Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities
[Dynamique symbolique pour les systèmes non-uniformément hyperboliques avec discontinuités]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 1-38.

Nous construisons une dynamique symbolique pour les applications non uniformément hyperboliques d'une surface ayant un ensemble de discontinuités 𝒟. La dérivée de l'application peut ne pas être bornée, de l'ordre d'une puissance négative de la distance à 𝒟. Sous certaines conditions géométriques naturelles sur l'espace des phases M, nous codifions un ensemble d'orbites non uniformément hyperboliques qui ne s'approchent pas exponentiellement vite de 𝒟. Notre résultat s'applique aux billards planaires non uniformément hyperboliques tels que les billards de Bunimovich.

This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities 𝒟. We allow the derivative of points nearby 𝒟 to be unbounded, of the order of a negative power of the distance to 𝒟. Under natural geometrical assumptions on the underlying space M, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to 𝒟. The results apply to non-uniformly hyperbolic planar billiards, e.g., Bunimovich billiards.

DOI : 10.24033/asens.2350
Classification : 37B10, 37D25, 37D50; 37C35.
Keywords: Billiards, Markov partition, symbolic dynamics.
Mot clés : Billards, Partition de Markov, dynamique symbolique.
@article{ASENS_2018__51_1_1_0,
     author = {Lima, Yuri and Matheus, Carlos},
     title = {Symbolic dynamics for non-uniformly  hyperbolic surface maps  with discontinuities},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1--38},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {1},
     year = {2018},
     doi = {10.24033/asens.2350},
     mrnumber = {3764037},
     zbl = {1444.37011},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2350/}
}
TY  - JOUR
AU  - Lima, Yuri
AU  - Matheus, Carlos
TI  - Symbolic dynamics for non-uniformly  hyperbolic surface maps  with discontinuities
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 1
EP  - 38
VL  - 51
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2350/
DO  - 10.24033/asens.2350
LA  - en
ID  - ASENS_2018__51_1_1_0
ER  - 
%0 Journal Article
%A Lima, Yuri
%A Matheus, Carlos
%T Symbolic dynamics for non-uniformly  hyperbolic surface maps  with discontinuities
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 1-38
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2350/
%R 10.24033/asens.2350
%G en
%F ASENS_2018__51_1_1_0
Lima, Yuri; Matheus, Carlos. Symbolic dynamics for non-uniformly  hyperbolic surface maps  with discontinuities. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 1-38. doi : 10.24033/asens.2350. http://www.numdam.org/articles/10.24033/asens.2350/

Abramov, L. M.; Rohlin, V. A. Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ., Volume 17 (1962), pp. 5-13 | MR | Zbl

Adler, R. L.; Weiss, B. Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A., Volume 57 (1967), pp. 1573-1576 (ISSN: 0027-8424) | DOI | MR | Zbl

Adler, R. L.; Weiss, B., Memoirs of the American Mathematical Society, 98, Amer. Math. Soc., Providence, R.I., 1970, 43 pages | MR | Zbl

Burns, K.; Masur, H.; Wilkinson, A. The Weil-Petersson geodesic flow is ergodic, Ann. of Math., Volume 175 (2012), pp. 835-908 (ISSN: 0003-486X) | DOI | MR | Zbl

Bowen, R. Markov partitions for Axiom A diffeomorphisms, Amer. J. Math., Volume 92 (1970), pp. 725-747 (ISSN: 0002-9327) | DOI | MR | Zbl

Bowen, R. Symbolic dynamics for hyperbolic flows, Amer. J. Math., Volume 95 (1973), pp. 429-460 (ISSN: 0002-9327) | DOI | MR | Zbl

Bowen, R., Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl

Bunimovich, L.; Sinaĭ, Y. G.; Chernov, N. Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk, Volume 45 (1990), pp. 97-134 (ISSN: 0042-1316) | MR | Zbl

Bunimovič, L. A. Billiards that are close to scattering billiards, Mat. Sb. (N.S.), Volume 94(136) (1974), pp. 49-73 | MR

Bunimovič, L. A. The ergodic properties of certain billiards, Funkcional. Anal. i Priložen., Volume 8 (1974), pp. 73-74 (ISSN: 0374-1990) | MR | Zbl

Bunimovich, L. On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys., Volume 65 (1979), pp. 295-312 http://projecteuclid.org/euclid.cmp/1103904878 (ISSN: 0010-3616) | DOI | MR | Zbl

Bunimovich, L.; Zhang, H.-K.; Zhang, P. On another edge of defocusing: hyperbolicity of asymmetric lemon billiards, Comm. Math. Phys., Volume 341 (2016), pp. 781-803 (ISSN: 0010-3616) | DOI | MR | Zbl

Chernov, N. Topological entropy and periodic points of two-dimensional hyperbolic billiards, Funktsional. Anal. i Prilozhen., Volume 25 (1991), pp. 50-57 (ISSN: 0374-1990) | DOI | MR | Zbl

Chernov, N.; Markarian, R., Mathematical Surveys and Monographs, 127, Amer. Math. Soc., Providence, RI, 2006, 316 pages (ISBN: 0-8218-4096-7) | MR | Zbl

Gurevič, B. M. Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR, Volume 187 (1969), pp. 715-718 (ISSN: 0002-3264) | MR

Gurevič, B. M. Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR, Volume 192 (1970), pp. 963-965 (ISSN: 0002-3264) | MR | Zbl

Katok, A.; Strelcyn, J.-M.; Ledrappier, F.; Przytycki, F., Lecture Notes in Math., 1222, Springer, Berlin, 1986, 283 pages (ISBN: 3-540-17190-8) | MR | Zbl

Lima, Y.; Sarig, O. Symbolic dynamics for three dimensional flows with positive entropy (preprint arXiv:1408.3427, to appear in J. Eur. Math. Soc ) | MR

Ratner, M. E. Markov decomposition for an Y -flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693-704 (ISSN: 0025-567X) | MR

Ratner, M. E. Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math., Volume 15 (1973), pp. 92-114 (ISSN: 0021-2172) | DOI | MR | Zbl

Sarig, O. M. Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., Volume 26 (2013), pp. 341-426 (ISSN: 0894-0347) | DOI | MR | Zbl

Sinaĭ, J. G. Construction of Markov partitionings, Funkcional. Anal. i Priložen., Volume 2 (1968), p. 70-80 (Loose errata) (ISSN: 0374-1990) | MR | Zbl

Sinaĭ, J. G. Markov partitions and 𝒞 -diffeomorphisms, Funkcional. Anal. i Priložen, Volume 2 (1968), pp. 64-89 (ISSN: 0374-1990) | MR | Zbl

Sinaĭ, J. G. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, Volume 25 (1970), pp. 141-192 (ISSN: 0042-1316) | MR | Zbl

Wojtkowski, M. Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys., Volume 105 (1986), pp. 391-414 http://projecteuclid.org/euclid.cmp/1104115431 (ISSN: 0010-3616) | DOI | MR | Zbl

Young, L.-S. Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math., Volume 147 (1998), pp. 585-650 (ISSN: 0003-486X) | DOI | MR | Zbl

Cité par Sources :