�
�.t/.F.p/// � ":

R. – If we consider an invariant set with a dominated splitting in the normal
bundle w.r.t. the linear Poincaré flow, we can replace Qd.E.x/;  T .E.x/// � ı by d.x; �T .x// < ı.

Note that in this version of shadowing lemma, we only need that the head and tail of orbit
arc are far from singularities, while other part of the orbit arc can approximate singularities.
This enables us to deal with some problems where regular orbits approximate singularities.

We also need Liao’s sifting lemma [25, 26], whose aim is to find quasi-hyperbolic orbit
segments. One can see [54] for a proof.

L 2.26. – Let �t W ƒ ! ƒ be a continuous flow on a compact metric space ƒ and
f W ƒ! R a continuous function. Let �2 > �1 > 0 and T > 0. Assume that

– there is b 2 ƒ such that for any n 2 N,

n�1X
iD0

f .�iT .b// � 0I

– for any c 2 ƒ verifying for any n 2 N,

n�1X
iD0

f .�iT .c// � �n�1;

there is g 2 !.c/ such that for any n 2 N,

n�1X
iD0

f .�iT .g// � �n�2:

Then for any �3; �4 verifying �2 > �3 > �4 > �1, for any k 2 N, there is y in the positive
orbit of x and integers 0 D n0 < n1 < � � � < nk such that for each integer i 2 Œ0; k � 1�, for
any integer m 2 Œ1; niC1 � ni � one has

m�1X
jD0

f .�jT .�niT .y/// � �m�4;
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niC1�ni�1X
jDm�1

f .�jT .�.niCm�1/T // � �.niC1 � ni �mC 1/�3:

We need the following folklore lemma to prove hyperbolicity for compact sets. Its proof
mainly uses some compact arguments. Hence we omit the proof.

L 2.27. – Let �t W ƒ ! ƒ be a continuous flow on a compact metric space ƒ and
f W ƒ! R a continuous function. Given T > 0, if for any x 2 ƒ, there is nx 2 N such that

nx�1X
iD0

f .�iT .x// < 0;

then there are C � 0 and � < 0 such that for any x 2 ƒ and any n 2 N, one has
n�1X
iD0

f .�iT .x// � C C n�:

3. Chain recurrence and genericity

3.1. Conley theory

A chain recurrent class is called non-trivial if it is not reduced to a critical element; other-
wise, it is called trivial. For each hyperbolic critical element p of X , since Orb.p/ has a well-
defined continuation Orb.pY / for Y close to X , C.p/ also has a well-defined continuation
C.pY ; Y /.

A compact invariant setƒ ofX (if it has a continuation) is called lower semi-continuous if
for any sequence of vector fields fXng verifying limn!1Xn D X , one has lim infn!1ƒXn � ƒ.
A compact invariant setƒ ofX (if it has a continuation) is called upper semi-continuous if for
any sequence of vector fields fXng verifying limn!1Xn D X , one has lim supn!1ƒXn � ƒ.
It is well known that the closure of hyperbolic periodic orbits is lower semi-continuous and
the chain recurrent set is upper semi-continuous. There is a classical result saying that lower
semi-continuous sets and upper semi-continuous sets are continuous for generic vector
fields.

L 3.1. – For a hyperbolic critical element p, C.p/ is upper semi-continuous. As a
corollary, if p1 and p2 are two critical elements of X with the property C.p1/ \ C.p2/ D ;,
then there is a neighborhood U ofX such that for any Y 2 U , one hasC.p1;Y /\C.p2;Y / D ;.

Proof. – The fact that C.p/ is upper semi-continuous because of the continuity of the
flows with respect to the vector fields.

By [12], if we have two chain recurrent classes C.p1/ and C.p2/ satisfying C.p1/ \ C.p2/ D ;,
then there is an open set U such that

� �t .U / � U for t > 0;
� C.p1/ � U and C.p2/ � Int.M n U/ or C.p2/ � U and C.p1/ � Int.M n U/.

Then by the continuity of vector fields, there is a C 1 neighborhood U of X such that
for any Y 2 U , one has C.p1;Y / � U and C.p2;Y / � Int.M n U/ or C.p2;Y / � U and
C.p1;Y / � Int.M n U/. As a corollary, one has C.p1;Y / \ C.p2;Y / D ;.
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For each point x 2M d , one can define the strong stable manifoldW ss.x/ and the strong
unstable manifold W uu.x/ as

W ss.x/
4
D fy 2M d

W lim
t!C1

d.�t .x/; �t .y// D 0g;

W uu.x/
4
D fy 2M d

W lim
t!�1

d.�t .x/; �t .y// D 0g:

But for flows, this definition is not enough in many cases. By the difference with diffeo-
morphisms, sometimes we need to reparametrize the time variable. This leads us to give the
definition of W s.Orb.x// and W u.Orb.x// as in Section 2.

By the definitions, one has thatW s.Orb.x// andW u.Orb.x// are invariant sets. The proof
of the following lemma is forklore.

L 3.2. – For any hyperbolic critical point p, one has

1. for any critical element p, one has W s.Orb.p// D
S
t�0W

ss.�t .p// and
W u.Orb.p// D

S
t�0W

uu.�t .p//.
2. If C.p/ is non-trivial, then C.p/ \W s.Orb.p// nOrb.p/ ¤ ; and
C.p/ \W u.Orb.p// nOrb.p/ ¤ ;.

Proof. – For a critical element p, W ss.p/ coincides with the stable manifold of p for
the time-one map �1. p is a hyperbolic point of �1 when p is a singularity and Orb.p/ is
a normally hyperbolic circle when p is periodic. In any case,

S
t�0W

ss.�t .p// is the set of
point whose !-limit is the orbit of p. Item 1 follows from this fact.

One can find a proof of Item 2 in [10, Lemma 2.7].

For a compact invariant set ƒ, one says that ƒ is Lyapunov stable for X if for any
neighborhood U of ƒ, there is a neighborhood V of ƒ such that �t .V / � U for any t � 0.

L 3.3. – If ƒ is Lyapunov stable, then W u.Orb.x// � ƒ for each x 2 ƒ.

Proof. – Given any y 2 W u.Orb.x//, for any neighborhood U of ƒ, since ƒ is
Lyapunov stable, there is a neighborhood V of ƒ such that �t .V / � U for any t � 0.
For any y 2 W u.Orb.x//, there is an increasing homeomorphism � W R ! R such that
d.�t .x/; ��.t/.y// ! 0 as t ! �1. Thus there is tV > 0 such that ��.�tV / 2 V . By the
Lyapunov stability one has y D ���.�tV /.��.�tV /.y// 2 U . By the arbitrary property of U ,
one has y 2 ƒ.

By the definition, ifƒ is not Lyapunov stable, then there is a neighborhood U0 ofƒ such
that there is a sequence of neighborhoods fVng of ƒ such that

– V1 � V2 � � � � � Vn � � � � ; and
T
n�0 Vn D ƒ.

– �tn.Vn/ � U0 for some tn > 0.

Sinceƒ is an invariant set, one has that limn!1 tn D1. Hence, ifƒ is not Lyapunov stable,
then there are ftng � R and a sequence of points fxng such that

– limn!1 xn 2 ƒ.
– limn!1 tn D C1.
– limn!1 �tn.xn/ exists and limn!1 �tn.xn/ … ƒ.
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For x 2 M d , one can define the chain unstable set W ch;u.x/ of x and the chain stable set
W ch;s.x/ of x in the following way:

W ch;u.x/ D fy 2M d
W 8" > 0; 9 an " � pseudo orbit fxigniD0 s.t. x0 D x; xn D yg;

W ch;s.x/ D fy 2M d
W 8" > 0; 9 an " � pseudo orbit fxigniD0 s.t. x0 D y; xn D xg:

Using the notation of chain (un)stable set, we have that y is chain attainable from x iff
y 2 W ch;u.x/, and x; y are chain bi-attainable iff y 2 W ch;u.x/ \W ch;s.x/.

3.2. The C 1 connecting lemmas and the ergodic closing lemma for flows

Arnaud, Wen and Xia [3, 55] gave the following extension of Hayashi’s C 1 connecting
lemma [19]. We will use it in Section 6.

L 3.4. – For any vector field X 2 X1
.M d /, for any point z … Per.X/ [ Sing.X/,

for any " > 0, there are L > 0 and two neighborhoods fWz � Wz of z such that

– one can choose Wz and fWz to be arbitrarily small neighborhoods of z,
– for any p and q inM d , if the positive orbit of p and the negative orbit of q enter fWz , but

the orbit segments f�t .p/ W 0 � t � Lg and f�t .q/ W �L � t � 0g don’t intersect Wz ,

then there is a vector field Y "-C 1-close to X such that

– q is in the positive orbit of p with respect to the flow �Yt generated by Y ,
– Y.x/ D X.x/ for any x 2M d nWL;z , where WL;z D

S
0�t�L �

X
t .Wz/.

Mañé’s ergodic closing lemma [30] is also useful in this paper. First we state a flow version
of Mañé’s ergodic closing lemma taken from [51].

D 3.5. – LetX 2 X1
.M d /. A regular point x 2M d is called strongly closable

if for any C 1 neighborhood U of X , there is L > 0, and any " > 0, there are Y 2 U and a
periodic point y 2M d of Y with period �.y/ such that

– X.z/ D Y.z/ for any z 2M d n

�S
t2Œ0;L� �t .B.x; "//

�
,

– d.�Xt .x/; �
Y
t .y// < " for each t 2 Œ0; �.y/�.

Denote by †.X/ the set of strongly closable points of X .

The ergodic closing lemma [30, 51] states:

L 3.6. – We have �.†.X/ [ Sing.X// D 1 for every T > 0 and every �XT -invariant
probability Borel measure �.

One needs the following corollary which asserts that one can get a periodic orbit with some
additional properties after a small perturbation which preserves a compact invariant subset
in a transitive set. For the applications in this paper, one takes the compact invariant subset
as the union of finitely homoclinic orbits of singularities. See Section 6.

C 3.7. – Let f W M d ! R be a continuous function. Let � be an ergodic
measure of a flow �t generated by X 2 X1

.M d /, which is not supported on a singularity.
Assume that ƒ is a compact invariant set such that �.ƒ/ D 0. Then for any " > 0, for any
C 1 neighborhood U of X , and any neighborhood U of supp.�/, there exists Y 2 U and a
periodic orbit 
 � U of Y such that
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� ƒ is a compact invariant set of Y .
� j

R
f dı
 �

R
f d�j < ", where ı
 is the uniform distribution measure on 
 , i.e., for any

continuous function g WM d ! R,Z
g.x/dı
 .x/ D

1

�.
/

Z �.
/

0

g.�t .p//dt;

where p 2 
 .

Proof. – Without loss of generality, one can assume that� is not supported on a periodic
orbit. Since � is not supported on a singularity, one has �.†.X// D 1. Also choose x 2 †
with x … ƒ satisfying

lim
T!1

ıx;T D �;

where ıx;T is the uniform distribution measure supported on �Œ0;T �.x/, i.e., for any contin-
uous function g WM d ! R,Z

g.y/dıx;T .y/ D
1

T

Z T

0

g.�t .x//dt:

For any " > 0, there is T0 > 0 such that for any T > T0, one hasˇ̌̌̌Z
f dıx;T �

Z
f d�

ˇ̌̌̌
< "=2:

Take ı > 0 small enough such that for any d.y; z/ < ı, one has jf .y/ � f .z/j < "=2. By
reducing ı if necessary, one can assume that B.x; ı/ \ƒ D ;. Since ƒ is invariant, one has
that �t .B.x; ı//\ƒ D ; for any t 2 R. By Lemma 3.6, there is Y 2 U which has a periodic
point p with period �.p/ such that

– Orb.p; Y / � U ;
– ƒ is a compact invariant set of Y ;
– d.�Xt .x/; �

Y
t .p// < ı for each t 2 Œ0; �.p/�.

x is not periodic because we assume that� is not supported on a periodic orbit. Thus, one
can assume that �.p/ > T0. Let 
 D Orb.p; Y /. Thenˇ̌̌̌Z

f dı
 �
Z
f d�

ˇ̌̌̌
�

ˇ̌̌̌Z
f dı
 �

Z
f dıx;�.
/

ˇ̌̌̌
C

ˇ̌̌̌Z
f dıx;�.
/ �

Z
f d�

ˇ̌̌̌
�

1

�.
/

Z �.
/

0

ˇ̌̌
f .�Yt .p// � f .�

X
t .x//

ˇ̌̌
dt C

"

2

<
"

2
C
"

2
D ":

A vector field X 2 X r
.M d / is called Kupka-Smale if every critical element of X is

hyperbolic, and the stable manifold of any critical element intersects the unstable manifold
of any critical element transversely. A classical generic result is: Kupka-Smale vector fields
form a residual set in X r

.M d /. We need the following weak terminology:

D 3.8. – A vector field X 2 X r
.M d / is called weak Kupka-Smale if every

critical element of X is hyperbolic.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



70 S. GAN AND D. YANG

Since Kupka-Smale is C r generic in X r
.M d /, we have that weak Kupka-Smale is also a

C r generic property in X r
.M d /.

We will state a connecting lemma for pseudo orbits, which was proved in [6]. Bonatti and
Crovisier studied the connecting lemma for pseudo-orbits for weak Kupka-Smale diffeomor-
phisms. The assumption of weak Kupka-Smale is used since

– by using �-lemma, for every non-periodic point x which is not in the stable/unstable
manifold of a periodic point, the positive/negative iteration of x will be in a topological
tower.

Now we give the definition of a topological tower for a vector field. For anyL > 0, denote
by

CritL.X/ D fx W 9l 2 Œ0; L�; s.t. �l .x/ D x; Orb.x/ is hyperbolicg:

Given a vector fieldX , for ı > 0 and L > 0, a sequence of cross sections f†igNiD1 is called
a topological tower, if

– fe†igNiD1 are mutually disjoint, where e†i D �Œ0;L�†i ,
– if x is not contained in

S
p2CritL.X/

W s
ı
.Orb.p//, then the forward orbit of x will

intersect
SN
iD1†i ,

– if x is not contained in
S
p2CritL.X/

W u
ı
.Orb.p//, then the backward orbit of x will

intersect
SN
iD1†i .

A flow version of [6, Théorème 3.1] states that such a topological tower exists for small ı > 0
and large L > 0 when X is weak Kupka-Smale. Moreover, one can require that

– the diameter of each †i is as small as we want;
– each †i is almost orthogonal to the vector field X .

When L is large enough, the perturbation for connecting orbit as in [6, Théorm̀e 1.2] will
be realized in

SN
iD1

e†i .
For flows, �-lemma is true for both hyperbolic singularities and hyperbolic periodic orbits.

The orbit structure is clear near hyperbolic critical elements. So the connecting lemma for
pseudo-orbits is true for vector fields.

L 3.9 ([6, Theorem 1.2]). – LetX 2 X1
.M d / be a weak Kupka-Smale vector field.

Given any finite set OF of periodic orbits of X„ for any C 1 neighborhood U of X , and for any
x; y 2M d , if y is chain attainable from x, then there are Y 2 U , some neighborhood U of OF
and t > 0 such that �Yt .x/ D y and Y.z/ D X.z/ for any z 2 U .

Moreover, if X is C r , we can require that Y is also C r .

The statement here is a little bit different from [6], but it is essentially contained there. See
[6, Remarque 1.1].

R. – When we prove Theorem C, we first consider some generic vector field. And
then we consider some new vector field in a small neighborhood of the original one. Thus
we need Lemma 3.9 to do some perturbations when the new one is weak Kupka-Smale. See
Lemma 3.15 and Section 6 for more details.
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Sometimes, one needs to perturb a vector field to be a weak Kupka-Smale vector field
while preserving some non-transverse connection. This was used by Palis [38]. One can see
R. Xi’s master thesis [56] for a proof.

T 3.10 ([38, 56]). – For any vector field X 2 X r
.M d /, any n 2 N and any

hyperbolic critical elements fP1;Q1; : : : ; Pn;Qng, if Orb.xi / � W s.Pi / \W
u.Qi / is a non-

transverse orbit for 1 � i � n, then for any C r neighborhood U of X there exists Y 2 U ,

– Orb.xi / � W s.Pi / \W
u.Qi / is still a non-transverse orbit of Y ,

– any other critical element of Y is hyperbolic, i.e., Y is weak Kupka-Smale.

3.3. Generic results

Recall that R � X1
.M d / is residual if it contains a dense Gı subsets of X1

.M d /.
A property of vector fields is called C 1 generic if it holds for vector fields in a residual set
in X1

.M d /. Sometimes we use the terminology “for C 1 generic X” which is equivalent to
say that “there is a residual set R � X1

.M d / and X 2 R”. Since X1
.M d / is a Banach

space, every countable intersection of open dense subsets of X1
.M d / is dense. Usually we

can get a dense open property via a generic way.

One knows that lower semi-continuous maps and upper semi-continuous maps defined on
a complete metric space are continuous on a residual set.

L 3.11. – For C 1 generic X 2 X1
.M d /, for every critical element p, C.p;X/ is

continuous at X . This means, if fXng is a sequence of vector fields and limn!1Xn D X in the
C 1 topology, then limn!1 C.pXn ; Xn/ D C.p;X/ in the Hausdorff topology.

Proof. – The proof of this lemma just uses the upper semi-continuity of chain recurrent
class.

L 3.12. – For C 1 generic X 2 X1
.M d /, if p1 and p2 are two different critical

elements such that C.p1/ D C.p2/, then there is a C 1 neighborhood U of X such that for
any Y 2 U , one has C.p1;Y ; Y / D C.p2;Y ; Y /.

Proof. – Let C be the metric space of all compact subsets of M d , endowed with the
Hausdorff metric. C is a compact metric space. Let B1; B2; : : : ; Bn; : : : ; be a countable
basis of C . Let O1; O2; : : : ; On; : : : ; be the list of finite unions of elements of the countable
basis. For each n and m, we define the sets Hn;m and Nn;m of vector fields as following:

– X 2 Hn;m iff there is a neighborhood U of X such that for any Y 2 U , for any
hyperbolic critical element pn 2 On and any hyperbolic critical element pm 2 Om, one
has C.pn/ D C.pm/ for Y ,

– X 2 Nn;m iff there is a hyperbolic critical element pn 2 On and a hyperbolic critical
element pm 2 Om such that C.pn/\C.pm/ D ;. Since the chain recurrent class of any
hyperbolic critical element is upper semi-continuous, one knows that Nn;m is open.
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From the definitions, Hn;m [ Nn;m is open and dense in X1
.M d /. Let

R D

\
n;m2N

.Hn;m [ Nn;m/:

R is a residual subset. We will verify that every X 2 R satisfies the conclusion of the
lemma. Let X 2 R . Thus, for each n and m one has X 2 Hn;m [ Nn;m. For any two
hyperbolic critical elements p1 and p2, there are l 2 N and k 2 N and aC 1 neighborhood U

of X such that

– for any Y 2 U , p1;Y and p2;Y are the maximal compact invariant sets in Ol and Ok
respectively.

If C.p1/ D C.p2/ for X , then X … Nk;l . This implies that X 2 Hk;l . Let U0 D

U \ Hk;l . For each Y 2 U0,

– since Y 2 Hk;l , there is a critical element p01 2 Ol and a critical element p02 2 Ok of Y ,
one has C.p01/ D C.p

0
2/,

– since Y 2 U , the unique critical element in Ol is p1;Y and the unique critical element
in Ok is p2;Y . As a corollary, p1;Y D p01 and p2;Y D p02.

Thus, one has C.p1;Y / D C.p2;Y / for any Y 2 U0.

L 3.13. – ForC 1 genericX 2 X1
.M d /, and any hyperbolic critical element p ofX ,

ifW u.p/ � C.p/, then there is aC 1 neighborhood U ofX such thatW u.pY ; Y / � C.pY ; Y /.

Proof. – Let C be the metric space of all compact subsets of M d , endowed with the
Hausdorff metric. C is a compact metric space. Let B1; B2; : : : ; Bn; : : : ; be a countable
basis of C . Let O1; O2; : : : ; On; : : : ; be the list of finite unions of elements of the countable
basis. For each n, one can define sets Hn and Nn as following:

– X 2 Hn iff there is a C 1 neighborhood U of X such that for any Y 2 U , every
hyperbolic critical element pY 2 On of Y satisfies W u.pY ; Y / � C.pY ; Y /. By
definition, Hn is open,

– X 2 Nn iff X has a hyperbolic critical element p 2 On such thatW u.p;X/ C.p;X/.
W u.p;X/ varies lower semi-continuously with respect to X and C.p;X/ varies upper
semi-continuously with respect toX . So ifW u.p;X/ C.p;X/, there is a neighborhood
U of X such that W u.pY ; Y / C.pY ; Y / for any Y 2 U . This implies that Nn is an
open set in X1

.M d /.

It is clear that Hn [ Nn is open and dense in X1
.M d /. Let

R D

\
n2N

.Hn [ Nn/:

R is a residual subset of X1
.M d /. Take X 2 R . If p is a hyperbolic critical element

of X , then there are n and a neighborhood U of X such that for each Y 2 U , pY is the
unique hyperbolic critical element in On. Since W u.p/ � C.p/, one has X … Nn. As a
corollary, X 2 Hn. Let U0 D U \ Hn. For any Y 2 U0,

– since Y 2 Hn, every hyperbolic critical element q 2 On of Y , one has W u.q; Y / �

C.q; Y /,
– since Y 2 U , the unique critical element in On is pY .
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Thus, W u.pY ; Y / � C.pY ; Y / for any Y 2 U0.

L 3.14. – For C 1 genericX 2 X1
.M d /, let p be a hyperbolic critical element ofX .

If W u.p/ � C.p/, then C.p/ is Lyapunov stable.

Lemma 3.14 is folklore. The proof is based on the connecting lemma for pseudo orbits [6].
The following lemma claims that for C 1 generic vector fields, Lyapunov stability is a

robust property under perturbations.

L 3.15. – For C 1 genericX 2 X1
.M d /, let p be a hyperbolic critical element ofX .

If C.p;X/ is Lyapunov stable, then there is a C 1 neighborhood U ofX such that for any weak
Kupka-Smale vector field Y 2 U , C.pY ; Y / is also Lyapunov stable.

Proof. – Let R � X1
.M d / be the residual subset as in Lemma 3.13:X 2 R iff for any

hyperbolic critical element p ofX , ifW u.p;X/ � C.p;X/, then there is a C 1 neighborhood
U D UX;p such thatW u.pY ; Y / � C.pY ; Y / for any Y 2 U . We will prove thatC.pY ; Y / is
Lyapunov stable for each weak Kupka-Smale Y 2 U . If not, there is a weak Kupka-Smale
vector field X0 2 U such that C.pX0 ; X0/ is not Lyapunov stable. Thus we have

– W u.pX0 ; X0/ � C.pX0 ; X0/,
– there is y … C.pX0 ; X0/ such that y 2 W ch;u.C.pX0 ; X0//.

Then, there is aC 1 neighborhood U0 � U ofX0 such that for anyY 2 U0, y … C.pY ; Y /
by the upper semi-continuity of chain recurrent classes. Choose z 2 W u.pX0 ; X0/ n fpX0g.
Since z 2 C.pX0 ; X0/, y is chain attainable from z.

Take a small neighborhood U of pX0 . One can assume that the negative orbit of z is
contained in U . By Lemma 3.9, there is a vector field Y 2 U0 such that

� Y.x/ D X0.x/ for any x 2 U ,
� y is in the positive orbit of z with respect to �Yt .

As a corollary, y is in the unstable manifold of pY with respect to Y . This fact gives a
contradiction.

The following lemma asserts that for a generic vector field, if the perturbed system has
a periodic orbit which is .C; �; d; N /-contracting at the period, then the original generic
system already have by relaxing the constants.

L 3.16. – There is a dense Gı set G � X1
.M d / such that for any X 2 G , given two

open sets U; V � M d with U � V , and given three number K 2 N, � > 0 and T > 0, if
for any C 1 neighborhood U of X such that if there is some Y 2 U has a hyperbolic periodic
orbit 
Y which is .K; �; T; N /-contracting at the period w.r.t.  Yt satisfying 
Y \U ¤ ;, then
X has a periodic orbit 
 which is .K; �=2; 2T; N /-contracting at the period w.r.t.  t satisfying

 \ V ¤ ;.

Proof. – The proof of this lemma is still an application of fundamental tricks for generic
properties. Thus we just give a sketch. Let O1; O2; : : : ; On; � � � be a topological basis ofM d .
Let f�mg and fd`g be the sets of positive rational numbers. For each n 2 N, K 2 N, m 2 N
and ` 2 N, one defines:

– X 2 Hn;K;m;` iff X has a hyperbolic periodic orbit 
 such that
� 
 \On ¤ ;.
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� There is x 2 
 and a time partition 0 D t0 < t1 < � � � < tq D ˛�.
/ for some
positive integer ˛ satisfying tiC1 � ti � d` for 0 � i � q � 1 such that

q�1Y
iD0

k tiC1�ti jN�ti
.x/
k < Ke��m˛�.
/:

– X 2 Nn;K;m;` iff there is a neighborhood U of X such that for any Y 2 U , one has
� either Y has no hyperbolic periodic orbit intersecting On;
� Or, Y has a hyperbolic periodic orbit 
 such that 
 \On ¤ ; and for any x 2 


and any time partition 0 D t0 < t1 < � � � < tq D ˛�.
/ for any positive integer
˛ satisfying tiC1 � ti � d` for 0 � i � q � 1, one has

q�1Y
iD0

k YtiC1�ti jN
�Yti

.x/

k � Ke��m˛�.
/:

By the definitions, Hn;K;m;` [ Nn;K;m;` is a dense open set in X1
.M d /. Thus,

G D
\

n;K;m;`2N

.Hn;K;m;` [ Nn;K;m;`/

is a residual subset of X1
.M d /. Now we check that every X 2 G satisfies the properties of

the lemma.
For any � > 0, T > 0, one can take a rational number �m0 2 .�=2; �/ and T`0 2 .T; 2T /.

If there is a sequence of vector fields fXng such that

� limn!1Xn D X ,
� each Xn has a hyperbolic periodic orbit 
n which is .K; �; T; N /-contracting at the

period such that 
n \ U ¤ ;.

There is x 2 U such that x is an accumulating point of 
n. Thus, there is n0 such that
x 2 On0 � V . Since X 2 G � Hn0;K;m0;`0 [ Nn0;K;m0;`0 , one has X 2 Hn0;K;m0;`0 by the
definitions. Thus X itself has a periodic orbit in On0 which is .K; �m0 ; T`0 ; N /-contracting
at the period w.r.t.  t . It’s .K; �=2; 2T; N /-contracting at the period w.r.t.  t in V .

L 3.17. – There is a dense Gı set G � X1
.M d / such that for any X 2 G and

x 2M d , for any K 2 N, � > 0 and d > 0, one has

– either, x is contained in a periodic sink which is .K; �=2; 2d; N /-contracting at the period
w.r.t.  t ;

– or, there is a C 1 neighborhood U of X and a neighborhood U of x such that for any
Y 2 U , Y has no periodic sink which is .K; �; d; N /-contracting at the period w.r.t. Yt ,
and intersects U .

Proof. – Let G be as in Lemma 3.16. If the conclusion of this lemma is not true, one has
that

� x is not contained in a periodic sink which is .K; �=2; 2d; N /-contracting at the period
w.r.t.  t ,
� for any C 1 neighborhood U of X and any neighborhood U of x, some Y 2 U has

a periodic sink, which is .K; �; d; N /-contracting at the period w.r.t.  Yt , and inter-
sects U .
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Thus, by Lemma 3.16, for any neighborhood U of x, X itself has a periodic sink inter-
sects U , which is .K; �=2; 2d; N /-contracting at the period w.r.t.  t . In other words, there
is a sequence of periodic points xn such that

� limn!1 xn D x,
� xn is contained in a period sink 
n, which is .K; �; d; N /-contracting at the period for

each n. Moreover, f
ng are distinct.

We assert that �.
n/!1 as n!1. Otherwise, by taking a limit, x would be in a peri-
odic sink which is .K; �; d; N /-contracting at the period. Thus one can get a contradiction
by Lemma 2.23.

C 3.18. – Assume that dimM 3 D 3. There is a residual set G � X1
.M 3/ n H T

such that for any X 2 G , there exists � > 0 such that for any � 2 Sing.X/, there is a C 1 neigh-
borhood U of X and a neighborhood U of � such that for any periodic orbit 
 of Y , if

 \ U ¤ ;, then N 
 admits an �-dominated splitting of index 1 w.r.t. the linear Poincaré
flow  t .

Proof. – If ind.
/ D 1, then it is done by Lemma 2.10. Thus, one can assume that 
 is
a sink or source. Without loss of generality, assume that it is a sink. By Lemma 2.12, if 

dose not admits an �-dominated splitting for some �, then there are C > 0, � > 0 and T > 0
such that 
 is .C; �; T; N /-contracting at the period w.r.t.  t . Since � is a singularity, not a
periodic point, by Lemma 3.17, one can get a contradiction.

We would like to list some other generic results we need in this paper.

L 3.19. – There is a dense Gı set G � X1
.M d / such that for each X 2 G , one has

1. For any non-trivial chain recurrent class C.�/, where � is a hyperbolic singularity of
index d � 1, then every separatrix of W u.�/ is dense in C.�/. In particular, C.�/ is
transitive and Lyapunov stable.

2. Let i 2 Œ0; dimM � 1�. If there is a sequence of vector fields fXng such that
� limn!1Xn D X ,
� eachXn has a hyperbolic periodic orbits 
Xn of index i such that limn!1 
Xn D ƒ.

Then there is a sequence of hyperbolic periodic orbits 
n of index i of X such that
limn!1 
n D ƒ.

3. There exists a neighborhood U of X such that for any Y 2 U , Y has only finitely
many singularities. Moreover, for every singularity � of Y , the eigenvalues �1; �2; : : : ; �d
of DY.�/ satisfy:

Re.�i /CRe.�j / 6D 0;

for any 1 � i; j � d .
4. For any hyperbolic periodic orbit P of X , C.P / D H.P /, where H.P / is the homoclinic

class of P .
5. Every non-trivial chain transitive set is the limit of a sequence of periodic orbits in the

Hausdorff topology.
6. X is Kupka-Smale.
7. Given a critical element p of X , if for any neighborhood U of X , there is Y 2 U such

that C.pY / is singular hyperbolic, then C.p/ is singular hyperbolic itself.
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R. – Item 1 is a corollary of the connecting lemma for pseudo-orbits [6]. There is
no explicit version like this. [32, Section 4] gave some ideas about the proof of Item 1 without
using the terminology of chain recurrence. Item 2 is fundamental (see [53] for instance).
Item 3 is fundamental. It is true because generic X can only have finitely many singularities.
Moreover, the eigenvalues of the singularities have some continuous property. Item 4 is also
a result in [6]. Item 5 is the main result in [13]. Item 6 is the classical Kupka-Smale theorem
[21, 22, 46]. Singular hyperbolicity is an open property. Thus, by using a standard generic
argument, we know that Item 7 is true.

Let G0 be a dense Gı set of X1
.M d / such that if X 2 G0 then X satisfies all generic

properties mentioned in this subsection.

4. Reduction of the main theorems

4.1. Prove Theorem A from Theorem B

Proof of Theorem A. – Now we give the proof of Theorem A by assuming the result of
Theorem B. Suppose on the contrary that X1

.M 3/ n MS [ HS is not empty. Choose a
C 1 generic X 2 X1

.M 3/ n MS [ HS . Since every homoclinic tangency of a hyperbolic
periodic orbit can be perturbed to be a transverse homoclinic intersection by an arbitrarily
small perturbation, we have that X is far away from ones with a homoclinic tangency. Thus,
by Theorem B, every non-trivial chain recurrent class is a homoclinic class. Since we assume
that Theorem A is not true, one has that every chain recurrent class is trivial: it is reduced to
be a critical element. If there are finitely many chain recurrent classes, then we have thatX is
Morse-Smale. Thus, one can assume that X has infinitely many chain recurrent classes, and
each chain recurrent class is a hyperbolic critical element. It is known that aC 1 generic vector
field can only have finitely many singularities since it is Kupka-Smale. ThusX has countably
many distinct hyperbolic periodic orbits f
ng. By taking a subsequence if necessary, we can
assume that f
ng converges in the Hausdorff topology. Let ƒ be the limit. Then, ƒ is chain
transitive, which implies thatƒ is contained in a chain recurrent class. Because we know that
every chain recurrent class of X is a hyperbolic critical element, ƒ is a hyperbolic critical
element. This cannot happen because hyperbolic critical elements are locally maximal.

4.2. The reduction of the proofs of Theorem B and Theorem C

To prove Theorem B, we need to focus on non-trivial singular chain recurrent classes
without periodic orbits.

We need the following theorem to guarantee the existence of the dominated splitting for
the tangent flow. The proof will be completed later.

T 4.1. – For aC 1 genericX 2 X1
.M 3/nH T , for the non-trivial chain recurrent

classC.�/ of some singularity � , ifC.�/ is not a homoclinic class, thenC.�/ admits a dominated
splitting TC.�/M 3 D E ˚ F w.r.t. the tangent flow.
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In fact, we have the following theorem from [10, Theorem B] where it is proved that one
bundle is uniform hyperbolic: (6)

T 4.2. – For a C 1 generic X 2 X1
.M 3/, and a non-trivial chain recurrent

classC.�/ of some singularity � , ifC.�/ admits a dominated splitting TC.�/M 3 D E˚F w.r.t.
the tangent flow, then C.�/ admits a partially hyperbolic splitting; more precisely, ind.�/ D 2
iff dimE D 1 and E is contracting.

In general, we give the definition of singular hyperbolic sets as the following: (7)

D 4.3. – Let ƒ be a compact invariant set of X 2 X1
.M 3/, E � TƒM 3 be a

two dimensional invariant sub-bundle, we say that E is area-contracting, if there are C > 0,
� > 0 such that for any x 2 ƒ and any t > 0, jdetˆt jE.x/j � C e��t ; we say that E is area-
expanding if it is area-contracting for �X .

A compact invariant set ƒ of X 2 X1
.M 3/ is called singular hyperbolic, if

– either,ƒ admits a partially hyperbolic splitting TƒM 3 D Ess˚Ecu, where dimEss D 1,
Ess is contracting and Ecu is area-expanding;

– or, ƒ admits a partially hyperbolic splitting TƒM 3 D Ecs ˚ Euu, where dimEuu D 1,
Euu is expanding and Ecs is area-contracting.

Note that in the above definition, we don’t requireƒ contains a singularity or not. So every
non-trivial hyperbolic set which is disjoint from the singular set is singular hyperbolic.

We have the next theorem which is mainly proven in Section 6:

T 4.4. – For a C 1 generic X 2 X1
.M 3/ and a non-trivial chain recurrent

class C.�/ of some singularity � , if C.�/ admits a partially hyperbolic splitting TC.�/M 3 D

Es˚F w.r.t. the tangent flow, where dimEs D 1, and if C.�/ contains no periodic orbits, then
C.�/ is singular hyperbolic.

Morales and Pacifico [32] proved the following results:

T 4.5. – For a C 1 generic X 2 X1
.M 3/ and a singularity � of X , if C.�/ is

singular hyperbolic and Lyapunov stable, thenC.�/ is an attractor. As a corollary,C.�/ contains
periodic orbits.

We also needs the following two results from [10]. The version of the first one is the
Proposition 3.1 of [10]. It essentially follows the elegant works of Pujals-Sambarino [45] and
Arroyo-Rodriguez Hertz [4].

T 4.6. – For a C 1 generic X 2 X1
.M 3/, if ƒ is a non-singular chain transitive

set and admits a dominated splitting Nƒ D �
s˚�u with respect to  t , thenƒ is hyperbolic.

(6) The statement is a little bit stronger than [10]. But the proof is contained there.
(7) We postpone to give the definition because we want the introduction to be easier to read.
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T 4.7. – For a C 1 generic X 2 X1
.M 3/, if the chain recurrent class C.�/ of a

singularity � contains a periodic orbit and admits a dominated splitting TC.�/M D E ˚ F

with respect to ˆt , then C.�/ is singular hyperbolic. Consequently, C.�/ is an attractor or a
repeller depending if the index of � equals to 2 or 1.

Proof of Theorem B. – If Theorem B is not true, then there is a C 1 generic
X 2 X1

.M 3/ n H T and a non-trivial chain recurrent class C of X such that C is not
a homoclinic class. Now we have two cases:

4.2.0.1. C contains no singularity. – Since C is chain transitive, there is a sequence of
periodic orbits f
ng such that 
n ! C as n ! 1 in the Hausdorff metric. Since C is
not reduced to a periodic orbit, one can assume that f
ng are distinct periodic orbits and
�.
n/!1. By Corollary 2.9, if we cannot perturb 
n to be a hyperbolic periodic orbit of
index 1 for n large enough, then there are constants C > 0, T > 0, � > 0 such that 
n are
.C; �; T; N /-contracting at the period w.r.t.  t for X or �X . Then by Lemma 2.23, one can
get a contradiction.

Thus, one can assume that the index of every 
n is 1. From this, we have that C admits a
dominated splitting NC D �cs ˚ �cu of index 1 w.r.t.  t . By Theorem 4.6, we have that
C is hyperbolic. This fact shows that C is a homoclinic class, which gives a contradiction.

4.2.0.2. C contains a singularity � . – Since C is not a homoclinic class, by Theorem 4.1,
C admits a dominated splitting TCM 3 D E ˚ F w.r.t. the tangent flow ˆt . Moreover, by
Theorem 4.2, it is a partially hyperbolic splitting. If C contains a singularity and contains
no periodic orbits, by Theorem 4.4, C is singular hyperbolic. By the theorem of Morales-
Pacifico (Theorem 4.5), C is a homoclinic class, which gives a contradiction.

Proof of Theorem C. – Given a C 1 generic X 2 X .M 3/, assume that C.�/ admits a
dominated splitting w.r.t. the tangent flow. If C contains a periodic orbit, Theorem 4.7
implies C is a singular hyperbolic attractor or repeller. To prove that C contains a periodic
orbit, suppose on the contrary that C contains no periodic orbits. Then by Theorem 4.2, the
dominated splitting is a partially hyperbolic splitting. And then by Theorem 4.4,C is singular
hyperbolic and hence Theorem 4.5 impliesC is a homoclinic class. This contradiction proves
that C contains a periodic orbit.

4.3. Proof of Theorem 4.1

The proof of Theorem 4.1 can be divided into the following two propositions:

P 4.8. – There is a denseGı set G � X1
.M 3/nH T such that for anyX 2 G ,

if � is a hyperbolic saddle ofX and C.�/ is Lyapunov stable, then every singularity � 2 C.�/ is
Lorenz-like, i.e., the eigenvalues �1; �2; �3 of DX.�/ satisfy:

�1 < �2 < 0 < ��2 < �3:

Moreover, there is a C 1 neighborhood UX of X such that for any Y 2 UX and any
� 2 C.�/ \ Sing.X/, one has �Y 2 C.�Y ; Y / and W ss.�Y / \ C.�Y ; Y / D f�Y g.

Proposition 4.8 will be proven in Subsection 5.1.
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P 4.9. – Let ƒ be a compact invariant set of X 2 X1
.M d / verifying the

following properties:

– ƒ n Sing.X/ admits an index i dominated splitting NƒnSing.X/ D �cs ˚ �cu in the
normal bundle w.r.t. the linear Poincaré flow  t ,

– every singularity � 2 ƒ is hyperbolic and ind.�/ > i . Moreover, T�M d admits a
partially hyperbolic splitting T�M d D Ess ˚ Ecu with respect to the tangent flow,
where dimEss D i and for the corresponding strong stable manifolds W ss.�/, one has
W ss.�/ \ƒ D f�g,

– for every x 2 ƒ, one has !.x/ \ Sing.X/ ¤ ;.

Then one has

– either ƒ admits a partially hyperbolic splitting TƒM d D Ess ˚ F with respect to the
tangent flow ˆt , where dimEss D i ,

– or, ƒ intersects a homoclinic class.

Proposition 4.9 will be proven in Subsection 5.2.

Now one can give a proof of Theorem 4.1 by Proposition 4.8 and Proposition 4.9.

Proof of Theorem 4.1. – Since dimM 3 D 3, without loss generality, one can assume that
ind.�/ D 2. Otherwise, one considers �X . By Lemma 3.19, C.�/ is Lyapunov stable. By
Proposition 4.8, every singularity � in C.�/ is Lorenz-like and W ss.�/ \ C.�/ D f�g. Since
X 2 X1

.M 3/ n H T , one has

– the normal bundle of C.�/ n Sing.X/ admits a dominated splitting with respect to the
linear Poincaré flow (See more details from Corollary 3.18),

– since X is C 1 generic and C.�/ is not a homoclinic class, C.�/ contains no periodic
orbit. As a corollary, for every regular point x 2 C.�/, !.x/ contains a singularity.
Otherwise, if !.x/ contains no singularity, then by Theorem 4.6, !.x/ is hyperbolic.
Then one can get a periodic orbit in C.�/ by the shadowing lemma, which is a contra-
diction.

By Proposition 4.9, either C.�/ admits a partially hyperbolic splitting, or C.�/ \H.
/ ¤ ;
for some hyperbolic saddle 
 . But the fact that C.�/\H.
/ ¤ ; gives a contradiction.

4.4. Comments on Theorem 4.4

The proof of Theorem 4.4 will use more notations and definitions. We will give the proof
in Section 6.
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5. Partial hyperbolicity: the proof of Theorem 4.1

5.1. Lorenz-like singularities

The goal of this subsection is to prove Proposition 4.8.

L 5.1. – Let ƒ be a non-trivial chain transitive set of X 2 X1
.M d /. Assume

� every singularity in ƒ is hyperbolic,
� NƒnSing.X/ admits a dominated splitting of index i w.r.t the linear Poincaré flow  t .

Then for every hyperbolic singularity � 2 ƒ with ind.�/ > i , T�M d admits a dominated
splitting T�M d D Ess ˚Ecu with respect to the tangent flow ˆt , where dimEss D i .

Proof. – For a hyperbolic singularity � 2 ƒ, since ƒ is a non-trivial chain transitive set,
one has W s.�/ \ƒ n f�g ¤ ; and W u.�/ \ƒ n f�g ¤ ;. One can see [10, Lemma 2.6] for
more details about the proof. Recall the definition of eƒ: the lift of ƒ in the sphere bundle as
in Subsection 2.1. One has that there is v 2 Eu.�/ \ eƒ.

Since NƒnSing.X/ admits a dominated splitting of index i with respect to the linear
Poincaré flow, fN eƒ admits a dominated splitting of index i with respect to the extended linear
Poincaré flow e t by Corollary 2.11. We will consider the negative limit set ˛.v/ with respect
to the flow ˆIt .

By changing the Riemannian metric in a small neighborhood of � , without loss of gener-
ality, one can assume Es.�/ ? Eu.�/. Thus,

� fN˛.v/ admits a dominated splitting �cs ˚ �cu of index i w.r.t e t since NƒnSing.X/

admits a dominated splitting of index i with respect to  t ,
� the hyperbolic splitting on T�M d implies that: fN˛.v/ admits a dominated splitting
Es˚F of index dimEs for someF w.r.t.f t , since � is hyperbolic andEs.�/ ? Eu.�/.

Thus by the properties of dominated splittings, one has �cs.˛.v// � Es.�/. Thus, there
are C > 0 and � > 0 such that for any u 2 Eu \ S�M d , there is a splitting �cs ˚ �cu DfN .�;u/ with the following property:

– By the natural hyperbolic splitting on the singularity � , we have

ke t j�cs.u/k
kˆt j<u>

k
� C e��t ; 8t � 0:

– By extending the dominated splitting to the sphere bundle, we have

ke t j�cs.u/k
m.e t j�cu.u// � C e��t ; 8t � 0:

Then by Lemma 2.13, we know that � admits a dominated splitting T�M d D E ˚ F

w.r.t. the tangent flow ˆt , where dimE D i . Since ind� > i , one can get the splitting as
required.

L 5.2. – There is a residual subset G � X1
.M 3/nH T such that for any hyperbolic

singularity � of index 2 ofX 2 G , ifC.�/ is non-trivial, thenT�M 3 admits a dominated splitting
T�M

3 D Ess ˚ F w.r.t. the tangent flow ˆt , where dimEss D 1, Ess is contracting, and
W ss.�/ \ C.�/ D f�g.

Similarly, if ind.�/ D 1 and C.�/ is non-trivial, then W uu.�/ \ C.�/ D f�g.
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Proof. – Assume that X satisfies all generic properties in §3. We focus on the case
of ind.�/ D 2. By Lemma 3.19, there is a sequence of periodic orbit 
n such that
limn!1 
n D C.�/ in the Hausdorff topology. By Corollary 3.18, there is � > 0 such
that each 
n admits an �-dominated splitting in N 
n w.r.t. the linear Poincaré flow.
Then by Corollary 2.11, NC.�/nSing.X/ admits a dominated splitting of index 1 with
respect to the linear Poincaré flow  t . As a corollary of Lemma 5.1, T�M has domi-
nated splitting T�M D Ess ˚ F w.r.t. the tangent flow ˆt . Thus what we need to prove
now is W ss.�/ \ C.�/ D f�g. We will prove this by absurd. If this is not true, there is
x0 2 W

ss.�/\C.�/n f�g. One also notice that C.�/ is Lyapunov stable since ind.�/ D 2 by
Lemma 3.19. Hence W u.�/ � C.�/ and W u.�/ is dense in C.�/. By changing the Rieman-
nian metric in a small neighborhood, we may assume that Ess.�/, Ecs.�/ and Eu.�/ are
mutually orthogonal, where Ecs.�/ D Es.�/ \ F .

Thus, by using the C 1 connecting lemma (Lemma 3.4), there is an arbitrarily small
perturbation Y of X such that

� Y has a strong connection with respect to � : there is y 2 M 3 such that y 2 W ss.�/ \

W u.�/ n f�g,
� Y.x/ D X.x/ if x is in a small neighborhood of � .

By an extra small perturbation, one can assume that Y has the following extra properties:

� Y is linear in a small neighborhood of � in some local chart;
� Ess.�; Y /, Ecs.�; Y / and Eu.�; Y / are still mutually orthogonal.

Let P be the plane spanned by Ess and Eu in the local chart. One has that P is locally
invariant: there is a neighborhood O1 of � such that for any x 2 P \ O1, if �Y

Œ0;t�
.x/ 2 O1,

then �Yt .x/ 2 P . Now for Y , by an extra perturbation, there is a sequence of vector fields Yn
and a smaller neighborhood O2 of � such that

� limn!1 Yn D Y ;
� for each n, Yn D Y in O2;
� Yn has a periodic orbit 
n such that 
n\O2 � P and limn!1 
n D Orb.y; Y /[f�Y g.

By Corollary 3.18, one has

� there are � D �.X/ such that N 
n has an �-dominated splitting �cs ˚ �cu of index 1
with respect to the linear Poincaré flow  

Yn
t .

Thus, N Orb.y;Y / admits an �-dominated splitting w.r.t.  Yt . Let �Y D Orb.y; Y / [ �Y .
It is a compact invariant set. Over the lift f�Y (see Subsection 2.1), there exists a dominated
splitting fNe�Y D �cs ˚�cu w.r.t. e t such that

� for vu 2 Eu.�/ \e�Y , one has �cs.vu/ D Ess and �cu.vu/ D Ecs ,
� For vss 2 Ess.�/ \e�Y , one has �cs.vss/ D Ecs and �cu.vss/ D Eu.

By the continuity of the dominated splitting of e t over fNe�Y , one can choose t1 > 0 and
t2 > 0 large enough such that

� �t1.y/ 2 W
ss

loc.�Y / and ��t2.y/ 2 W
u

loc.�Y /,
� �cs.��t2.y// is close to Ess.�Y / and �cs.�t1.y// is close to Ecs.�Y /.

Then we take a point pn 2 
n and tn > 0 such that

� pn is close to �Y�t2.y/ and �Y�tn.pn/ is close to �Yt1.y/,
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F 1. Local dynamics near a strong connection

� �Y
Œ�tn;0�

.pn/ is contained in the plane P spanned by Ess and Eu in the local chart,

� �Yt .pn/ D �
Yn
t .pn/ for any t 2 Œ�tn; 0� by the construction of Yn.

Thus we have that �cs.pn/ is close to Ess.�Y / and �cs.�Y�tn.pn// is close to Ecs.�Y /.
In other words, in the local linearized chart, if we extend Ess , Ecs and Eu to every point
in a small neighborhood of �Y , we have Ess is contained in a cone (with a prescribed
small size) of �cs.pn/. By the invariance of cs-cone field by backward iterations, we have
 �tn.E

ss.pn// is also contained in the cone of �cs.��tn.pn// with a prescribed small size.
Recall that we assume the dynamics is linear in a small neighborhood of �Y and P is

spanned by Ess ˚ Eu, we have  Y�tn.E
ss.pn// is also contained in P ; in other words,

it is almost orthogonal to Ecs.�Y /. This shows that �cs.��tn.pn// is almost orthogonal
to Ecs.�Y /. We get a contradiction since we have �cs.�Y�tn.pn// is close to Ecs.�Y /.

One can also see the analysis in the proof of Lemma 4.3 in [23, page 255-256].

C 5.3. – There is a residual subset G � X1
.M 3/ n H T such that if a chain

recurrent class contains singularities, then all the singularities in the chain recurrent class have
the same index.

Proof. – Let G D G0 n H T , where G0 is as in the end of Subsection 3.3. We will prove
this corollary by absurd. If it’s not true, then there isX 2 G and a chain recurrent classC ofX
such that C contains singularities of different indices. Thus, one can assume that C contains
two singularities �1 and �2 satisfying ind.�1/ D 1 and ind.�2/ D 2. By Lemma 5.2,
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T�1M
3 D Ecs ˚Euu is a dominated splitting w.r.t. ˆt , where dimEuu D 1, and for the

corresponding strong unstable manifold W uu.�1/ \ C D f�1g. Since �2 is codimension 1,
by Item 1 of Lemma 3.19, W u.�2/ � C . This fact implies that C is Lyapunov stable by
Lemma 3.14. As a corollary, one has W uu.�1/ � C . This gives us a contradiction.

C 5.4. – There is a residual subset G � X1
.M 3/ n H T such that for any

hyperbolic singularity � of index 2 of X 2 G , there is a C 1 neighborhood U of X such that for
any Y 2 U and for any singularity � 2 C.�/, one has

� ind.�/ D 2 and �Y 2 C.�Y /,
� T�M

3 D Ess ˚Ecu is a dominated splitting w.r.t. ˆt , where dimEss D 1,
� for the corresponding stable manifolds of Ess , one has W ss.�Y ; Y / \ C.�Y / D f�Y g.

Proof. – This is true just becauseX isC 1 generic and the continuous property of the local
strong stable manifolds.

Furthermore, we have

T 5.5. – For a generic X 2 X1
.M 3/ n H T , and a hyperbolic singularity �

of index 2, if C.�/ is non trivial, then � is Lorenz-like for X , i.e., the eigenvalues �1; �2; �3
of DX.�/ are all real and satisfy

(*) �1 < �2 < 0 < ��2 < �3:

Proof. – First by Lemma 5.2, for the three eigenvalues �1; �2; �3 of DX.�/, they are all
real and

�1 < �2 < 0 < �3:

What’s left is to prove that �2 C �3 > 0. The three corresponding eigenspaces are denoted
byEss.�/,Ecs.�/ andEu.�/. By changing the Riemannian metric in a small neighborhood
of � , we can assume that they are mutually orthogonal. We will prove this by absurd, i.e.,
assume that �2 C �3 � 0. Since X is C 1 generic, by Lemma 3.19 one has �2 C �3 < 0.
Moreover,

� W u.�/ � C.�/ and W u.�/ is dense in C.�/ by Lemma 3.19,
� W s.�/ \ C.�/ n f�g ¤ ; since C.�/ is non-trivial.

By using Lemma 3.4 (theC 1 connecting lemma), for anyC 1 neighborhood U ofX , there
is Y 2 U such that

� Y has a homoclinic orbit � associated to �Y ,
� for the three eigenvalues �Y1 < �

Y
2 < 0 < �

Y
3 of DY.�Y /, one still has �Y2 C �

Y
3 < 0,

� W ss.�Y / \ C.�Y / D f�Y g by Corollary 5.4.

By simple perturbations, there is a sequence of vector fields Yn such that

� limn!1 Yn D Y ,
� each Yn has a hyperbolic periodic orbit 
n such that limn!1 
n D � [ � .

Under our assumption, f
ng can be sinks or saddles. Let C > 0, � > 0, � > 0 be as in
Lemma 2.12. By Corollary 3.18 N 
n admits an �-dominated splitting of index 1with respect
to  Ynt for n large enough.

As a corollary, N� admits an �-dominated splitting w.r.t.  Yt . Thus, fN
�̃[�

admits an
�-dominated splitting fN

�̃[�
D �cs ˚�cu w.r.t. e Yt .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



84 S. GAN AND D. YANG

C. – For every v 2 T�M 3 \ ˜.� [ �/, one has �cs.v/ D Ess.�/.

Proof. – For each v 2 T�M 3, if v 2 �̃ [ � , then v 2 Ecs.�/ or v 2 Eu.�/. SinceEss.�/,
Ecs.�/ and Eu.�/ are mutually orthogonal, one has

– if v 2 Ecs.�/, since fN v D E
ss.�/˚Eu.�/ is a dominated splitting w.r.t. e t , one has

�cs.v/ D Ess.�/;
– if v 2 Eu.�/, since fN v D E

ss.�/˚Ecs.�/ is a dominated splitting w.r.t. e t , one has
�cs.v/ D Ess.�/.

Since the unique ergodic measure is supported on f�g for �t j�[� , one has that there are

C > 0 and � > 0 such that for any t > 0 and any .x; v/ 2 �̃ [ � ,

ke t j�cs.x;v/k
kˆt j<v>

k
� Ce��t :

By Lemma 2.13, � [ � admits a dominated splitting T�[�M 3 D E ˚ F w.r.t. the tangent
flow ˆt , where dimE D 1. Thus E.�/ D Ess.�/ by the uniqueness of dominated split-
tings. Since the unique ergodic measure is supported on f�g, one has that E is uniformly
contracting. Thus 
n is also .C; �; d; N /-contracting at the period w.r.t. Ynt for someC > 0,
d > 0 and � 2 .0;�.�2 C �3// which depends on X since 
n stays in a small neighborhood
of the singularity for most time. This also gives a contradiction by Lemma 3.17.

Now we are ready to conclude Proposition 4.8.

Proof of Proposition 4.8. – Since � is a hyperbolic saddle, we have ind.�/ D 1 or
ind.�/ D 2. If ind.�/ D 1, by Lemma 5.2, we have W uu.�/ \ C.�/ D f�g. The Lyapunov
stability of C.�/ implies C.�/ � W u.�/ � W uu.�/. Thus we get a contradiction.

So we have ind.�/ D 2. By Corollary 5.3, every singularity � contained in C.�/ is of
index 2. By Theorem 5.5, � is Lorenz-like, i.e., the eigenvalues �1; �2; �3 of DX.�/ satisfy:

�1 < �2 < 0 < ��2 < �3:

By Lemma 5.2, for any � 2 C.�/, we have W ss.�/ \ C.�/ D f�g.

The above properties also hold in a small neighborhood of X . Now we give the proof.
Since there are only finitely many singularities, by Lemma 3.12, for any � 2 C.�/, its continu-
ation �Y is also contained inC.�Y / for Y close toX . The inequality of eigenvalues is a robust
property. For the strong stable manifold, we assume by contradiction there is a sequence of
vector fields fXng such that limn!1Xn D X and one separatrix of W ss.�Xn/ is contained
in C.�Xn/. Since there is some uniform " > 0 such that W ss

" .�Xn/ ! W ss
" .�/ for n ! 1,

there is one separatrix of W ss
" .�/ is contained in C.�/. Thus we get a contradiction.
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5.2. Proof of Proposition 4.9

Proof of Proposition 4.9. – For proving this proposition, one assumes that the second
case of the conclusion cannot occur.

By changing the Riemannian metric in a small neighborhood of singularities, one can
assume that Ess.�/ ? Ecu.�/ for any singularity � 2 ƒ. There is T � > 0 such that

� for any � 2 ƒ and any unit vector v 2 Ecu.�/, one has

kˆT � jEss
k

jˆT �.v/j
�
1

4
;

� NƒnSing.X/ D �
cs ˚�cu is a T �-dominated splitting w.r.t.  t .

We consider eƒ, the lift of ƒ in the sphere bundle as in Subsection 2.1. By considering
the dynamics of �t , one has fN eƒ D g�cs ˚ g�cu is a T �-dominated splitting of index i
w.r.t. e t D proj2.�t / verifying the following property: �cs.x/ D g�cs.X.x/=jX.x/j/ and
�cu.x/ D g�cu.X.x/=jX.x/j/ for any regular point x 2 ƒ.

Since W ss.�/\ƒ D f�g, one has if v 2 eƒ\ T�M d , then v 2 Ecu.�/. On eƒ, one defines
the functione� by e� W eƒ! R;

v 7! log ke T � jg�cs.v/k � log kˆT �.v/k:

Since e�cs is a continuous bundle,e� is a continuous function.
On ƒ n Sing.X/, one can define the function � by

� W ƒ n Sing.X/! R;
x 7! log k T � j�cs.x/k � log kˆT � j<X.x/>k:

By the definitions, for every regular point x 2 ƒ, �.x/ D Q�.X.x/=jX.x/j/.e� is defined on
a compact set and � is defined on a non-compact set.

C. – There is C > 1 and 0 < � < 1 such that for any v 2 eƒ and n 2 N, one has

ke nT � jg�cs.v/k
jˆnT �.v/j

� C�n:

Proof of the Claim. – The claim is equivalent to the following statement: There areC > 1

and 0 < � < 1 such that for any v 2 eƒ and n 2 N,
n�1X
iD0

e�.ˆIiT �.v// � logC C n log�:

If the claim is not true, by Lemma 2.27, for any n 2 N, there is vn 2 eƒ such that for any
integer ` 2 Œ1; n�, one has

`�1X
jD0

e�.ˆIiT �.vn// � 0:
Let b 2 eƒ be an accumulation point of fvng. Then for any n 2 N,

n�1X
iD0

Q�.ˆIiT �.b// � 0:
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Since we assume that Ess.�/ ? Ecu.�/, one has for any v 2 T�M d \ eƒ, g�cs.v/ D Ess.�/

and v 2 Ecu. As a corollary, one has for any n 2 N,
n�1X
iD0

Q�.ˆIiT �.v// � �n log 4:

For every point x 2 ƒ, by our assumptions, !.x/ contains a hyperbolic singularity. Thus for
its lift eƒ, for any point c 2 eƒ, there is a singularity � 2 ƒ and a unit vector v 2 Ecu.�/
such that v 2 !.c/. Thus for the function Q� and the flow �It , the conditions of Lemma 2.26
(Liao’s sifting lemma) are satisfied.

For any four numbers �1, �2, �3 and �4 satisfying � log 4=2 < �1 < �2 < �3 < �4 < 0.
Let eƒ�2 D fv 2 eƒ W Q�.ˆI�T �.v// � �2g:
Since there are only finite many singularities, there is "0 D "0.�2/ > 0, such that for any
singularity � 2 ƒ, and any unit vector v 2 T�M d \ eƒ, dT .v;eƒ�2/ � "0. By Lemma 2.26,
for any k 2 N, there is u in the positive orbit of b and integers 0 D n0 < n1 < � � � < nk such
that for each integer ` 2 Œ0; k � 1�, for any integer m 2 Œ1; n`C1 � n`� one has

m�1X
jD0

Q�.ˆIjT �.ˆ
I
n`T
�.u/// � m�3;

n`C1�n`�1X
jDm�1

Q�.ˆIjT �.ˆ
I
.n`Cm�1/T

�.u/// � .n`C1 � n` �mC 1/�2:

Thus ˆIn`T �.u/ 2
eƒ�2 for 1 � ` � k. Assume that b D X.x/=jX.x/j (i.e., �.u/ D x) and

u D ˆIt0.b/. Thus,
d.�n`T �.�t0.x//; Sing.X// � "0:

There exists " > 0 small enough such that for any regular point ˇ 2 ƒ, for any point
� 2 B.ˇ; "jX.ˇ/j/, for any T 0 2 Œ.1 � "/T �; .1C "/T ��, for any two subspaces G.ˇ/ � Nˇ

and G.�/ � N � satisfying Qd.G.ˇ/;G.�// < ", one has

�1 � �2 � log k �T � jG.ˇ/k � log k �T 0 jG.�/k � �4 � �3;

maxf
k T 0 jG.�/

k

k T � jG.ˇ/
k
;
m. T � jG.ˇ/

/

m. T 0 jG.�/
/
g �

p
2

2
:

For this " > 0, there is ı D ı."/ as in Theorem 2.25 (Liao’s shadowing). There is kı 2 N
such that for any kı points fx1; x2; : : : ; xkı g � eƒ�2 , there are 1 � i1 < i2 � kı such that
d.xi1 ; xi2/ < ı. For this kı , there are n1 < n2 < � � � < nkı and a point y0 2 OrbC.x/ such
that for the function � and 0 � ` � kı � 1 and m 2 Œ1; n`C1 � n`�, one has

m�1X
jD0

�.�jT �.�n`T �.y
0/// � m�3;

n`C1�n`�1X
jDm�1

�.�jT �.�.n`Cm�1/T �.y
0/// � .n`C1 � n` �mC 1/�2:
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Let y` D �n`T �.y
0/. By the dominated properties, one has for each y`, for any integer

m 2 Œ1; niC1 � ni �, one has

m�1Y
jD0

k �T � j�cs
.�jT �.y`//k � em�3 ;

n`C1�n`�1Y
jDm�1

k ��T � j�cu.�jC1.y`//
k � .

1

4
/n`C1�n`�me�.n`C1�n`�m/�2 :

Let � D minf��3; log 4C �2g. One has that

� �Œ0;.n`C1�n`/T ��.y`/ is an .�; T �/- �t -quasi hyperbolic strings.
� d.y`; Sing.X// � "0.

By the choice of kı , there are y˛ and yˇ such that d.y˛; yˇ / < ı. Thus by Theorem 2.25,
the orbit segment from y˛ to yˇ can be shadowed: there is a periodic orbit P" with period
�.P"/ and p" 2 P" and a monotone increasing function �".t/; �".0/ D 0 such that

� d.��".t/.p"/; �t .y˛// < "jX.�t .y˛//j for any 0 � t � .nˇ � n˛/T �.
� 1 � " � � 0".t/ � 1C " and �"..nˇ � n˛/T �/ D �.P"/,
� there is a direct-sum splitting Np" D E.p"/˚ F.p"/ such that

 ��..nˇ�n˛/T �/.E.p"// D E.p"/;

 ��..nˇ�n˛/T �/.F.p"// D F.p"/;

and for any t 2 Œ0; .nˇ � n˛/T ��,

Qd. �t .E.y˛//;  
�
�.t/.E.p"/// � ";

Qd. �t .F.y˛//;  
�
�.t/.F.p"/// � ":

Let �0 D minf��4; log 2C �1g and T 0 D .1C "/T . By the choosing of ", one has that P"
is an .�0; T 0/- �t -quasi hyperbolic string. For each q and " D 1=q, there is a periodic orbit
P1=q with period �.P1=q/ such that

� lim supq!1 P1=q � ƒ,
� there is p1=q 2 P1=q such that d.p1=q; Sing.X// � "0, p1=q is .1; �0; T 0; E/- �t -con-

tracting and .1; �0; T 0; F /- �t -expanding,
� P1=q admits a T �-dominated splitting w.r.t.  �t .

Without loss of generality, one can assume that fp1=qgq2N converges. By Lemma 2.18 (8),
for any two w;m 2 N large enough, one has

W s.P1=w/ t W
u.P1=m/ ¤ ;; W u.P1=w/ t W

s.P1=m/ ¤ ;:

In other words, they are homoclinically related. Thus for w large enough, one has
ƒ \ H.P1=w/ ¤ ;. Thus we have the second case of Proposition 4.9. This contradiction
proves the claim.

(8) This is the part that we need the existence of central plaques as in Section 2.
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By Lemma 2.13, and the claim above, one has ƒ admits a dominated splitting
TƒM D E ˚ F w.r.t. the tangent flow, where dimE D i and X.x/ � F.x/ for any
regular point x 2 ƒ. Assume that it is a T -dominated splitting. We define the function
f W ƒ! R by f .x/ D log kˆT jE.x/k.

C. – We have

lim inf
n!1

1

n

n�1X
`D0

f .�`T .x// < 0; 8x 2 ƒ:

Proof. – For every point x 2 ƒ, there are two cases: either !.x/ � Sing.X/, or !.x/
contains a regular point a 2 ƒ. In the first case, since every singularity inƒ admits a partially
hyperbolic splitting, one has that the claim is true. Now we consider the second case: !.x/
contains a regular point a. We fix a neighborhood Ua of a such that for any z; y 2 Ua, one
has

1

2
�
jX.z/j

jX.y/j
� 2:

Let f0.z/ D log kˆT jE.z/k� log kˆT j<X.z/>k for every regular point z 2 ƒ. Since TƒM d D

E ˚ F is a dominated splitting and X.z/ � F.z/ for every regular point z 2 ƒ, one has
f0.z/ � � log 2 for any regular point z. Since a 2 !.x/, one can take x0 2 OrbC.x/ such
that x0 2 Ua and there is a sequence of times ftngn2N such that limn!1 �tn.x0/ D a and
limn!1 tn D1.

For n large enough, assume that tn D kT C t , where t 2 Œ0; T �. Thus we have

1

k

k�1X
`D0

f .�`T .x0// � � log 2C
1

k
.log kˆT j<X.�kT .x0//>

k � log kˆT jX.x0/
k/:

Since k !1 as n!1, one has

lim inf
n!1

1

n

n�1X
`D0

f .�`T .x0// < 0:

Thus the same inequality holds for x.

By the above claim, one has that for any x 2 ƒ, there exists nx 2 N such thatPnx�1
`D0

f .�`T .x// < 0. By Lemma 2.27, we have that E is uniformly contracting. This
ends the proof Proposition 4.9.

6. Perturbations in partially hyperbolic Lyapunov stable chain recurrent classes

The purpose of this section is to prove Theorem 4.4: for a C 1 generic X 2 X1
.M 3/ and

a non-trivial chain recurrent class C.�/ of some singularity � , if C.�/ admits a partially
hyperbolic splitting TC.�/M 3 D Es ˚ F w.r.t. the tangent flow, where dimEs D 1, and
if C.�/ contains no periodic orbits, then C.�/ is singular hyperbolic.

What’s left is to prove thatF is area-expanding. We will prove Theorem 4.4 by absurd, i.e.,
F is not area-expanding. It suffices to consider three-dimensional vector fields in G0 ( G0 was
defined at the end of Section 3). We assume that there isX 2 G0 such thatX has a non-trivial
chain recurrent class C.�/ with a partially hyperbolic splitting TC.�/M 3 D Ess ˚ F w.r.t.
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the tangent flow, where Ess is one-dimensional and contracting, C.�/ contains no periodic
orbits and F is not area-expanding. Hereafter, we will fix this X . By the discussions before,
there is a neighborhood UX of X such that:

A.1 C.�Y / is not singular hyperbolic for any Y 2 UX (Lemma 3.19). Notice that
C.�Y / may contain periodic orbits for non-generic Y .

A.2 For every singularity � 2 C.�Y / of any Y 2 UX , one has that � is Lorenz-like and
W ss.�/ \ C.�Y / D f�g (Proposition 4.8).

A.3 For every weak Kupka-Smale Y 2 UX , C.�Y / is Lyapunov stable (Lemma 3.15). As
a corollary, for any sink 
 of Y , we have Basin.
/ \ C.�Y / D ;.

A.4 There are "0 > 0 and a neighborhood U of C.�/, such that for any Y 2 UX and any
x 2 U , the strong stable manifold W ss

"0
.x; Y / exists (e.g., see [8, page 289]).

A.5 A singularity �Y is contained in C.�Y / if and only if it is the continuation of a singu-
larity � 2 C.�/ (Lemma 3.12).

The strategy of the proof of Theorem 4.4 is to construct some “good” cross sections and
some “good” return maps. It follows the steps below:

1. We construct some cross sections and some return map with good properties. For
example, we can choose each cross section is to be thin and the boundary of the cross
section is to be disjoint from C.�/. Notice that this is not true for the geometric Lorenz
attractor. When the cross section of a geometric Lorenz attractor is thin, then the stable
boundary of the cross section will intersect the attractor. Moreover, the properties
of cross sections and return maps are robust. C.�Y / is not singular hyperbolic for
Y 2 UX , but C.�Y / may contain periodic orbits.

2. By considering some special C 2 weak Kupka-Smale vector field Y close to X and by
considering some special sets and measures of Y , we can get better properties of the
return map of the cross sections.

3. By doing some extra perturbation if necessary, one can get some sink whose basin
accumulates to C.�Y / and get a contradiction to the robustness of Lyapunov stability.
To get a sink by perturbation, it is always easy by Mañé’s ergodic closing lemma. But
we don’t have the control of the basin. Here, the basin can be small by size; but it is
enough to achieve the class.

We have the following three subsections to detail the three steps above.

6.1. Cross sections of partially hyperbolic Lyapunov stable chain recurrent classes

D 6.1. – For Z 2 X1
.M 3/, S is called a cross-section of Z if

� S is a C 1 surface which is homeomorphic to .�1; 1/2,
� ].TxS;<Z.x/>/ > �=4, 8x 2 S .

D 6.2. – Let � be a Lorenz-like singularity in some partially hyperbolic
Lyapunov stable chain recurrent class. A cross section S is called a singular cross-section
associated to � if the following conditions are satisfied:

1. There is a homeomorphism h D h.x; y/ W Œ�1; 1�2 ! S such that h..�1; 1/2/ D S .
2. There is some uniform ˛ > 0 such that h.x; �/ D W ss

loc.�Œ�˛;˛�.h.x; 0/// \ S .
3. S \W s

loc.�/ D h.f0g � .�1; 1//.
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In fact, .h; Œ�1; 1�2/ (or h for short) is a coordinate system of the surface S .
Denote by ` D S \ W s

loc.�/ and S n ` D S l [ S r , i.e., the local stable manifold of the
singularity (in fact `) cut the S into two pieces: the left part S l and the right part S r (see
Figure 2).

s

l
S

r
S

F 2. Cross-section

For every Lorenz-like singularity �, we will take two singular cross-sectionsSC; S�, which
are on the opposite sides of Ess.�/˚Eu.�/. Denote by `˙ D W s

loc.�/\S
˙
i for˙ 2 fC;�g.

For every Lorenz-like singularity �, there is an orientation � defined in a neighborhood
of �. More precisely, one can define the bundle Eu.�/ and the unstable cone Cu (of some
size) in a neighborhood of � continuously. We say an orientated curve 
 tangent to the cone
field Cu has the orientation �, if �u.
.t1// > �u.
.t0// for any 1 � t1 > t0 � 0, where �u is
the projection to Eu in a local chart. Since each separatrix of the local unstable manifold is
a curve tangent to the cone field Cu, we will say one separatrix of local unstable manifold is
in the direction �, and the other one is in the direction ��.

For Y 2 UX , put C.�Y / \ Sing.Y / D f�1;Y ; : : : ; �k;Y g and

† D
[
1�i�k

.SCi [ S
�
i /;

where SCi and S�i are two singular cross-sections associated to �i;Y . SCi and S�i are disjoint
since they are on the opposite sides ofEss.�i;Y /˚Eu.�i;Y /. The partially hyperbolic splitting
on C.�Y / induces two cone fields on †: the strong stable cone field C ss and the center-
unstable cone field C cu. A curve is called an ss curve if it is tangent to C ss ; it is called a
cu-curve if it is tangent to C cu. Notice that by choosing S˙i is small and almost orthogonal
to Y , and by choosing the width of C cu small enough, we have that the C cu (defined in
the two-dimensional space) is contained in Cu (defined in the three-dimensional space). The
boundary of † is composed by ss curves and cu-curves, which are called ss-boundaries and
cu-boundaries.

For each S˙i , let h˙i W Œ�1; 1�2 ! S˙i be the homeomorphism in the definition of
singular cross-section. For every p 2 †, there exists a unique coordinate system h˙i for some
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i 2 f1; 2; : : : ; kg and˙ 2 fC;�g. We denote h˙i by hp. For each p 2 †, one can associate it

to .xp; yp/ 2 Œ�1; 1�2 such that hp..xp; yp// D p. Note that for every p; p0 2 S˙i , hp D hp0 .
For each p 2 †, if ft > 0 W �t .p/ 2 †g ¤ ;, we can define the first return time

tp D minft > 0 W �t .p/ 2 †g and define R.p/ D �tp .p/. R W Dom.R/ ! † is called
the first return map associated to †, where

Dom.R/ D fp 2 † W 9t > 0 s:t: �Yt .p/ 2 †g:

Notice that one should denote them by †Y and RY . When there is no confusion, we just
denote them by † and R for simplicity.

R. – In the above definition, the local stable manifolds of the singularities also
have the exponentially contracting property with respect to the flow �t . Thus,[

1�i�k

[
˙2fC;�g

[
x2.�1;1/

h˙i .fxg � .�1; 1//

can be regarded as a stable foliation of the first return map.

Since S˙i is transverse to the vector field, Dom.R/ is open and tx is upper semi-continuous
with x.

D 6.3. – In the notations above, .†;R/ is a cross-section system of .C.�Y /; Y /
if the following conditions are satisfied:

1. @† \ C.�Y / D ;, where @† is the boundary of †.
2. For each p 2 †, there is " > 0 such that W ss

loc.�.�";"/.p// \ † � hp.fxpg � .�1; 1//,
where hp.xp; yp/ D p.

3. For each 1 � i � k, and x 2 W s
loc.�i;Y / \ C.�Y / n f�i;Y g, there exists t 2 R such that

�t .x/ 2 `
˙
i and if t > 0, then �Œ0;t�.x/ � W s

loc.�i;Y / and if t < 0,�Œt;0�.x/ � W s
loc.�i;Y /.

4. The ss-adapted property: there is ˛0 2 .0; 1/ such that for any p D hp..xp; yp// 2

Dom.R/, q D R.p/ D hq..xq; yq//, we have that hp..xp; t // is in the domain of R for
any t 2 Œ�1; 1� and R.hp.fxpg � Œ�1; 1�// � hq.fxqg � .�˛0; ˛0//.

5. For any x 2 C.�Y / n
S
1�i�k W

s
loc.�i;Y /, the positive orbit of x will intersect †. In

particular,
C.�Y / \† n

[
1�i�k

W s
loc.�i;Y / � Dom.R/:

R. – In the above definition, Item 1 will help us to define all positive iterations of
the return map R. The geometric Lorenz attractor has cross sections with this property. But
for general singular hyperbolic attractors, we don’t know this is true or not. Item 4 implies
some adapted property: the iteration of each stable leaf under the first return map is totally
contained in the cross section. Usually we don’t have the adapted property in the cu direction.

Recall that X is a C 1 generic three-dimensional vector field, C.�/ is a non-trivial chain
recurrent class of X , C.�/ admits a partially hyperbolic splitting TC.�/M 3 D Ess ˚ F with
dimF D 2, and C.�/ contains no periodic orbits. Thus, we have the properties (A.1)-(A.5)
mentioned before.

P 6.4. – For X , C.�/ admits a cross-section system .†;R/.
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Proof. The preparation: curves in the stable manifolds. – Assume that

C.�/ \ Sing.X/ D f�1; �2; : : : ; �kg:

For each singularity �i , one can choose a local chart �si W R
2 ! W s

loc.�i / such that

� �si .R � f0g/ D W
ss

loc.�i /,
� �si .f0g � R/ is an invariant central manifold.

Take two curves 
i;1; 
i;2 W R! W s.�i / as the images of y D x and y D �x under �si such
that 
i;j .0/ D �i for j D 1; 2.

C. – There is �i > 0 such that C.�/\ �si .Œ��i ; �i �
2/ � �si .f.x; y/ W jxj < jyjg/. As a

corollary, 
i;1.Œ��i ; �i �/ \ C.�/ D f�ig and 
i;2.Œ��i ; �i �/ \ C.�/ D f�ig.

Proof of the claim. – If the claim is not true, there are xn 2 �si .f.x; y/ W jxj � jyjg/\C.�/
such that limn!1 xn D �i and xn ¤ �i . The negative iterations of xn are still inC.�/. Choose
a small neighborhood Bi of �i . Let

tn D supft W ��s.xn/ 2 Bi ; 80 � s � tg:

We have that tn ! 1 as xn ! �i . Let a be an accumulation point of ��tn.xn/. Then
�t .a/ 2 f.x; y/ W jxj � jyjg for t � 0. Hence a 2 C.�/\W ss.�i /\ @Bi . This contradicts the
fact that W ss.�i / \ C.�/ D f�ig (Property (A.2)). One can also see [23, Lemma 4.4].

The first step of the construction. – Let � D minf�i W 1 � i � kg. For each �i , there are
two connected components ‚˙i of W s

loc.�i / n W
ss

loc.�i /. In the following, we will use ‚Ci to
construct SCi , while S�i can be constructed similarly.

There are two points xi;1 2 
i;1 \‚Ci and xi;2 2 
i;2 \‚Ci such that

� xi;1; xi;2 … C.�/,
� xi;1 2 W

ss
loc.xi;2/.

Thus there is a cross-section eSCi D hCi ..�1; 1/
2/, where hCi W Œ�1; 1�

2 ! eSCi is a
homeomorphism, such that

� hCi ..0;�1// D xi;1, hCi ..0; 1// D xi;2 and hCi .f0g � .�1; 1// is a connected part of a
strong stable manifold of �t ,
� hCi ..�1; 1/ � f�1; 1g/ \ C.�/ D ;,
� eSCi is foliated by strong stable foliation in the following sense: for each x 2 eSCi , one

defines F s
.x/ to be the connected component of

S
t�Œ�T;T � �t .W

ss
"0
.x//\eSCi (for some

T > 0), eSCi can be foliated by F s . Moreover, hCi .fzg � .�1; 1// is a leaf of the strong
stable foliation,
� For any arbitrarily small number ˛ > 0, one can require that the horizontal width

of SCi (the cu-diameter) is less than ˛. This implies the cu-boundary of eSCi is disjoint
from C.�/,
�
S
x2.�1;1/ h

C

i .fxg � .�1; 1// is a family of C 1 curves, and as a C 1 family, it varies
continuously with respect to x.

One can construct eS�i in ‚�i similarly.
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6.1.0.1. Refine the construction: We take a neighborhood U D Bı.C.�// with ı small
enough such that Bı.�i / and Bı.�j / are disjoint for i 6D j and U is disjoint from
h˙i ..�ˇ0; ˇ0/ � f�1; 1g/ for any i and any˙ 2 fC;�g.

Denote by S˙i .ˇ/ D h
˙
i ..�ˇ; ˇ/ � .�1; 1// for ˇ 2 .0; ˇ0�, and denote by

†.ˇ/ D
[

1�i�k; ˙2fC;�g

S˙i .ˇ/:

As before, we consider the first return map R with respect to †.ˇ/.

C. – There is ˛0 2 .0; 1/ such that if ˇ is small enough, for any p 2 Dom.R/\†.ˇ/,
q D R.p/, we have R.hp.fxpg � Œ�1; 1�// � hq.xq � .�˛0; ˛0//, where hp..xp; yp// D p and
hq..xq; yq// D q.

+

i
l

F

F 3. Cross-section and return map: ƒ does not intersect the shaded area
and the image of any strong stable leaf under the return map does not intersect the
shaded area.

Proof of the claim. – By the construction of h, for each point p 2 †.1/, F s
.p/ is

uniformly close to the strong stable manifold of p by the time-one map '1. If ˇ is small, the
orbit of p 2 †.ˇ/ will intersect a small neighborhood of a singularity and then return to the
cross section †.1/. This implies the return time is long. Thus the stable foliation of p in the
cross section will be contracted a lot.

Since X is a C 1 generic vector field, C.�/ can be accumulated by periodic orbits. By
assumptions,C.�/ contains no hyperbolic periodic orbit. We will use this fact (C.�/ contains
no periodic orbits) to prove that the left and the right boundary of† have empty intersection
with C.�/.

C. – Given ˇ 2 .0; ˇ0�, for every i D 1; 2; : : : ; k and˙ 2 fC;�g,

J˙i D fz 2 .�ˇ; ˇ/ W h
˙
i .fzg � .�1; 1// \ C.�/ D ;g

is open and dense in .�ˇ; ˇ/.
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Proof of the claim. – We only have to prove that: Given a; b 2 .�ˇ; ˇ/; a < b, there
exists z 2 .a; b/ such that h˙i .fzg � .�1; 1// \ C.�/ D ;. Otherwise, since C.�/ can be
accumulated by periodic orbits by Lemma 3.19, there is a periodic point p 2 S˙i close
to h˙i .f.a C b/=2g � .�1; 1//. Thus W ss

"0
.p/ \ C.�/ ¤ ;. This contradicts the fact that

C.�/ \ Per.X/ D ;.

For ˇ > 0 small enough,

G D
\

1�i�k;˙2fC;�g

.0; ˇ/ \ J˙i \ .�J
˙
i /

is open and dense in .0; ˇ/.
So, take ˇ0 2 G and let † D †.ˇ0/. For this cross section †.ˇ0/, we define the

return map R. Notice the return time is longer. After scaling, we may assume coordinate
mappings h˙i are defined on .�1; 1/2. Then .†;R/ satisfies item 1)-4) in the definition of
cross-section system.

6.1.0.2. The domain of R: For any x 2 C.�/, if !.x/ contains no singularity, then !.x/ is
a (non-singular) hyperbolic set by Theorem 4.6. By using the shadowing lemma, !.x/ is
shadowed by periodic orbits in the same homoclinic class. Thus, C.�/ contains periodic
orbits. This will contradict our assumption that C.�/ contains no periodic orbits. Now for
every x 2 C.�/, if x is not in the local stable manifold of some singularity, then the positive
iterations of x will be close to stable manifold of some singularity in C.�/. Some of its
iterations will close to the intersection † and local stable manifolds of singularities. This
finishes the proof of the existence of the cross-section system.

By summarizing the construction as in the above proof, we first find some “large” cross-
section†.1/, then we just take some smaller part†.ˇ0/which is modified by the strong stable
foliation. Since the local strong stable manifolds are continuous with respect to the vector
fields, for any Y C 1 close to X , the intersection of the strong stable manifolds W ss

loc.z; Y /

of z 2 †.ˇ0/ and †.1/ is close to †.ˇ0/. The cross-section system has some continuous
property.

P 6.5. – By reducing UX if necessary, C.�Y / admits a cross-section system
.†Y ; RY / for Y 2 UX . Moreover, one can require that†Y is close to†X : it is just obtained by
modifying the boundary of †X slightly.

Proof. – As explained above, we take

†Y D .
[
z2†X

�Œ�".z/;".z/�.W
ss

loc.z; Y /// \†.1/;

where .†X ; RX / is constructed as in Proposition 6.4. Moreover, one can define the first return
map RY by using this cross section.

By the continuity of the local strong stable manifolds w.r.t. the vector fields, we have that
†Y is close to† D †X when Y is close toX . SinceC.�Y / is continuous w.r.t. Y , we have that
C.�Y / \ @†Y D ;: By the definition of †Y , Item 2 of the cross section system is satisfied.
Item 3 is true because C.�Y / \ W s

loc.�Y / is continuous w.r.t. Y . Item 4 is true if the return
time is long, which can be guaranteed if the cross section is thin. We have Item 5 because
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– the return time is uniformly continuous when the point is not close to the local stable
manifolds of the singularities,

– when the point is close to the local stable manifolds of the singularities, the return will
follow the unstable manifolds of the singularities, which are stably contained in the new
cross-section.

By using the Lyapunov stability for the chain recurrent class, we have the following lemma:

L 6.6. – For any weak Kupka-Smale Y 2 UX , there is a neighborhoodUs of `˙i such
that for any cu-curve 
 � Us , we have

– either, there isN 2 N such thatRnY .
/ is a connected cu-curve for any n � N , andRNY .
/
intersects `˙i for some i 2 f1; : : : ; kg and˙ 2 fC;�g;

– or, RnY .
/ is a connected cu-curve that is contained in †Y for any n 2 N.

Proof. – Since Y 2 UX is weak Kupka-Smale, we have that C.�Y / is Lyapunov stable.
Since the boundary of †Y is disjoint from C.�Y /, there is a neighborhood U of C.�/ such
that the closure of U is disjoint from the boundary of †Y . By reducing U if necessary, for
any point x 2 U , either it is contained in the local stable manifold of some singularity, or its
forward iteration will intersect †Y .

By the Lyapunov stability, there is a neighborhood V of C.�Y / such that �t .V / � U .
By choosing a small neighborhood Us of `˙i , we know that the iteration of Us will be close
to �i;Y . Hence the iteration of Us will be contained in V .

Now for a cu-curve 
 � Us , we know that all its positive iteration will be contained in U .
Thus for any N 2 N, if RNY .
/ doesn’t intersect some `˙i , then it is a cu-curve and in the
domain ofRY . Thus one can defineRNC1Y .
/ by Lyapunov stability. The conclusion follows
from an inductive argument.

We can give more details about the structure of the return map R for points close to `˙i .
For each singularity �i , we can fix two points zl and zr in the left and right separatrix of the
local unstable manifold of �i;Y . At these two points, we put two cross sections †u

i;l
and †ui;r

at zl and zr , respectively. Then, we have

� for points close to `˙i but not in `˙i , the flow induces a map R1 from † to †u
i;l
[†ui;r ,

� if the diameters of†u
i;l

and†ui;r are small enough, then the flow induces a mapR2 from
†u
i;l
[†ui;r to †. The times used to define R2 is uniformly bounded,

� finally, R D R2 ıR1 for points in a small neighborhood of `Ci [ `
�
i .

From the proof of Proposition 6.4 and Proposition 6.5, in fact we have the following
additional information:

L 6.7. – For any Y 2 UX , for any sequence of points fxng in C.�Y / such that
xn … W

u
loc.�Y / for any n 2 N and xn ! z 2 W u

loc.�Y / n f�Y g, denoting tn D supft < 0j�Yt .xn/ 2 †g,
any limit point of �Ytn.xn/ is contained in `Ci [ `

�
i .
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F 4. The composition of the return map

Proof. – We first show that tn is well-defined for n large enough. Take a small enough
closed neighborhood U of �Y so that if �Yt .x/ � U for t > 0, then x 2 W s

loc.�Y /. Let
sn D infft < 0 j �Y

Œt;0�
.xn/ � U g. Since xn ! z 2 W u

loc.�Y /, we have that sn ! �1. Let y be

a limit point of �Ysn.xn/. Then �Yt .y/ 2 U for any t > 0. Hence y 2 W s
loc.�Y /\ @U \C.�Y /.

According to the construction of† in Proposition 6.4, we have that for some � < 0 such that
�Y� .y/ 2 `

C

i [ `
�
i . Hence tn is well-defined for n large enough.

By taking a subsequence, we may assume that limn!1 �
Y
tn
.xn/ D y.

Since xn ! z 2 W u
loc.�Y /, tn ! �1. Hence y 2 W s

loc.�/ \† \ C.�Y /: According to the
construction of † in Proposition 6.4, we have that y 2 `Ci [ `

�
i .

We have the following uniform continuity for the return map R:

L 6.8. – For any " > 0, there is ı > 0 such that for any cu-curve 
 � †, if the length
of 
 is less than ı, and 
 does not intersect the local stable manifold of singularities, then the
length of R.
/ is less than ":

Proof. – We first prove that for any i 2 f1; 2; : : : ; kg, for any " > 0 there exists ı > 0 such
that for any cu-curve 
 � SC;ri , if the length of 
 is less than ı, then the length ofR1.
/ is less
than ". Suppose on the contrary, for some " > 0, there is a sequence of cu-curves 
n � S

C;r
i

such that the length of 
n tend to zero, but the length of R1.
n/ � †ui;r equals ". By taking
a subsequence, we may assume that R1.
n/ tends to 
 0. Then both two ends of 
n tend to
some point on lCi and at least one end of 
 0 is not zr , where zr is the point chosen in the right
separatrix of the local unstable manifold. This contradiction finishes the proof.

Since R2 is a sectional map of bounded times, the conclusion holds for R.

Near the stable manifolds of singularities, we have the expansion for the return map:
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L 6.9. – For any K > 0, there is ı > 0 such that for any cu-curve 
 � † in the
ı-neighborhood of [`˙i , then kDRjTx
k > K for any x 2 
 .

Proof. – We prove this lemma for cu-curves close to `˙i . For the singularity �i , we choose
two points zl and zr in the local unstable manifold of �i such that they are in the different
separatices. There is a time T > 0 such that �Œ0;T �.zl / and �Œ0;T �.zr / intersect †. Thus there
is a constant C such that for any cu-curves in †u, we have the derivative of DR2 along to
this curve is larger than C . Since �i is Lorenz-like, there exists a partially hyperbolic splitting
T�iM D Ess ˚ Ecu such that Ecu is area-expanding (�i is Lorenz-like). Assume that
R1.x/ D ��.x/.x/. Then �.x/ ! 1 as x ! `˙i . So, if the cu-curve 
 is arbitrarily close
to `˙i , we have that jDR1jTx


j can be arbitrarily large. Since R D R2 ıR1 and R2 is defined
by using bounded times, we get the conclusion.

6.2. Vector fields close to X

In this subsection, we will consider the properties of some vector fields close to X and to
realize the Step 2 of the strategy.

D 6.10. – A nonempty compact invariant set ƒ is called an N -set, if F is not
area-expanding on ƒ, and F is area-expanding on every proper compact invariant set of ƒ.

As in the case of minimally non-hyperbolic set, by Zorn’s lemma, for any compact
invariant set ƒ, if F is not area-expanding on ƒ, then ƒ contains an N -set.

L 6.11. – C.�Y / contains a transitive N -set ƒY for any Y 2 UX .

Proof. – By Properties (A.1)-(A.4), C.�Y ; Y / is not singular hyperbolic. Hence by Zorn’s
lemma, there exists an N -set ƒY � C.�Y /.

We will prove that ƒY is transitive. Notice that C.�Y ; Y / admits a partially hyperbolic
splitting TC.�Y ;Y /M

3 D Ess ˚ F , where dimEss D 1. If ƒY is not transitive, for every
x 2 ƒY , ˛.x/ is a proper subset of ƒY . As a consequence, F is area-expanding on ˛.x/ for
every x 2 ƒY . This implies lim supt!1 log jDetˆY�t jF.x/j < 0. Since every x 2 ƒY has
this property, by a compact argument (e.g., see Lemma 2.27), one can prove that F is area-
expanding on ƒY . This contradicts the assumption that ƒY is an N -set.

C 6.12. – Under the assumption of Lemma 6.11, for every N -set ƒY , there is
an ergodic measure �Y of �Yt such that the support of �Y is ƒY , and for any t > 0, one hasZ

log jDetˆt jF.x/jd�Y � 0:

Proof. – By Lemma 2.27, there is a point x 2 ƒY such that log jDetˆt jF.x/j � 0 for any
t � 0. By using a standard method, we can have an invariant measure � such that for any
t > 0, one has Z

log jDetˆt jF.x/jd� � 0:

By using the ergodic decomposition theorem, there is an ergodic component �Y of � such
that Z

log jDetˆt jF.x/jd�Y � 0:
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supp.�Y / D ƒY : otherwise, supp.�Y / is a proper compact invariant set of ƒY ; hence F is
area-expanding on supp.�Y /, which implies that the inequality above is false.

We know some structures about minimally non-hyperbolic non-singular set for C 2 vector
fields when the set admits a dominated splitting w.r.t. the linear Poincaré flow, which is the
main theorem in [4].

T 6.13. – Let Z 2 X2
.M 3/. For a compact invariant transitive set ƒ of Z, if

� ƒ \ Sing.Z/ D ;,
� the linear Poincaré flow  Zt admits a dominated splitting on Nƒ,
� every periodic point in ƒ is hyperbolic, but ƒ is not hyperbolic.

Then ƒ is a normally hyperbolic 2-dimensional torus with respect to ˆZt , and �Zt jƒ is
equivalent to an irrational flow.

C 6.14. – Under the assumption of Lemma 6.11, every N -set ƒY contains a
singularity for everyC 2 weak Kupka-Smale vector field Y 2 UX . Moreover,ƒY is not reduced
to a singularity.

Proof. – Notice that C.�Y / cannot contain a normally hyperbolic torus without a singu-
larity. If not, one assumes that C.�Y / contains a normally hyperbolic torus without a singu-
larity. Y is a three-dimensional vector field, the torus is normally contracting or normally
expanding. Without loss of generality, we assume that the torus is normally contracting. As
a corollary, �Y is not chain attainable from any point in the torus. But C.�Y / is chain recur-
rent, every two points in C.�/ are chain bi-attainable. This is a contradiction.

Consequently,ƒY is not a normally hyperbolic torus without a singularity. IfƒY contains
no singularity, then by Theorem 6.13, ƒY is hyperbolic since Y is weak Kupka-Smale. This
contradicts the definition of ƒY . Hence ƒY contains a singularity. Since every singularity is
Lorenz-like, soF is area-expanding on every singularity. Thus we have thatƒY is not reduced
to a singularity.

R. – This is another place that we need to use the assumption of “weak Kupka-
Smale” besides the usage of the connecting lemma for pseudo orbits.

We choose another neighborhood VX ofX such that the closure of VX is contained in the
interior of UX . For each Y 2 VX , one defines n.Y / to be the number of homoclinic orbits
of singularities contained in C.�Y /. Since there are only k singularities in C.�/, n.Y / � 2k.
Let

n D maxfn.Y / W Y 2 VX ; Y is C 2 and is weak Kupka-Smaleg:

Let M n � VX be the set of C 2 weak Kupka-Smale vector fields Y with n.Y / D n.

L 6.15. – For Y 2 M n and the transitive N -set ƒY � C.�Y / as in Lemma 6.11,
then any singularity �i;Y 2 ƒY has a homoclinic orbit �˙i .
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Proof. – Suppose on the contrary, ƒY contains a singularity �i;Y , but C.�Y / does not
contain a homoclinic orbit of �i;Y . SinceƒY is transitive andƒ is not reduced to a singularity
by Corollary 6.14, ƒY \ W s.�i;Y / n f�i;Y g ¤ ; and ƒY \ W u.�i;Y / n f�i;Y g ¤ ;. Take
xs 2 ƒY \W

s.�i;Y / n f�i;Y g and xu 2 ƒY \W u.�i;Y / n f�i;Y g. By the assumptions, xs and
xu are not in a homoclinic orbit.

6.2.0.1. Construction of perturbation boxes. For Y 2 M n, one can choose " > 0, such that
B.Y; "/ � VX . By Lemma 3.4, one can choose Ls D Ls.xs/ > 0 and Lu D Lu.xu/ (related
to ") and neighborhoods eWxs � Wxs of xs , eWxu � Wxu of xu as in Lemma 3.4 such that by
taking L D maxfLs; Lug,

� WL;xs \WL;xu D ;.
� ƒY n .WL;xs [WL;xu/ ¤ ;.
� WL;xs [WL;xu is disjoint from any other homoclinic orbits of singularities in C.�Y /.
� WL;xs [WL;xu is disjoint from �i;Y .

6.2.0.2. Choosing the orbits. SinceƒY is transitive, there is z 2 ƒY n .WL;xs [WL;xu/ such
that ˛.z/ D !.z/ D ƒ. Choose t1; t2 > 0 such that �Y�t1.z/ 2

eWxs and �Yt2.z/ 2
eWxu . Choose

ts > 0 and tu > 0 such that �Yts .x
s/ … WL;xs [WL;xu and �Y�tu.x

u/ … WL;xs [WL;xu .

6.2.0.3. Connecting the orbit from �Y�t2.z/ to �Yts .x
s/. Since the negative orbit of �Yts .x

s/

and the positive orbit of �Y�t2.z/ both enter eWxs , by using Lemma 3.4, there is Y1 which is
"-close to Y such that

� there is T1 > 0 such that �Y1
�T1

.�Yts .x
s// D �Y�t2.z/,

� Y1.x/ D Y.x/ for any x 2M 3 nWL;xs .

As a corollary, we have

� any homoclinic orbit of Y is still a homoclinic orbit of Y1,
� �i;Y is still a singularity of Y1, �Yts .x

s/ is still in the stable manifold of �i;Y and
�Y�tu.x

u/ is still in the unstable manifold of �i;Y with respect to Y1.

6.2.0.4. Connecting the orbit from �Y�tu.x
u/ to �Yts .x

s/. Since �Y1
�T1

.�Yts .x
s// D �Y�t2.z/ is

contained in eWxu , by using Lemma 3.4 again, there is Y2 which is "-close to Y1 such that

� there is T2 > 0 such that �Y1
�T2

.�Yts .x
s// D �Y�tu.x

u/,
� Y2.x/ D Y1.x/ for any x 2M 3 nWL;xu .

As a corollary, we have

� Y.x/ D Y2.x/ for any x 2M 3 n .WL;xs [WL;xu/,.
� �Yts .x

s/ is in a homoclinic orbit of �i;Y .

The meaning of Y 2 M n is that Y has n homoclinic orbits of singularities in C.�Y /.
By Property (A.5), any singularity C.�Y / has its continuation in C.�Y2/. Thus, if �Y is a
homoclinic orbit of �Y 2 C.�Y /, by the choice of WL;xs [ WL;xu (which is disjoint from
�Y [ �Y ), we have that �Y2 D �Y is still contained in C.�Y2/ and �Y is still a homoclinic
orbit of �Y2 D �Y . Since �Y [ �Y2 is a chain transitive set, it is contained in C.�Y / D
C.�Y2/. This implies that any homoclinic orbit of Y is still a homoclinic orbit of Y2. Now
by perturbation we have one more homoclinic orbit of �Y2 . Since Y2 2 VX and we have that
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Y2 has nC 1 homoclinic orbits of singularities in C.�Y /, which contradicts the maximality
of n.

By Lemma 6.15, one knows that �i;Y 2 ƒY contains a homoclinic orbit. However, we
don’t know whether this homoclinic orbit is contained in ƒY in advance.

However, with some additional assumption, we have

L 6.16. – For Y 2 M n, if �i;Y 2 ƒY has only one homoclinic orbit, then

– this homoclinic orbit is contained in ƒY ;
– if moreover, the other separatrix of W u.�i;Y / is contained in ƒY , then ƒY intersects
`Ci [ `

�
i at only one point.

Proof. – If the first item is not true, we know thatƒY will intersect other orbit in the stable
manifold and the unstable manifold of �i;Y . Similar to the proof of Lemma 6.15, by using the
connecting lemma, we get one more homoclinic orbit. This contradicts the maximality of the
number of homoclinic orbits.

The other item can be proven similarly. Notice that since the homoclinic orbit is contained
in ƒY , the intersection point of this homoclinic orbit and `Ci [ `

�
i is contained in ƒY .

Now we assume that the other separatrix � of W u.�i;Y / is contained in ƒY . We argue by
contradiction. If ƒY intersects `Ci [ `

�
i at least two points, i.e., there is a point z 2 `Ci [ `

�
i

such that z is not contained in the homoclinic orbit. One chooses a pointw 2 �nf�i;Y g. Since
ƒ is transitive, there is a sequence of points fwng � ƒY and ftng such that limn!1wn D w

and limn!1 �
Y
tn
.wn/ D z. Then one can choose perturbation tubes aroundw and z such that

they are disjoint from all homoclinic orbits of singularities as in Lemma 6.15. By applying
the connecting lemma, after a perturbation, one have that the other separatrix is also a
homoclinic orbit; meanwhile, all homoclinic orbits of Y are preserved. Thus, one gets one
more homoclinic orbit. This contradicts the maximality of n.

6.3. Infinitesimal cu adapted returns via homoclinic orbits of singularities

We will define the notion of infinitesimal cu adapted returns (infinitesimal adapted for
short). We will prove (Proposition 6.20) that every C 2 weak Kupka-Smale vector field
in VX has no infinitesimal adapted returns for the cross section in Proposition 6.5. On the
other hand, for any Y 2 M n, we will prove (Proposition 6.25) that there is Z arbitrarily
close to Y such that Z has an infinitesimal adapted return. A contradiction is got.

The idea of defining the infinitesimal adapted property is to find some local stable mani-
fold of the singularity in the cross section (some `˙i ) such that any small cu-curve which starts
from `˙i can be iterated infinitely many times by the return map RY .

Recall the cross section system .†Y ; RY / for Y 2 VX � UX as in Proposition 6.5. For a
cu-curve 
 W Œ0; 1�! S˙i , we define its representatione
 W Œ0; 1�! Œ�1; 1�2 bye
 D .h˙i /�1 ı 
:

Recall that one can define an orientation � in a neighborhood of a Lorenz-like singularity,
i.e., one can define the orientation for any curve tangent to the unstable cone field Cu for
the ambient manifoldM 3. From the construction of the cross section, by choosing the cross
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section carefully and the center-unstable cone field (with smaller width) of the cross section,
one can assume that the center-unstable cone field in the cross section is contained in Cu.

F 5. The local orientations in a neighborhood of a Lorenz-like singularity

D 6.17 (Orientation). – For a cu-curve 
 W Œ0; 1� ! S˙i (and its representa-
tione
), if the first coordinate ofe
.t1/ is strictly larger than the first coordinate ofe
.t0/ for any
1 � t1 > t0 � 0, then we say that the orientation of 
 is �; otherwise, the orientation of 
 is��.
By defining the equivalent class, each point x 2 † has two orientations: � and ��. We use �x
and ��x to emphasize the orientation at x.

If x; y 2 † can be connected by a cu-curve 
 such that 
.0/ D x and 
.1/ D y, then we use
Œx; y� to denote the orientation of 
 .

Furthermore, for a stable manifold W s.z/ (of the return map), denote by Œx;W s.z/� the
orientation of cu-curves which start at x and end at W s.z/.

Notice that this orientation coincides with the orientation in a neighborhood of the
Lorenz-like singularity and we have defined the direction of a separatrix of the unstable
manifold of the Lorenz-like singularity.

For a point x 2 †Y and a direction �x 2 f�x ;��xg, we say a sequence of points fxng � †Y
accumulates x in the direction �x if Œx;W s.xn/� D �x for n large enough.

By local dynamics of Lorenz-like singularities, we have the following lemma:

L 6.18. – For Y 2 VX , there is a sequence of points fxng which accumulates a point
in `Ci (or `�i ) in the direction � 2 f�;��g if and only if there is a sequence of times ftng such
that f�tn.xn/g accumulates the separatrix of the unstable manifold of �i;Y in the direction �.
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Proof. – For a small neighborhood U of �i;Y , we take tn D supft W �Œ0;t�.xn/ � U g. By
the hyperbolicity of �i;Y , after taking a subsequence if necessary, we have limn!1 �tn.xn/ is
a point contained in the local unstable manifold of �i;Y . The accumulation point will be
contained in the separatrix in the direction �: the local orbit cannot cross W s

loc.�i;Y /. The
other part comes from Lemma 6.7.

Recall the definition of the orientations at each point in a neighborhood of a Lorenz-like
singularity. Every point x 2 † has two orientations f�x ;��xgwhich are given by the oriented
cu-curves starting at x. Now we can define the iteration on the orientations. For any point
x 2 †n

S
i;˙ `

˙
i , the mapDR induces a map on the orientations naturally. However, one can

also define the iteration for any points in †. For any point x 2 †, take a small cu-curve 

started at x, whose orientation is �x , the orientation of R.
/ is defined to be ‚.�x/. Notice
that for a point x … `˙i , we have ‚.��x/ D �‚.�x/; but we do not have this property for
points in `˙i .

F 6. The possibilities of the iterations of the orientations

‚may have periodic orbits. f.�x1 ; �x2 ; : : : ; �xN /g is a periodic orbit of‚ if‚.�xj / D �xjC1
for 1 � j � N , where by convention �xNC1 D �x1 .

For a periodic orbit f.�x1 ; �x2 ; : : : ; �xN /g of‚, if x1 2 `˙i and if xj …
S
1�m�k;˙2fC;�g `

˙
m

for any 1 < j � N , then the vector field Y has a homoclinic orbit containing x1. But‚may
not have a periodic orbit when the vector field has a homoclinic orbit.

Recall that we are considering the chain recurrent class C.�/ of the vector field X . �Y is
the continuation of � for Y in some neighborhood of X .
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D 6.19 (The infinitesimal adapted return). – For Y 2 VX , we say that the
cross-section system .†Y ; RY / has an infinitesimal adapted return (or infinitesimal cu
adapted return) if ‚ has a periodic orbit f.�x1 ; �x2 ; : : : ; �xN /g such that

1. x1 is contained in the stable manifold `˙i for some i 2 f1; : : : ; kg and˙ 2 fC;�g,
2. for j ¤ 1, if xj is in the cross section Sij n `

˙
ij

and if Œxj ; `˙ij � is �xj , then there is a sink

contained in the region bounded by W s.xj / and `˙ij .

F 7. An infinitesimal adapted return

P 6.20. – Any weak Kupka-Smale Y 2 VX has no infinitesimal adapted
return.

Proof. – We will prove this by contradiction. Assume that there is a weak Kupka-Smale
Y 2 VX having an infinitesimal adapted return as in Definition 6.19 (the periodic orbit
of ‚ is f�x1 ; �x2 ; : : : ; �xN g). Without loss of generality, we take x1 2 `Ci and �x1 D �x1 .
In the following, we want to represent the dynamics in the standard rectangle.

For the standard rectangle Œ�1; 1�2, the two canonical projections pc and ps are given by

pc..x; y// D x; ps..x; y// D y:

Now we consider the map R.x; y/ D pc ı .h
C

i /
�1 ı RN ı hCi .x; y/ if hCi .x; y/ is in the

domain of RN . Note that .hCi /
�1 ı RN ı hCi is the representation of RN in the standard

rectangle. Since hCi .x; �/ is a stable leaf ofR,R.x; y/ is constant with respect to y. This allows
us to define the mapRcu byRcu.x/ D pc ı.hCi /

�1ıRN ıhCi .x; 0/ if hCi .x; 0/ is in the domain
of RN .

By Lemma 6.8,Rcu is uniformly continuous in a small neighborhood of 0. Thus,Rcu can
be extended to be a continuous function at 0, which is still denoted by Rcu. We have 0 is a
fixed point of Rcu.
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Moreover, by Lemma 6.9, there is ˇY > 0 such that for any ˇ 2 .0; ˇY �, there isN.ˇ/ 2 N
such that .Rcu/N.ˇ/.0; ˇ/ � .0; ˇY �.

From this fact, we have that the fixed point 0 of Rcu is “topologically expanding”: there
is ˇY such that for any x 2 .0; ˇY /, we have .Rcu/�1.x/ is defined, .Rcu/�1.x/ < x and
.Rcu/�n.x/! 0 as n!1.

Consider the set I which is the connected component of fx W Rcu.x/ > xg that
contains ˇY . By the definition of I , we have for any z 2 I , .Rcu/�n.z/ ! 0 as n ! 1.
Notice that 0 is contained in the closure of I .

By Lemma 6.6, for any cu-curve 
 satisfying pc.hCi /
�1.
/ D .0; ˇ
 /, ˇ
 < ˇY , we have

that either there is N.
/ 2 N such that RN.
/Y .
/ intersects some `˙i , or RnY .
/ is defined for
any n. Denote by 
s � 
 such that pc..hCi /

�1.
s// D .0; s/ for any s 2 .0; ˇ
 /. we have:

– Either, there isy 2 .0; ˇ
 / such that one point of fR.hCi .y; 0//; : : : ; R
N�1..hCi .y; 0//g is

contained in the stable manifold of singularity. By Item 2 of Definition 6.19, there is
1 < L � N such that there is a sink in the region bounded by `˙iL and W s.xL/ and
the orientation ŒxL; `˙iL � is �xL . Thus there is z 2 .0; y/ such that RL.hCi ..z; �/// is
in the stable manifold of the sink. By the choice of ˇY , for any s > 0, there is
N.s/ such that .Rcu/N.s/..0; s// � .0; ˇY �. Thus, there is N0.s/ � N.s/ such that
.Rcu/N.s/..0; s// � .0; y/ � fzg. This implies that RN0.s/NCL.
s/ cuts the stable
manifold of the sink, for all s. Thus x1 can be accumulated by the basin of the sink.
This contradicts the Property (A.3).

– Or, .Rcu/n.ˇ
 / < .Rcu/nC1.ˇ
 / for any n 2 N. This implies the limit point y
of f.Rcu/n.ˇ
 /g is a fixed point of the map Rcu. Moreover, y is not topologically
expanded. By the ss adapted property, we have RN .hCi .fyg � Œ�1; 1�// is contained
in the interior of hCi .fyg � Œ�1; 1�/. Since Y is weak Kupka-Smale, we have hCi .y; 0/ is
a stable manifold of a sink. This also implies that x1 can be accumulated by the basin
of the sink. It contradicts the Property (A.3) again.

To get a contradiction, we will manage to prove that for any Y 2 M n, there is a
perturbation of Y such that the perturbation is weak Kupka-Smale, and has an infinitesimal
adapted return.

D 6.21. – A point p 2 M is called a typical point of a probability ergodic
measure � of a vector field Y , if the following conditions are satisfied:

1. p is strongly closable;
2. !.p/ D supp.�/;
3. for every continuous function f WM ! R,

lim
T!C1

1

T

Z T

0

f .�Yt .p//dt D
Z
f .x/d�.x/:

According to Ergodic Closing Lemma and Birkhoff Ergodic Theorem, the set of typical
points of � has �-full measure.

RecallƒY and�Y as in Lemma 6.11 and Corollary 6.12. We have the following definition:
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D 6.22. – We say a point x 2 ƒY is accumulated by .ƒY ; �Y / if there is a
sequence of �Y -typical points fxng such that limn!1 xn D x.

For a pointx 2 †Y and a direction �x 2 f�x ;��xg, we say that it is accumulated by .ƒY ; �Y /
in the direction �x 2 f�x ;��xg if there is a sequence of �Y -typical points fxng � †Y such that
limn!1 xn D x and Œx;W s.xn/� D �x .

P 6.23. – For anyC 2 weak Kupka-Smale Y 2 VX ,and �i;Y 2 ƒY \Sing.Y /,
denoting by �Y the ergodic measure as in Corollary 6.12, assume that

1. There is a periodic point f�x1 ; �x2 ; : : : ; �xng of ‚ such that x1 is contained in `˙i , where
�xi 2 f�xj ;��xj g for 1 � j � n.

2. .ƒY ; �Y / accumulates x1 in the direction �x1 .

Then there is a weak Kupka-Smale vector field Z arbitrarily close to Y such that
.†Z ; RZ/ has an infinitesimal adapted return.

Proof. – Assume that xj is contained in the cross section S˙ij ;Y . We need to find a weak

Kupka-Smale vector field Z arbitrarily C 1-close to Y such that

– f�x1 ; �x2 ; : : : ; �xng is a periodic orbit of ‚Z such that x1 is contained in `˙i , where
�xj 2 f�xj ;��xj g for 1 � j � n.

– there is a sink 
 , 
 \ S˙ij ;Y D fpj g such that Œxj ; W s.pj /� is �xj .

Given T > 0, define fT .x/ D log jDetˆYT jF.x/j for any x 2 C.�Y /. One knows that fT is a
continuous function onC.�/. SinceF can be extended continuously in a small neighborhood
of C.�/, fT can be also extended continuously. Denote by bF and bfT the extension of F and
fT respectively. Note that we don’t require that bF is invariant. By the property of �Y , one
has

R
fT d�Y � 0

Since �Y is ergodic and supp.�Y / D ƒY , one has that the set of homoclinic orbits of
singularities has zero measure w.r.t. �Y . By the assumption, there is a typical point x of �Y
that is close to x1 and in the direction �x1 . Thus, the forward orbit of x will be very close
to xj in the direction �xj . Since x is typical, we have that x is a strongly closable point. Now
by Corollary 3.7, for any " > 0, there is Z "-close to Y such that

� Z.w/ is the same as Y.w/ when w in an arbitrary small neighborhood of prescribed
piece of orbit of x. Thus, Y and Z coincide on a neighborhood of the closure of the
orbits of the points x1; x2; : : : ; xn.
� Z has a periodic orbit 
 such thatˇ̌̌̌Z bfT dı
 �

Z bfT d�Y

ˇ̌̌̌
< ":

� 
 contains a point yj such that the orientation from xj to yj is �xj .

As a corollary of the first item, we have that f�x1 ; �x2 ; : : : ; �xng is a periodic orbit of ‚Z
such that x1 is still contained in `˙i : Moreover, the orbit 
 intersects an arbitrarily small
neighborhood of xj in the direction �xj for any 1 � j � n. In other words, for any 1 � j � n,
for any neighborhood Uj � † of xj , by choosing the pertubation Z close to Y , there is
cj 2 
 [ Uj such that the orientation Œxj ; W s.cj /� is �xj .

Since 
 is close to ƒY , one knows that 
 admits a partially hyperbolic splitting T
M 3 D

Ess;Z ˚ FZ . By the property of dominated splittings, for any x 2 
 , one has that, for the
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distance between two bundles, ed.bF .x/; FZ.x// D o.1/, where o.1/! 0 as "! 0. Thus, one
has that j

R
log jDetˆZT jEcu;Z jdı
 �

R
fT d�Y j D o.1/. As a consequence,Z

log jDetˆZT jEcu;Z jdı
 � o.1/:

Thus, by using the Franks Lemma (Lemma 2.6), by an extra small perturbation in an
arbitrarily small neighborhood of 
 , one gets that 
 is a periodic sink. By the construction
of 
 , 
 contains a point pj that is very close to yj . Finally, by Theorem 3.10, one can assume
that Z is weak Kupka-Smale. Thus Z has an infinitesimal adapted return.

P 6.24. – For any Y 2 M n, if �i;Y 2 ƒY has two homoclinic orbits, then for
any neighborhood U of Y , there is Z 2 U such that .†Z ; RZ/ has an infinitesimal adapted
return.

Proof. – Recall that by Lemma 6.11, ƒY is transitive; by Corollary 6.14, ƒY is not
reduced to a single singularity. Thus, at least one of the separatrice of �i;Y is contained inƒY
for �i;Y 2 ƒY .

Without loss of generality, we assume that the separatrix of the local unstable manifold
in the direction � and the stable manifold `Ci form a homoclinic orbit. Moreover, this homo-
clinic orbit can be accumulated by .ƒY ; �Y /. Assume that x 2 `Ci is contained in this homo-
clinic orbit and this homoclinic orbit intersect the cross section † at N times.

If f�x ; : : : ; ‚N .�x/g is periodic and .ƒY ; �Y / accumulates x in the direction of �x , then
by Proposition 6.23, we get the conclusion. Thus, one can assume this will not happen.

If .ƒY ; �Y / accumulates x in the direction �x , then ‚N .�x/ D ��x by the previous
discussion. This implies that .ƒY ; �Y / also accumulates x in the direction ��x . In any case
.ƒY ; �Y / accumulates x in the direction ��x . In particular, by Lemma 6.18, the separatrix
of W u.�i;Y / in the direction ��x is contained in ƒY .

From our assumption, the separatrix of W u.�i;Y / in the direction ��x is a homoclinic
orbit of �i;Y . Since we know that it is contained inƒY , the argument above also applies to this
orbit. It intersects† in L points and intersects `Ci [ `

�
i in a (unique) point y. The argument

above also applies and shows that y is accumulated by ƒ in the direction �y .

Now we can assume the following possibilities:

1. Both are orientation reversing: ‚N .�x/ D ��x and .ƒY ; �Y / accumulates x in the
directions ��x ; ‚L.��y/ D �y and .ƒY ; �Y / accumulates y in the direction �y

2. Both are orientation preserving: ‚N .�x/ D �x and .ƒY ; �Y / accumulates x in the
direction ��x ; ‚L.��y/ D ��y and .ƒY ; �Y / accumulates y in the direction �y .

3. Orientation preserving at x and orientation reversing at y:‚N .�x/ D �x and .ƒY ; �Y /
accumulates x in the direction��x ;‚L.��y/ D �y and .ƒY ; �Y / accumulates y in the
direction �y .

4. Orientation reversing at x and orientation preserving at y: ‚N .�x/ D ��x and
.ƒY ; �Y / accumulates x in the direction ��x ; ‚L.��y/ D ��y and .ƒY ; �Y / accu-
mulates y in the direction �y .
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In Case 1, notice that

f�x ; : : : ; ‚
N .�x/ D ��x ; ‚.��x/; : : : ; ‚

L.��x/ D ‚
NCL.�x/ D ��y ;

‚.��y/; : : : ; ‚
L.��y/ D �y ; : : : ; ‚

N .�y/ D ‚
2.NCL/.�x/g

is periodic by ‚.
From the previous discussion, ��x is periodic for‚. Since x is accumulated by .ƒY ; �Y /

in the direction ��x , one concludes by applying Proposition 6.23.
The other cases are proven similarly. For the completeness of the proof, we give the

periodic orbit of ‚ and accumulation direction.

– Case 2: the periodic orbit of ‚ is:

f��x ; : : : ; ‚
L.��x/ D �y ; : : : ; ‚

L.�y/ D ‚
NCL.��x/g

is periodic by ‚; x can be accumulated by .ƒY ; �Y / in the direction ��x .
– Case 3: the periodic orbit of ‚ is:

f��x ; : : : ; ‚
L.��x/ D ��y ; : : : ; ‚

L.��y/ D �y ; : : : ; ‚
N .�y/ D ��x I

x can be accumulated by .ƒY ; �Y / in the direction ��x .
– Case 4: the periodic orbit of ‚ is:

f�y ; : : : ; ‚
N .�y/ D �x ; : : : ; ‚

N .�x/ D ��x ; : : : ; ‚
L.��x/ D �y I

y can be accumulated by .ƒY ; �Y / in the direction �y .

P 6.25. – For any Y 2 M n and any neighborhood U of Y , there is a weak
Kupka-Smale Z 2 U such that .†Z ; RZ/ has an infinitesimal adapted return.

Proof. – We will prove this by absurd, i.e., we assume that there is a neighborhood
UY � UX of Y such that .†Z ; RZ/ has no infinitesimal adapted return for any Z 2 UY .
Now we consider the set ƒY . By Lemma 6.15, every singularity �i;Y has one homoclinic
orbit. By Proposition 6.24, �i;Y has only one homoclinic orbit. By Lemma 6.16, this homo-
clinic orbit is contained in ƒY .

Without loss of generality, we assume that the separatrix ofW u.�i;Y / in the direction � is
a homoclinic orbit �i of �i;Y , �i \ `Ci D fxg and �i intersects †Y in N -points.

There are two cases: the periodic case ‚N .�x/ D �x or the non-periodic case ‚N .�x/ D ��x .

Now we show the non-periodic case is impossible. Assume by contradiction that we
have ‚N .�x/ D ��x . In this case, we always have that .ƒY ; �Y / accumulates x in the direc-
tions��x , and a priori may or may not accumulates x in the direction �x . Thus the separatrix
of W u.�i;Y / in the direction �� is contained in ƒY by Lemma 6.18. By Lemma 6.16, ƒY
intersects `Ci [ `

�
i at only one point and the homoclinic orbit is contained in ƒY . Choose a

point z in the local unstable manifold W u.�i;Y / in the direction �. The point z is contained
in the homoclinic orbit. Thus, there is a sequence of �Y typical points fzng such that
limn!1 zn D z. Choose a minimal �n such that ���n.zn/ is contained in†Y . The limit point
of fxn D ���n.zn/g is in ƒ and is contained in `Ci [ `

�
i . Since they only intersect at x, the

limit point is x. So there is a sequence of �Y typical points fxng which accumulates x in
the direction �x by Lemma 6.18. There is T > 0 such that f��T .xn/g accumulates the local
unstable manifold of �i;Y in the direction �. Thus, there is a sequence of times fsng such that
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F 8. The position of the points

� ��T�sn.xn/ accumulates `Ci [ `
�
i in the direction �x .

� ��s�T .xn/ is contained in the local neighborhood of �i;Y for any s 2 Œ0; sn�.

By the choice of sn, we have RN .��sn�T .xn// D xn. By Lemma 6.16, f��sn�T .xn/g
accumulates x. By Lemma 6.18, it accumulates x in the direction � (See Figure 8). But this
implies that ‚N .�x/ D �x . We also get a contradiction.

Thus we are in the periodic case ‚N .�x/ D �x .

By Proposition 6.23, .ƒY ; �Y / can only accumulate x in the direction��x . By Lemma 6.11
and its proof, there is a point x� 2 ƒY such that ˛.x�/ D ƒY . Thus, ƒY is not reduced
to the closure of a homoclinic orbit. Thus, x is accumulated by points outside of `Ci . This
means that there is a sequence of typical points fxng of �Y such that limn!1 xn D x and
the orientation Œxn; `Ci � coincides with �x . By Lemma 6.18, the separatrix ofW u.�i;Y / in the
direction �� is also contained in ƒY .

By the choice of fxng, there is a sequence of times ftng that tends to1 such that the limit
limn!1 �tn.xn/ 2 W u

loc.�i;Y /. Since xn is �Y -typical, we have !.xn/ D ƒY . As a corol-
lary, there is another sequence of times fsng that tends to1 such that limn!1 �tnCsn.xn/

exists and is contained in the local stable manifold of �i;Y . Without loss of generality, by
Lemma 6.7, the accumulation point is contained in `Ci [ `

�
i . By Lemma 6.16, ƒY intersects

`Ci [ `
�
i at only one point. Since there is no other choice, this point is x. This implies there

is T > 0 such that f�snCtn�T .xn/g accumulates the local separatrix unstable manifold in the
direction �x . As a corollary, there is a time sequence f�ng such that f�snCtn�T��n.xn/g accu-
mulates `Ci [`

�
i in the direction �x by Lemma 6.18. Thus, the sequence accumulate `Ci in the

direction �x . This is also a contradiction to the assumption that .ƒY ; �Y / can only accumu-
late x in the direction ��x .
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Proposition 6.25 and Proposition 6.20 give a contradiction together. The proof is
complete.
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