Nous construisons une dynamique symbolique pour les applications non uniformément hyperboliques d'une surface ayant un ensemble de discontinuités . La dérivée de l'application peut ne pas être bornée, de l'ordre d'une puissance négative de la distance à . Sous certaines conditions géométriques naturelles sur l'espace des phases , nous codifions un ensemble d'orbites non uniformément hyperboliques qui ne s'approchent pas exponentiellement vite de . Notre résultat s'applique aux billards planaires non uniformément hyperboliques tels que les billards de Bunimovich.
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities . We allow the derivative of points nearby to be unbounded, of the order of a negative power of the distance to . Under natural geometrical assumptions on the underlying space , we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to . The results apply to non-uniformly hyperbolic planar billiards, e.g., Bunimovich billiards.
Keywords: Billiards, Markov partition, symbolic dynamics.
Mot clés : Billards, Partition de Markov, dynamique symbolique.
@article{ASENS_2018__51_1_1_0, author = {Lima, Yuri and Matheus, Carlos}, title = {Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--38}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {1}, year = {2018}, doi = {10.24033/asens.2350}, mrnumber = {3764037}, zbl = {1444.37011}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2350/} }
TY - JOUR AU - Lima, Yuri AU - Matheus, Carlos TI - Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1 EP - 38 VL - 51 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2350/ DO - 10.24033/asens.2350 LA - en ID - ASENS_2018__51_1_1_0 ER -
%0 Journal Article %A Lima, Yuri %A Matheus, Carlos %T Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1-38 %V 51 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2350/ %R 10.24033/asens.2350 %G en %F ASENS_2018__51_1_1_0
Lima, Yuri; Matheus, Carlos. Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 1-38. doi : 10.24033/asens.2350. http://www.numdam.org/articles/10.24033/asens.2350/
Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ., Volume 17 (1962), pp. 5-13 | MR | Zbl
Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A., Volume 57 (1967), pp. 1573-1576 (ISSN: 0027-8424) | DOI | MR | Zbl
, Memoirs of the American Mathematical Society, 98, Amer. Math. Soc., Providence, R.I., 1970, 43 pages | MR | Zbl
The Weil-Petersson geodesic flow is ergodic, Ann. of Math., Volume 175 (2012), pp. 835-908 (ISSN: 0003-486X) | DOI | MR | Zbl
Markov partitions for Axiom diffeomorphisms, Amer. J. Math., Volume 92 (1970), pp. 725-747 (ISSN: 0002-9327) | DOI | MR | Zbl
Symbolic dynamics for hyperbolic flows, Amer. J. Math., Volume 95 (1973), pp. 429-460 (ISSN: 0002-9327) | DOI | MR | Zbl
, Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl
Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk, Volume 45 (1990), pp. 97-134 (ISSN: 0042-1316) | MR | Zbl
Billiards that are close to scattering billiards, Mat. Sb. (N.S.), Volume 94(136) (1974), pp. 49-73 | MR
The ergodic properties of certain billiards, Funkcional. Anal. i Priložen., Volume 8 (1974), pp. 73-74 (ISSN: 0374-1990) | MR | Zbl
On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys., Volume 65 (1979), pp. 295-312 http://projecteuclid.org/euclid.cmp/1103904878 (ISSN: 0010-3616) | DOI | MR | Zbl
On another edge of defocusing: hyperbolicity of asymmetric lemon billiards, Comm. Math. Phys., Volume 341 (2016), pp. 781-803 (ISSN: 0010-3616) | DOI | MR | Zbl
Topological entropy and periodic points of two-dimensional hyperbolic billiards, Funktsional. Anal. i Prilozhen., Volume 25 (1991), pp. 50-57 (ISSN: 0374-1990) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 127, Amer. Math. Soc., Providence, RI, 2006, 316 pages (ISBN: 0-8218-4096-7) | MR | Zbl
Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR, Volume 187 (1969), pp. 715-718 (ISSN: 0002-3264) | MR
Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR, Volume 192 (1970), pp. 963-965 (ISSN: 0002-3264) | MR | Zbl
, Lecture Notes in Math., 1222, Springer, Berlin, 1986, 283 pages (ISBN: 3-540-17190-8) | MR | Zbl
Symbolic dynamics for three dimensional flows with positive entropy (preprint arXiv:1408.3427, to appear in J. Eur. Math. Soc ) | MR
Markov decomposition for an -flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693-704 (ISSN: 0025-567X) | MR
Markov partitions for Anosov flows on -dimensional manifolds, Israel J. Math., Volume 15 (1973), pp. 92-114 (ISSN: 0021-2172) | DOI | MR | Zbl
Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., Volume 26 (2013), pp. 341-426 (ISSN: 0894-0347) | DOI | MR | Zbl
Construction of Markov partitionings, Funkcional. Anal. i Priložen., Volume 2 (1968), p. 70-80 (Loose errata) (ISSN: 0374-1990) | MR | Zbl
Markov partitions and -diffeomorphisms, Funkcional. Anal. i Priložen, Volume 2 (1968), pp. 64-89 (ISSN: 0374-1990) | MR | Zbl
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, Volume 25 (1970), pp. 141-192 (ISSN: 0042-1316) | MR | Zbl
Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys., Volume 105 (1986), pp. 391-414 http://projecteuclid.org/euclid.cmp/1104115431 (ISSN: 0010-3616) | DOI | MR | Zbl
Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math., Volume 147 (1998), pp. 585-650 (ISSN: 0003-486X) | DOI | MR | Zbl
Cité par Sources :